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The de Haas-van Alphen effect in quasi-two-dimensional metals is studied at arbitrary parameters. Oscillations
of the chemical potential can substantially change the temperature dependence of harmonic amplitudes that
is commonly used to determine the effective electron mass. The processing of the experimental data using
the standard Lifshitz—Kosevich formula can therefore lead to substantial errors even in the strong harmonic
damping limit. This may explain the difference between the effective electron masses determined from the de
Haas—van Alphen effect and the cyclotron resonance measurements. The oscillations of the chemical potential
and the deviations from the Lifshitz—Kosevich formula depend on the reservoir density of states that exists in
organic metals due to open sheets of the Fermi surface. This dependence can be used to determine the density
of electron states on open sheets of the Fermi surface. We present analytical results of the calculations of
harmonic amplitudes in some limiting cases that show the importance of the chemical potential oscillations. We
also describe a simple algorithm for a numerical calculation of the harmonic amplitudes for arbitrary reservoir
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density of states, arbitrary warping, spin-splitting, temperature, and Dingle temperature.

PACS: 71.18.+y

The quantum magnetization oscillations (or the de
Haas—van Alphen (dHvA) effect) were discovered long
ago [1] and have been widely used as a powerful tool in
studying the Fermi surfaces and single electron proper-
ties in metals [2]. In a three-dimensional (3D) metal,
a good quantitative description of this effect is given
by the Lifshitz-Kosevich (LK) formula [3]. In two-
or quasi-two-dimensional compounds, deviations from
the LK formula are possible for three reasons: the har-
monic damping in the two-dimensional (2D) case is dif-
ferent, the impurity scattering cannot be described by
the usual Dingle law, and the chemical potential also
becomes an oscillating function of the magnetic field.
The first problem is important only when the harmonic
damping is weak and can be easily solved using the 2D
harmonic expansion [2]. The second problem concerns
with an accurate calculation of the density of states
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(DoS) with electron—electron interactions and the im-
purity scattering. The electron—electron interactions
are not very important if many Landau levels (LLs) are
occupied (we consider the case where the Fermi energy
er is much greater than the Landau level separation
and the temperature). In the 3D case, the impurity
scattering adds an imaginary part iI'(B) to the electron
spectrum, which means that the electron can leave its
quantum state with the probability w = T'(B)/7h per
second. Assuming this energy level width T'(B) to be
independent of the magnetic field B, one obtains the
Dingle law of harmonic damping [4]

A; x exp (—27iT /hw,) ,

where A; is the amplitude of the harmonic number [ and
w. = eB/m*c is the cyclotron frequency. This Dingle
law has been proved by many experiments on 3D met-
als. In the 2D case, this law may be incorrect and the
problem of the DoS distribution in 2D metals has not
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been solved yet, although many theoretical works have
been devoted to this subject (for example, [5-7]). The
problem is complicated because even the exact calcu-
lation of the point-like impurity scattering is not suffi-
cient because the long-range impurities (and probably,
the electron—electron interactions) are also important
in the 2D case [8]. The procedure of extracting the DoS
distribution from the dHvA measurements was recently
proposed in [9]. In the present paper, we focus on the
third question: we assume the Dingle law to be valid
and consider the influence of the chemical potential os-
cillations on the harmonic amplitudes of the dHvA os-
cillations in this approximation. Because we consider
the quasi-2D case, the Dingle law is not a bad approx-
imation. We show that the chemical potential oscil-
lations substantially change the temperature and the
Dingle temperature dependence of the harmonic ampli-
tudes even in the limit of a strong harmonic damping.
Therefore, the estimate of the effective electron mass
based on the LK formula can lead to the error up to
30%. This can explain the difference between the ef-
fective electron masses obtained from the dHvA effect
and from the cyclotron resonance measurements (for
example, in [10] and [11]). This problem was examined
numerically by Harrison et al. [12] at zero warping W
of the Fermi surface (FS). In this paper, we derive ex-
plicit formulas describing the quantum magnetization
oscillations at arbitrary parameters. We study the re-
sult analytically in some limiting cases. This shows the
importance of the chemical potential oscillation effect
on harmonic amplitudes.

The energy spectrum of the quasi-two-dimensional
electron gas is given by

1
Enk..o = hwe (n + 5) + % cos(k.d) + ope.B, (1)

where W is the warping of a quasi-cylindrical Fermi
surface. The DoS distribution with the impurity scat-
tering can be written as

p(E,B) = po(E, B) + p(E, B)

3

where for £ > hw,., the oscillating part of the DoS
is [13]

H(E.B) = 29 i(—l)lcos <27rlhE ) X

oy
=1 ¢

w ueB 27l T
x Jo <7rl hwc> cos (271'[ hwc> exp <— o, ) . (2)

In this formula, g = B/®, is the LL degeneracy, the
factor cos (27l B/ hw,.) is due to the spin splitting, and

the factor Jo (7lW/hw.) comes from the finite warping
W of the quasi-cylindrical FS. Jo(z) is the zero-order
Bessel function. The last factor in (2) is the usual Din-
gle factor.

