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THE INFLUENCE OF THE CHEMICAL POTENTIALOSCILLATIONS ON THE DE HAAS�VAN ALPHEN EFFECTIN QUASI-TWO-DIMENSIONAL COMPOUNDSP. Grigoriev *Landau Institute for Theoreti
al Physi
s142432, Chernogolovka, Mos
ow region, RussiaGrenoble High Magneti
 Field Laboratory MPI-FKF and CNRSBP 166, F-38042 Grenoble Cedex 09, Fran
eSubmitted 16 January 2001The de Haas�van Alphen e�e
t in quasi-two-dimensional metals is studied at arbitrary parameters. Os
illationsof the 
hemi
al potential 
an substantially 
hange the temperature dependen
e of harmoni
 amplitudes thatis 
ommonly used to determine the e�e
tive ele
tron mass. The pro
essing of the experimental data usingthe standard Lifshitz�Kosevi
h formula 
an therefore lead to substantial errors even in the strong harmoni
damping limit. This may explain the di�eren
e between the e�e
tive ele
tron masses determined from the deHaas�van Alphen e�e
t and the 
y
lotron resonan
e measurements. The os
illations of the 
hemi
al potentialand the deviations from the Lifshitz�Kosevi
h formula depend on the reservoir density of states that exists inorgani
 metals due to open sheets of the Fermi surfa
e. This dependen
e 
an be used to determine the densityof ele
tron states on open sheets of the Fermi surfa
e. We present analyti
al results of the 
al
ulations ofharmoni
 amplitudes in some limiting 
ases that show the importan
e of the 
hemi
al potential os
illations. Wealso des
ribe a simple algorithm for a numeri
al 
al
ulation of the harmoni
 amplitudes for arbitrary reservoirdensity of states, arbitrary warping, spin-splitting, temperature, and Dingle temperature.PACS: 71.18.+yThe quantum magnetization os
illations (or the deHaas�van Alphen (dHvA) e�e
t) were dis
overed longago [1℄ and have been widely used as a powerful tool instudying the Fermi surfa
es and single ele
tron proper-ties in metals [2℄. In a three-dimensional (3D) metal,a good quantitative des
ription of this e�e
t is givenby the Lifshitz�Kosevi
h (LK) formula [3℄. In two-or quasi-two-dimensional 
ompounds, deviations fromthe LK formula are possible for three reasons: the har-moni
 damping in the two-dimensional (2D) 
ase is dif-ferent, the impurity s
attering 
annot be des
ribed bythe usual Dingle law, and the 
hemi
al potential alsobe
omes an os
illating fun
tion of the magneti
 �eld.The �rst problem is important only when the harmoni
damping is weak and 
an be easily solved using the 2Dharmoni
 expansion [2℄. The se
ond problem 
on
ernswith an a

urate 
al
ulation of the density of states*E-mail: pashag�itp.a
.ru

(DoS) with ele
tron�ele
tron intera
tions and the im-purity s
attering. The ele
tron�ele
tron intera
tionsare not very important if many Landau levels (LLs) areo

