ЗАВИСИМОСТЬ СКОРОСТИ РЕЛАКСАЦИИ МАГНИТНОГО МОМЕНТА МЕЛКОГО АКЦЕПТОРНОГО ЦЕНТРА ОТ КОНЦЕНТРАЦИИ ПРИМЕСИ В КРЕМНИИ

Т. Н. Мамедов^a^{*}, Д. Г. Андрианов^b, Д. Герлах^c, В. Н. Горелкин^d, К. И. Грицай^a,
 О. Корманн^e, Я. Майор^{e,f}, А. В. Стойков^a, У. Циммерман^c

^а Объединенный институт ядерных исследований 141980, Дубна, Московская обл., Россия

^b Государственный научно-исследовательский и проектный институт редкометаллической промышленности «Гиредмет» 109017, Москва, Россия

^c Paul Scherrer Institut CH-5232 Villigen PSI, Switzerland

^d Московский физико-технический институт 141700, Долгопрудный, Московская обл., Россия

^e Max-Planck-Institut für Metallforschung D-70569 Stuttgart, Deutschland

^f Universität Stuttgart, Institut für Theoretische und Angewandte Physik D-70569 Stuttgart, Deutschland

Поступила в редакцию 30 августа 2000 г.

Исследована температурная зависимость остаточной поляризации отрицательных мюонов в кристаллическом кремнии с концентрациями примесей n- и p-типов от $8.7 \cdot 10^{13}$ до $4.1 \cdot 10^{18}$ см⁻³. Измерения были выполнены в поперечном спину мюона магнитном поле величиной 1000 Гс в диапазоне температур 4.2-300 К. Установлен вид температурной зависимости скорости релаксации ν магнитного момента акцептора $_{\mu}$ Al⁰ в кремнии. Для невырожденного полупроводника скорость релаксации зависит от температуры как $\nu \propto T^q$ ($q \approx 3$). Обнаружены изменение характера температурной зависимости и многократное увеличение скорости релаксации в области концентраций примеси выше $\sim 10^{18}$ см⁻³. Обсуждается роль рассеяния фононов и спин-обменного рассеяния свободных носителей заряда на акцепторе в релаксации его магнитного момента. Впервые приводится оценка константы сверхтонкого взаимодействия в акцепторном центре, образованном атомом алюминия в кремнии: $|A_{hf}(Al)/2\pi| \sim 2.5 \cdot 10^6$ с⁻¹.

PACS: 71.55.Cn, 76.75.+i

1. ВВЕДЕНИЕ

Интерес к исследованиям примесных центров и различных дефектов в полупроводниках не ослабевает, поскольку они позволяют получать детальные данные о распределении волновой функции этих центров в кристаллической решетке, о структуре примесной зоны проводимости и т. д. (см., например, [1]). Несмотря на то что за несколько десятков лет накоплено огромное количество экспериментальных данных о различных примесях и дефектах в полупроводниках, мелкие акцепторные центры в полупроводниках с кристаллической структурой алмаза (кремний, германий и т. д.) до сих пор мало изучены как экспериментально, так и теоретически [1–4].

Основные трудности теоретических исследований акцепторных примесей в алмазоподобных полупроводниках обусловлены структурой валентной

^{*}E-mail: tmamedov@nu.jinr.ru

зоны данных полупроводников. Верхний край валентной зоны в кремнии и германии находится при $\mathbf{k} = 0$, и зона четырехкратно вырождена в этой точке.

Применение метода электронного парамагнитного резонанса (ЭПР), сыгравшего ключевую роль в исследованиях различных парамагнитных примесей в полупроводниках, в случае мелких акцепторных центров в алмазоподобных полупроводниках ограничено вследствие высокой скорости релаксации магнитного момента акцептора и уширения ЭПР-линии из-за вырождения основного состояния акцепторной примеси и случайных остаточных деформаций в кристалле [5].

Применение отрицательных мюонов, теоретически обоснованное в работе [6] и развиваемое в экспериментальных работах [7–10], позволяет существенно расширить возможности изучения мелких акцепторных центров в кремнии.