The non-oscillating part of the DoS is given by

29
We

po(E,B) = = (1 + nr(E)),

where np(E) is the ratio of the reservoir density of
states to the average DoS on the quasi-2D part of the
FS. The reservoir density of states occurs in quasi-2D
organic metals because of open sheets of the FS. These
quasi-one-dimensional states do not directly contribute
to the magnetization oscillations because they form the
continuous spectrum and the nonoscillationg DoS.

If the DoS is known, one can calculate the thermo-
dynamic potential

Qu, B,T) =
— 1 [ By ey (15| ar -
0 = Q(u,B,T) + Q(u, B.T), (3)

where p(B) is the chemical potential and the oscillating
part of the thermodynamic potential is given by [13]

W o H 21T
Ji l 27l —
‘ 0<7T hwc>cos< . hwc>exp< m),
where A\ = 27%T /hw,. The total particle number is usu-
ally constant,

dE = const.

This is an equation for the chemical potential as a func-
tion of the magnetic field. Separating the oscillating
part of the DoS and substituting
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(where e is the Fermi energy at zero magnetic field),
we obtain

T 1 1 )
jo _
0 1+exp< EF) 1—|—exp<_“>
T
T ME,B
xpg(E,B)dE:/ PE, )_ dE. (4)
0 1+exp<T'u>

We next use the fact that the reservoir DoS ng(E)
does not change appreciably at the scale of T
or | — ep| < hw./2 (this is true if many LLs
are occupied because ngr(E) changes substantially
at the Fermi energy scale). It then follows that
nr(E) ~ nr(ep) = const = ng. The left-hand side
of (4) can be simplified, and after the insertion of (2),
we obtain the equation for the oscillating part i(B) of
the chemical potential,

. _ _ hew,
fi(B) = u(B) —cp = m X

y i (—1l)l+1 “n (27rl (er +,11(B))> Y

— hwe
o H 27T W
o, ) exp < o Jo | 7l o) (5)

This nonlinear equation cannot be solved analytically
without any approximations, but it determines oscilla-
tions of the chemical potential with arbitrary parame-
ters (it is only assumed that ep > T, hw,).

X COS <27rl

The magnetization oscillations at the constant elec-
tron density N = const are given by

v QN 90 ~
dB N=const OB u,N=const
Q Q
0 N _ o .
6,u N,B=const dB N=const 0B w,N=const

The oscillating part of the magnetization is

- a0

p,N=const

L2 (—1)l+1 Y
= W_BSFZ I sha |

><cos< > <27rll“>><
X{mw Yo (s 4
L () (1))t

where u(B) is given by Eq. (5) and involves the de-
pendence of the magnetization on the reservoir DoS.
Equations (5) and (6) describe the magnetization os-
cillations at arbitrary parameters. The only approxi-
mation used in deriving these formulas is the Dingle
law of harmonic damping. In quasi-2D organic metals
with the warping W > Tp, the Dingle law is believed
to be a sufficiently good approximation.

Equations (5) and (6) are a good starting point
for numerical calculations. It follows that in the limit
W/n < 1, the oscillating parts of the magnetization
and the chemical potential are related simply by

~ EF 2g
M(B) = B hw

(1+nr)i(B). (7)

For zero warping, this was obtained in [9].

Nonlinear equation (5) for ji(B) can be solved an-
alytically only in some simple approximations. We do
this to illustrate the influence of the chemical potential
oscillations on the temperature and the Dingle tem-
perature dependence of the harmonic amplitudes. We
thus consider zero warping, zero spin splitting and zero
temperature. The sum in the right-hand side of Eq. (5)
can then be calculated and we obtain

r are sin(y + x)
2~ (1+ng) tg(cos(y+x)+eb>’ (®)

where ¢ = 27a(B)/hw., y = 2wep/hw,, and
b=2nT"/hwe.

For a very large electron reservoir ng = oo, we have
x = 0, which implies the case of a fixed chemical po-

tential. In this case, the magnetization is given by [13]

siny ) | o)

eb + cosy

~ 2
M(B) = frl;F arctg <

The temperature dependence of the harmonic ampli-
tudes is given by the LK formula

22T 1/ huw,

AlT) = sh(2m2T 1 /hw,)

(10)
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It is also possible to solve Eq. (8) analytically at
nrg = 0 and ng = 1. At zero electron reservoir ng = 0,
the solution of this equation is

x [i(B) sin y
S =B —aretg [ —2— ) .
2 =" I ang<eb—cosy>

It gives the oscillations of the chemical potential. The
magnetization at zero electron reservoir is given by

~ 2gep siny

It coincides with (9) after the phase shift y — y + 7
and the sign change M — —M. This implies that the
harmonic damping law

A x %exp(—lb) (12)

does not change and only the sign of all even harmonics
is reversed. This symmetry between the cases of the
fixed chemical potential 4 = const and the constant
particle density N = const is a feature of the special
exponential law of the harmonic damping. Any finite
temperature and the electron reservoir density breaks
this symmetry.