upied (we 
onsider the 
ase where the Fermi energy"F is mu
h greater than the Landau level separationand the temperature). In the 3D 
ase, the impuritys
attering adds an imaginary part i�(B) to the ele
tronspe
trum, whi
h means that the ele
tron 
an leave itsquantum state with the probability w = �(B)=�~ perse
ond. Assuming this energy level width �(B) to beindependent of the magneti
 �eld B, one obtains theDingle law of harmoni
 damping [4℄Al / exp (�2�l�=~!
) ;whereAl is the amplitude of the harmoni
 number l and!
 = eB=m�
 is the 
y
lotron frequen
y. This Dinglelaw has been proved by many experiments on 3D met-als. In the 2D 
ase, this law may be in
orre
t and theproblem of the DoS distribution in 2D metals has not1257
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al works havebeen devoted to this subje
t (for example, [5�7℄). Theproblem is 
ompli
ated be
ause even the exa
t 
al
u-lation of the point-like impurity s
attering is not su�-
ient be
ause the long-range impurities (and probably,the ele
tron�ele
tron intera
tions) are also importantin the 2D 
ase [8℄. The pro
edure of extra
ting the DoSdistribution from the dHvA measurements was re
entlyproposed in [9℄. In the present paper, we fo
us on thethird question: we assume the Dingle law to be validand 
onsider the in�uen
e of the 
hemi
al potential os-
illations on the harmoni
 amplitudes of the dHvA os-
illations in this approximation. Be
ause we 
onsiderthe quasi-2D 
ase, the Dingle law is not a bad approx-imation. We show that the 
hemi
al potential os
il-lations substantially 
hange the temperature and theDingle temperature dependen
e of the harmoni
 ampli-tudes even in the limit of a strong harmoni
 damping.Therefore, the estimate of the e�e
tive ele
tron massbased on the LK formula 
an lead to the error up to30%. This 
an explain the di�eren
e between the ef-fe
tive ele
tron masses obtained from the dHvA e�e
tand from the 
y
lotron resonan
e measurements (forexample, in [10℄ and [11℄). This problem was examinednumeri
ally by Harrison et al. [12℄ at zero warping Wof the Fermi surfa
e (FS). In this paper, we derive ex-pli
it formulas des
ribing the quantum magnetizationos
illations at arbitrary parameters. We study the re-sult analyti
ally in some limiting 
ases. This shows theimportan
e of the 
hemi
al potential os
illation e�e
ton harmoni
 amplitudes.The energy spe
trum of the quasi-two-dimensionalele
tron gas is given byEn;kz;� = ~!
�n+ 12�+ W2 
os(kzd) + ��eB; (1)where W is the warping of a quasi-
ylindri
al Fermisurfa
e. The DoS distribution with the impurity s
at-tering 
an be written as�(E;B) = �0(E;B) + ~�(E;B);where for E � ~!
, the os
illating part of the DoSis [13℄~�(E;B) = 4g~!
 1Xl=1(�1)l 
os�2�l E~!
��� J0��l W~!
� 
os�2�l�eB~!
 � exp��2�l�~!
 � : (2)In this formula, g = B=�0 is the LL degenera
y, thefa
tor 
os (2�l�eB=~!
) is due to the spin splitting, and

the fa
tor J0 (�lW=~!
) 
omes from the �nite warpingW of the quasi-
ylindri
al FS. J0(x) is the zero-orderBessel fun
tion. The last fa
tor in (2) is the usual Din-gle fa
tor.The non-os
illating part of the DoS is given by�0(E;B) = 2g~!
 (1 + nR(E)) ;where nR(E) is the ratio of the reservoir density ofstates to the average DoS on the quasi-2D part of theFS. The reservoir density of states o

urs in quasi-2Dorgani
 metals be
ause of open sheets of the FS. Thesequasi-one-dimensional states do not dire
tly 
ontributeto the magnetization os
illations be
ause they form the
ontinuous spe
trum and the nonos
illationg DoS.If the DoS is known, one 
an 
al
ulate the thermo-dynami
 potential
(�;B; T ) == �T 1Z0 �(E;B) ln �1 + exp���ET �� dE == 
0(�;B; T ) + ~
(�;B; T ); (3)where �(B) is the 
hemi
al potential and the os
illatingpart of the thermodynami
 potential is given by [13℄~
 = 2gT 1Xl=1 (�1)ll 
os�2�l �~!
� �lsh(�l) �� J0��l W~!
� 
os�2�l�eH~!
 � exp��2�l�~!
 � ;where � � 2�2T=~!
: The total parti
le number is usu-ally 
onstant,N = ���
(�;B; T )�� �T;B == 1Z0 �(E;B)1 + exp�E � �T � dE = 
onst:This is an equation for the 
hemi
al potential as a fun
-tion of the magneti
 �eld. Separating the os
illatingpart of the DoS and substitutingN = 1Z0 �0(E;B)1 + exp�E � "FT � dE1258
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e of the 
hemi
al potential os
illations : : :(where "F is the Fermi energy at zero magneti
 �eld),we obtain1Z0 0BB� 11 + exp�E � "FT � � 11 + exp�E � �T �1CCA�� �0(E;B)dE = 1Z0 ~�(E;B)1 + exp�E � �T � dE: (4)We next use the fa
t that the reservoir DoS nR(E)does not 
hange appre
iably at the s
ale of Tor j� � "F j < ~!
=2 (this is true if many LLsare o

upied be
ause nR(E) 
hanges substantiallyat the Fermi energy s
ale). It then follows thatnR(E) � nR("F ) = 
onst � nR. The left-hand sideof (4) 
an be simpli�ed, and after the insertion of (2),we obtain the equation for the os
illating part ~�(B) ofthe 
hemi
al potential,~�(B) � �(B)� "F = ~!
�(1 + nR("F )) �� 1Xl=1 (�1)l+1l sin�2�l ("F + ~�(B))~!
 � �lsh(�l) �� 
os�2�l�eH~!
 � exp��2�l�~!
 � J0 ��l W~!
� : (5)This nonlinear equation 
annot be solved analyti
allywithout any approximations, but it determines os
illa-tions of the 
hemi
al potential with arbitrary parame-ters (it is only assumed that "F � T; ~!
).The magnetization os
illations at the 
onstant ele
-tron density N = 
onst are given byM = � d(
 +N�)dB ����N=
onst = � �
�B �����;N=
onst �� �
�� ����N;B=
onst +N! d�dB ����N=
onst = � �
�B �����;N=
onst :The os
illating part of the magnetization is~M(B) = � � ~
�B ������;N=
onst =