Образующийся в результате имплантации отрицательного мюона в кремний мюонный атом моделирует поведение атома алюминия, являющегося акцепторной примесью. Поведение остаточной поляризации отрицательного мюона в 1*S*-состоянии мюонного атома определяется состоянием электронной оболочки данного атома и его взаимодействием со средой. Теоретическое рассмотрение кинетики формирования мюонного атома в кремнии [11], подтверждаемое результатами эксперимента, свидетельствует о том, что в области температур ниже $\sim 50~{\rm K}$ за время $\leq 10^{-9}$ с акцепторный центр (мюонный атом) образуется в нейтральном (парамагнитном) состоянии — $_{\mu} Al^0$. Во внешнем поперечном спину мюона магнитном поле имеют место релаксация (λ — скорость релаксации) и сдвиг частоты прецессии ($\Delta \omega$) спина мюона, обусловленные его взаимодействием с магнитным моментом электронной оболочки атома. Связь между измеряемыми в эксперименте параметрами поляризации мюона и величинами, характеризующими магнитные взаимодействия акцепторного центра (A_{hf} — константа сверхтонкого взаимодействия магнитных моментов мюона и электронной оболочки в мюонном атоме и ν — скорость релаксации магнитного момента электронной оболочки), при $\nu \gg A_{hf}$ устанавливается соотношениями [12, 13]

$$\frac{\Delta\omega}{\omega_0} = -\frac{g\mu_B}{2\mu_B^{\mu}} \frac{j(j+1)\hbar A_{hf}}{3\,k_B\,T} + \frac{A_{hf}^2}{2(\nu^2 + \omega_e^2)},\qquad(1)$$

$$\lambda = \frac{j(j+1)}{3} \left(\frac{A_{hf}^2}{\nu} + \frac{A_{hf}^2 \nu}{\nu^2 + \omega_e^2} \right),$$
 (2)

где $\Delta \omega = \omega(T) - \omega_0 (\omega_0 - угловая частота пре$ цессии спина мюона в диамагнитном состоянии мю $онного атома), <math>k_B$ — постоянная Больцмана; μ_B и μ_B^{μ} — магнетон Бора соответственно для электрона и мюона, g - g-фактор акцепторного центра; $\omega_e = g\mu_B B/\hbar$ — угловая частота прецессии магнитного момента электронной оболочки акцепторного центра во внешнем магнитном поле B, T — температура в кельвинах. Для мелкого акцепторного центра в кремнии j = 3/2 [14].

Доступный экспериментальному изучению диапазон значений ν определяется согласно (2) диапазоном измеряемых значений λ и величиной константы сверхтонкого взаимодействия. Принимая $0.05 \lesssim \lambda \lesssim 20$ мкс⁻¹ и используя оценку [10] $A_{hf}/2\pi \approx 30$ мкс⁻¹, получаем $5 \cdot 10^9 \lesssim \nu \lesssim 2 \cdot 10^{12}$ с⁻¹. Таким образом, μ -SR-метод позволяет существенно увеличить по сравнению с возможностями метода ЭПР ($\nu \lesssim 10^9$ с⁻¹ [5]) доступный экспериментальному определению верхний предел скоростей релаксации и изучать процессы магнитной релаксации мелких акцепторов в недеформированных образцах кремния в широком диапазоне температур и концентраций примесей.

2. ИЗМЕРЕНИЯ

В настоящей работе представлены результаты исследования остаточной поляризации отрицательных мюонов в кристаллическом кремнии с примесью бора ($8.7 \cdot 10^{13}$, $5.5 \cdot 10^{16}$, $1.4 \cdot 10^{18}$, $4.1 \cdot 10^{18}$ см⁻³), галлия ($1.1 \cdot 10^{15}$, $1.1 \cdot 10^{18}$ см⁻³) и мышьяка ($8.0 \cdot 10^{15}$, $2.0 \cdot 10^{17}$ см⁻³) в диапазоне температур 4–300 К.