We now consider the intermediate case where
nr = 1. Equation (8) then becomes

sinz  sin(y + z) (13)
cosxz  cos(y+z)+eb’
This gives
T = arcsin (e_b sin y) .
For the magnetization, we obtain
~ ger . —b .
M(y) = — . 14
(y) g arcsin (e "siny) (14)

To determine how the harmonic damping has changed,
we must calculate the amplitudes of the first several
harmonics of this expression. The amplitude of the
first harmonic is

1 s
Ay (b) = - /arcsin (e7siny) siny dy,

—T7
and after the integration by parts, we obtain

w/2
cos’yedy

4
™ V1 —e2bsin”y

0
This is a superposition of two elliptic integrals,
4
Ai(b) = = [e"E(e™) — 2shb K (e7?)] . (15)

™

For b > 1, the deviations of A;(b) from the LK
formula are small,

A(D) =e b4 e 308 ...
In the opposite limit b < 1, we obtain

A (D) = % {1 —b <m% - %) +O(b2)}. (16)

This is substantially different from the LK dependence
A1 (b) = exp(—b) ~ 1—b. For example, the value A;(0)
is 4/7 times larger than the LK prediction.

A stronger deviation from LK formula (12) can be
seen in the amplitudes of the next harmonics. All even
harmonics vanish because expression (14) possesses the
symmetries M (7 — y) = M(y) and M(—y) = M(y).

The amplitude of the third harmonic can also be
calculated. For b > 1 and e~ <« 1, we have

Az(b) = —e 3 /12 + O(e™™).

This result is in contrast with the cases where ng = 0
or ng = o0, where we had A3(b) = e 3"/3. This is
not surprising because in the symmetric case ng = 1,
the oscillations must be much smoother and more si-
nusoidal. Therefore, the first harmonic must increase
and the higher harmonics must decrease. For b = 0, we
have
w/2
4 / cos3y cosydy _i

A = — ,
3(0) 37 cosy 97’

(17)

which is ~ 2.35 times less than the LK prediction
A3(0) = 1/3 and has the opposite sign. In the case
where ng = 1, the first harmonic is therefore increased
while the amplitudes of the others are strongly de-
creased compared to the cases of zero and infinite elec-
tron reservoir. The deviation from the LK formula re-
duces as the warping of the FS increases. The above
analysis also shows that at low temperature and low
Dingle temperature, the harmonic ratios can give a
quantitative estimate of the electron reservoir density
that is much more precise than just an observation
about the slope of magnetization oscillations.

To include the correct temperature dependence,
warping, and spin-splitting and to consider an arbi-
trary reservoir density, one can do numerical calcu-
lations based on solving Eq. (5) for the chemical po-
tential and inserting this solution in formula (6) for
the magnetization. This can be easily done for ar-
bitrary parameters that are available experimentally.
The temperature dependence of the first three har-
monic amplitudes is given in the Figure for the fol-
lowing set of parameters close to the real experiments

1260



MKITD, Tom 119, BeIm. 6, 2001

The influence of the chemical potential oscillations ...

Harmonic amplitudes

04

o
o

(==}

First harmonic

~ « Third harmonic

|
<
o
T

0 1 2 3

4

on Eqgs. (5) and (6). The oscillations of the chemical
potential depend on the reservoir density of states in
accordance with Eq. (5). This fact may be used for
estimating the reservoir density of states in organic
metals.

The author thanks A. M. Dyugaev and M. V. Kart-
sovnik for useful discussions. The work was supported
by the RFBR grant Ne00-02-17729a.

Temperature, K

Temperature dependence of harmonic amplitudes. The

solid lines are the numerical results (for ng = 1,

m* = 2mo, Tp = 0.2 K, and W =1 K; see text) and the

dashed lines are the LK prediction at the same parame-

ters. Their strong deviations are clearly seen, especially
for higher harmonics

on a-(BEDT-TTF),KHg(SCN),: the reservoir density
ng = 1, the dHVA frequency F' = 700 T, the effective
mass m* = 2my, the Dingle temperature Tp = 0.2 K,
and the warping W =1 K. We see a substantial devia-
tion from the LK dependence. As T' — 0, the obtained
amplitude of the first harmonic is about 1.1 times larger
than the LK prediction. If we also let Tp — 0 and
W — 0, their ratio becomes 4/7 = 1.27 in agreement
with analytical result (16). The second harmonic am-
plitude is close to zero at T = 0. The amplitude of the
third harmonic changes its sign at 7'~ 0.8 K and devi-
ates very strongly from the LK formula. It is damped
much stronger than the LK predictions. At T'= 0 and
W =0, it also coincides with prediction (17).

To conclude, it was shown both analytically and
numerically that the oscillations of the chemical
potential are essential for the temperature dependence
of harmonic amplitudes of the dHvA oscillations in
quasi-two-dimensional compounds. The accurate
determination of the effective electron mass from the
dHvA effect should take this effect into account. This
can be done by a simple numerical calculation based
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