= 2g�B "F 1Xl=1 (�1)l+1l �lsh�l �� 
os�2�l�eH~!
 � exp��2�l�~!
 ����sin�2�l�(B)~!
 � J0��l W~!
� ++ W2� 
os�2�l�(B)~!
 � J1��l W~!
�� ; (6)where �(B) is given by Eq. (5) and involves the de-penden
e of the magnetization on the reservoir DoS.Equations (5) and (6) des
ribe the magnetization os-
illations at arbitrary parameters. The only approxi-mation used in deriving these formulas is the Dinglelaw of harmoni
 damping. In quasi-2D organi
 metalswith the warping W > TD, the Dingle law is believedto be a su�
iently good approximation.Equations (5) and (6) are a good starting pointfor numeri
al 
al
ulations. It follows that in the limitW=� � 1, the os
illating parts of the magnetizationand the 
hemi
al potential are related simply by~M(B) = "FB 2g~!
 (1 + nR)~�(B): (7)For zero warping, this was obtained in [9℄.Nonlinear equation (5) for ~�(B) 
an be solved an-alyti
ally only in some simple approximations. We dothis to illustrate the in�uen
e of the 
hemi
al potentialos
illations on the temperature and the Dingle tem-perature dependen
e of the harmoni
 amplitudes. Wethus 
onsider zero warping, zero spin splitting and zerotemperature. The sum in the right-hand side of Eq. (5)
an then be 
al
ulated and we obtainx2 = 1(1 + nR) ar
tg� sin(y + x)
os(y + x) + eb� ; (8)where x � 2�~�(B)=~!
, y � 2�"F=~!
, andb � 2��=~!
.For a very large ele
tron reservoir nR =1, we havex = 0, whi
h implies the 
ase of a �xed 
hemi
al po-tential. In this 
ase, the magnetization is given by [13℄~M(B) = 2g"F�B ar
tg� sin yeb + 
os y� : (9)The temperature dependen
e of the harmoni
 ampli-tudes is given by the LK formulaAl(T ) = 2�2T l=~!
sh(2�2T l=~!
) : (10)1259
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ally atnR = 0 and nR = 1. At zero ele
tron reservoir nR = 0,the solution of this equation isx2 = � ~�(B)~!
 = ar
tg� sin yeb � 
os y� :It gives the os
illations of the 
hemi
al potential. Themagnetization at zero ele
tron reservoir is given by~M(B) = 2g "F�B ar
tg� sin yeb � 
os y� : (11)It 
oin
ides with (9) after the phase shift y ! y + �and the sign 
hange ~M ! � ~M . This implies that theharmoni
 damping lawAl / 1l exp (�lb) (12)does not 
hange and only the sign of all even harmoni
sis reversed. This symmetry between the 
ases of the�xed 
hemi
al potential � = 
onst and the 
onstantparti
le density N = 
onst is a feature of the spe
ialexponential law of the harmoni
 damping. Any �nitetemperature and the ele
tron reservoir density breaksthis symmetry.We now 
onsider the intermediate 
ase wherenR = 1. Equation (8) then be
omessinx
osx = sin(y + x)
os(y + x) + eb : (13)This gives x = ar
sin �e�b sin y� :For the magnetization, we obtain~M(y) = g "F�B ar
sin �e�b sin y� : (14)To determine how the harmoni
 damping has 
hanged,we must 
al
ulate the amplitudes of the �rst severalharmoni
s of this expression. The amplitude of the�rst harmoni
 isA1(b) = 1� �Z�� ar
sin �e�b sin y� sin y dy;and after the integration by parts, we obtainA1(b) = 4� �=2Z0 
os2 y e�b dyp1� e�2b sin2 y :This is a superposition of two ellipti
 integrals,A1(b) = 4� �ebE(e�b)� 2 sh bK(e�b)� : (15)