Измерения были выполнены на установке «Stuttgart LFQ spectrometer» [15] на мюонном канале µЕ4 ускорителя протонов Института Пауля Шеррера (PSI, Швейцария). Исследуемые образцы вырезались в форме цилиндров (диаметр — 30 мм, высота — 15 мм) из монокристаллов кремния и устанавливались так, чтобы ось цилиндра совпадала с осью пучка мюонов. Создаваемое кольцами Гельмгольца на образце поперечное магнитное поле составляло 1000 Гс. Долговременная стабильность магнитного поля была не хуже чем 10⁻⁴. Образцы помещались в криостат, их охлаждение осуществлялось потоком паров жидкого гелия, температура стабилизировалась с точностью 0.1 К в диапазоне 4.2-300 К. Электроны от распада мюонов, остановившихся в мишени, регистрировались сцинтилляционными счетчиками. Интервалы времени между моментом остановки мюона и

вылетом электрона распада накапливались в виде гистограмм (µSR-спектров). Ширина временного канала спектрометра составляла 0.625 нс, общее число каналов в спектре было 16000.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Помимо мишени, часть мюонов останавливается в материалах криостата и в сцинтилляционных счетчиках и дает вклад в наблюдаемый спектр. Поскольку время жизни отрицательных мюонов в 1S-состоянии зависит от заряда атомного ядра, аппаратурный спектр временного распределения электронов $\mu^- \to e^-$ распада может быть представлен в виде

$$f(t) = \sum_{X} N_X e^{-t/\tau_X} \left[1 + \alpha p_X(t) \right] + B(t), \quad (3)$$

где N_X — количество событий в нулевом канале гистограммы, обусловленных распадом мюонов, захваченных атомами элемента X; τ_X и p_X — соответственно, время жизни мюона и проекция вектора поляризации мюона в 1*S*-состоянии элемента X на направление наблюдения, α — экспериментальный коэффициент асимметрии пространственного распределения электронов распада с учетом телесного угла регистрации электронов, B — фон случайных совпадений. Явный вид функции $p_X(t)$ зависит от условий проведения эксперимента. Здесь рассматриваются измерения в поперечном спину мюона внешнем магнитном поле.

Сцинтилляционные счетчики состоят из углеводородов, а криостат изготовлен из латуни. Соответственно, в спектрах всегда присутствуют компоненты, отвечающие захвату мюонов углеродом и медью.

Обработка экспериментальных данных проводилась методом наименьших квадратов. Времена жизни отрицательных мюонов в 1*S*-состоянии атомов (τ_X) фиксировались по среднему значению экспериментальных данных [16] (2030, 760, 163 нс соответственно для углерода, кремния и меди).

Из независимых измерений в графите и меди было определено, что: а) вклады от счетчиков описываются функцией поляризации в виде

$$p_{\rm C}(t) = p_0 \cos(\omega t + \phi)$$

со значением $\alpha p_0 = 0.009 \pm 0.002$; б) мюоны, остановившиеся в стенках криостата (медь) полностью теряют свою поляризацию за время меньшее чем

Рис.1. Экспериментальные μ^- SR-спектры для образца кремния с примесью галлия ($1.1 \cdot 10^{15}$ см $^{-3}$). Данные после вычитания фона поправлены на экспоненту распада, $a(t) = \alpha p(t)$

 10^{-9} с, т.е. $p_{\rm Cu}(t)=0;$ в) фон случайных совпадений имеет вид

$$B(t) = b_0 + \sum_{n=1}^{2} b_n \cos(n\omega_{hf}t + \phi_n),$$

где ω_{hf} определяется временной структурой пучка протонов.

Примеры экспериментальных μ^{-} SR-спектров, полученных для образца кремния с примесью галлия (1.1 · 10¹⁵ см⁻³) при различных температурах, приведены на рис. 1. На рисунке видно, что прецессия вектора поляризации происходит на частоте, близкой к частоте прецессии свободного спина мюона и с понижением температуры скорость затухания амплитуды прецессии (скорость релаксации спина мюона) возрастает.

При обработке экспериментальных данных с уче-

Рис.2. Температурные зависимости скорости релаксации (слева) и сдвига частоты прецессии спина мюона (справа) для образцов кремния с различной концентрацией примеси галлия: \circ соответствует $1.1 \cdot 10^{15}$ см⁻³, $\triangle - 1.1 \cdot 10^{18}$ см⁻³

том релаксации спина мюона при низких температурах функция поляризации для кремния имеет вид

$$p(t) = p_0 e^{-\lambda t} \cos(\omega t + \phi), \qquad (4)$$

где p_0 — поляризация в начальный момент времени; ω, ϕ — частота и начальная фаза прецессии спина мюона во внешнем поперечном магнитном поле; λ скорость релаксации спина мюона.

В результате обработки экспериментальных данных восстанавливались параметры функции поляризации (4) для отрицательных мюонов, остановившихся в кремнии. На рисунке 2 представлены зависимости скорости релаксации и сдвига частоты прецессии спина мюона от температуры для двух образцов кремния с примесью галлия.

Температурная зависимость сдвига частоты для всех исследованных образцов (за исключением двух образцов кремния с высокой концентрацией примеси бора $[B] = 1.4 \cdot 10^{18} \text{ см}^{-3}$ и $[B] = 4.1 \cdot 10^{18} \text{ см}^{-3}$, где экспериментальные данные недостаточны для определения вида зависимости $\Delta \omega / \omega_0$) не противоречит закону Кюри 1/T (см., например, рис. 2). Это означает, что вклад второго слагаемого в выражении (1) для сдвига частоты, по сравнению с первым — парамагнитным, членом, мал. В пренебрежении вторым членом в (1) из экспериментальных данных по $\Delta\omega/\omega_0$ была получена оценка константы сверхтонкого взаимодействия для мюонного атома алюминия в кремнии A_{hf} (величина g принималась равной -1.07 [17]). Величины $A_{hf}/2\pi$ для всех исследованных образцов примерно одинаковы и составляют $\sim 3 \cdot 10^7 \text{ c}^{-1}$. Учитывая соотношение между магнитными моментами мюона и ядра атома алюминия, для константы сверхтонкого взаимодействия в акцепторном центре, образованном атомом алюминия в кремнии, получаем A_{hf} (Al) $/2\pi \sim -2.5 \cdot 10^6 \text{ c}^{-1}$.

Настоящие результаты по температурной зависимости скорости релаксации спина мюона в кремнии описывались зависимостью (2) в предположении, что скорость релаксации магнитного момента акцепторного центра зависит от температуры как

$$\nu(T) = C\tilde{T}^{q}, \quad \tilde{T} = T/1 \text{ K.}$$
(5)

При обработке экспериментальных данных принималось, что $A_{hf}/2\pi = 3 \cdot 10^7 \text{ c}^{-1}$. Полученные значения параметров С и q для различных образцов приведены в таблице. Как видно из таблицы, для первых пяти образцов, где концентрация примеси меняется более чем на три порядка, скорости релаксации магнитного момента акцепторной примеси близки друг к другу. Однако далее при увеличении концентрации примеси примерно в пять раз наблюдается увеличение $\nu(T = 10 \text{ K})$ более чем на порядок. На рисунке 3 приведена зависимость параметра q от концентрации примеси (n) в кремнии с учетом данных для образцов, исследованных нами ранее [7-10] (для одного из образцов, см. [10], уточнена концентрация примеси алюминия, которая составила $2.2 \cdot 10^{17}$ см⁻³). Результаты, приведенные на рис. 3, свидетельствуют о том, что в области концентраций примеси до $\sim 2 \cdot 10^{17}~{\rm cm}^{-3}$ для n- и p-типов кремния значение показателя степенной зависимости q практически постоянно и близко к трем (хотя наблюдается некоторый разброс значений в кремнии *p*-типа). Однако в области концентраций примеси выше $\sim 10^{18}$ см⁻³ наблюдается существенная зависимость q от n. Например, в кремнии p-типа значение q с увеличением n уменьшается более чем в пять раз. Таким образом, в области концентраций приме-