For b � 1, the deviations of A1(b) from the LKformula are small,A1(b) = e�b + e�3b=8 + : : :In the opposite limit b� 1, we obtainA1(b) = 4� �1� b�ln 4p2b � 12�+O(b2)� : (16)This is substantially di�erent from the LK dependen
eA1(b) = exp(�b) � 1�b. For example, the value A1(0)is 4=� times larger than the LK predi
tion.A stronger deviation from LK formula (12) 
an beseen in the amplitudes of the next harmoni
s. All evenharmoni
s vanish be
ause expression (14) possesses thesymmetries ~M(� � y) = ~M(y) and ~M(�y) = ~M(y):The amplitude of the third harmoni
 
an also be
al
ulated. For b� 1 and e�b � 1; we haveA3(b) = �e�3b=12 +O(e�5b):This result is in 
ontrast with the 
ases where nR = 0or nR = 1, where we had A3(b) = e�3b=3. This isnot surprising be
ause in the symmetri
 
ase nR = 1,the os
illations must be mu
h smoother and more si-nusoidal. Therefore, the �rst harmoni
 must in
reaseand the higher harmoni
s must de
rease. For b = 0, wehave A3(0) = 43� �=2Z0 
os 3y 
os y dy
os y = � 49� ; (17)whi
h is � 2:35 times less than the LK predi
tionA3(0) = 1=3 and has the opposite sign. In the 
asewhere nR = 1, the �rst harmoni
 is therefore in
reasedwhile the amplitudes of the others are strongly de-
reased 
ompared to the 
ases of zero and in�nite ele
-tron reservoir. The deviation from the LK formula re-du
es as the warping of the FS in
reases. The aboveanalysis also shows that at low temperature and lowDingle temperature, the harmoni
 ratios 
an give aquantitative estimate of the ele
tron reservoir densitythat is mu
h more pre
ise than just an observationabout the slope of magnetization os
illations.To in
lude the 
orre
t temperature dependen
e,warping, and spin-splitting and to 
onsider an arbi-trary reservoir density, one 
an do numeri
al 
al
u-lations based on solving Eq. (5) for the 
hemi
al po-tential and inserting this solution in formula (6) forthe magnetization. This 
an be easily done for ar-bitrary parameters that are available experimentally.The temperature dependen
e of the �rst three har-moni
 amplitudes is given in the Figure for the fol-lowing set of parameters 
lose to the real experiments1260



ÆÝÒÔ, òîì 119, âûï. 6, 2001 The in�uen
e of the 
hemi
al potential os
illations : : :
00.20.40.60.8
0 21 3 4�0:2Harmoni
ampl

itudes Third harmoni
First harmoni

Temperature, KSe
ond harmoni
Temperature dependen
e of harmoni
 amplitudes. Thesolid lines are the numeri
al results (for nR = 1,m� = 2m0, TD = 0:2 K, andW = 1 K; see text) and thedashed lines are the LK predi
tion at the same parame-ters. Their strong deviations are 
learly seen, espe
iallyfor higher harmoni
son �-(BEDT-TTF)2KHg(SCN)4: the reservoir densitynR = 1, the dHvA frequen
y F = 700 T, the e�e
tivemass m� = 2m0, the Dingle temperature TD = 0:2 K,and the warping W = 1 K. We see a substantial devia-tion from the LK dependen
e. As T ! 0, the obtainedamplitude of the �rst harmoni
 is about 1:1 times largerthan the LK predi
tion. If we also let TD ! 0 andW ! 0, their ratio be
omes 4=� = 1:27 in agreementwith analyti
al result (16). The se
ond harmoni
 am-plitude is 
lose to zero at T = 0. The amplitude of thethird harmoni
 
hanges its sign at T � 0:8 K and devi-ates very strongly from the LK formula. It is dampedmu
h stronger than the LK predi
tions. At T = 0 andW = 0, it also 
oin
ides with predi
tion (17).To 
on
lude, it was shown both analyti
ally andnumeri
ally that the os
illations of the 
hemi
alpotential are essential for the temperature dependen
eof harmoni
 amplitudes of the dHvA os
illations inquasi-two-dimensional 
ompounds. The a

uratedetermination of the e�e
tive ele
tron mass from thedHvA e�e
t should take this e�e
t into a

ount. This
an be done by a simple numeri
al 
al
ulation based

on Eqs. (5) and (6). The os
illations of the 
hemi
alpotential depend on the reservoir density of states ina

ordan
e with Eq. (5). This fa
t may be used forestimating the reservoir density of states in organi
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