Примесь	$n, {\rm cm}^{-3}$	$C, 10^6 c^{-1}$	q	$\nu, 10^9 \ c^{-1}$	
				T = 10 K	T = 30 K
В	$8.7\cdot 10^{13}$	120 ± 80	2.24 ± 0.22	21	240
Ga	$1.1\cdot 10^{15}$	18 ± 13	2.87 ± 0.25	13	310
As	$8.0\cdot 10^{15}$	9 ± 6	3.03 ± 0.22	10	270
В	$5.5\cdot 10^{16}$	50 ± 30	2.45 ± 0.21	14	210
As	$2.0\cdot 10^{17}$	20 ± 15	2.80 ± 0.25	13	270
Ga	$1.1\cdot 10^{18}$	$(2.0 \pm 0.5) \cdot 10^4$	0.90 ± 0.10	158	430
В	$1.4\cdot 10^{18}$	$(2.4 \pm 0.6) \cdot 10^4$	0.81 ± 0.12	155	380
В	$4.1 \cdot 10^{18}$	$(2.5 \pm 1.3) \cdot 10^5$	0.28 ± 0.21	476	650

Параметры температурной зависимости скорости релаксации магнитного момента акцепторного центра $u(T) = C \tilde{T}^q$, полученные в результате обработки температурной зависимости скорости релаксации спина мюона $(n - \kappa$ онцентрация примеси)

Рис. 3. Зависимость показателя степени q в функции $\nu = C\tilde{T}^q$ от концентрации примеси n в n- (слева) и p-типах (справа) образцов кремния (штриховые линии проведены для наглядности)

си выше 10^{18} см⁻³ скорость релаксации магнитного момента акцепторного центра практически перестает зависеть от температуры, т. е. изменяется не только абсолютное значение ν , но и характер ее температурной зависимости. Приведенные факты могут свидетельствовать об изменении механизма релаксации магнитного момента акцепторного центра при $n \sim 10^{18}$ см⁻³.

Релаксация магнитного момента акцептора может быть вызвана его взаимодействием с кристаллической решеткой (спин-решеточная релаксация) и спин-обменным рассеянием свободных носителей заряда на акцепторном центре.

Оценка роли различных фононных процессов, проведенная в [18] для идеального кристалла кремния, показывает, что в диапазоне температур 10 К $\lesssim T \lesssim$ 100 К основным механизмом

релаксации магнитного момента мелкого акцептора является рамановское рассеяние фононов и скорость релаксации ν зависит от температуры как T^5 .

Релаксация парамагнитных центров в кремнии при спин-обменном рассеянии свободных носителей заряда рассмотрена в работе [19]. В невырожденном полупроводнике скорость спин-обменного рассеяния ν_e обычно связывают с сечением спин-обменного рассеяния σ как

$$\nu_e \approx 2 \sqrt{\frac{2k_B T}{\pi m^*}} \,\sigma N,\tag{6}$$

а в случае вырождения

$$\nu_e \approx \hbar^{-1} N^{2/3} \sigma \, k_B T,\tag{7}$$

где m^* и N — соответственно эффективная масса свободных носителей заряда и их концентрация.

Рис.4. Оценки зависимости концентрации N свободных носителей заряда и скорости ν_e спин-обменного рассеяния носителей заряда на акцепторе от концентрации n атомов примеси в кремнии

В некомпенсированном полупроводнике концентрация свободных носителей заряда N при $k_BT \ll E_i$ зависит от концентрации примеси n как [20]

$$N \approx (n_{_0}n)^{1/2} \exp\left(-\frac{E_i}{2k_BT}\right),\tag{8}$$

где $n_0 = 2 \left(m^* k_B T / 2\pi \hbar^2 \right)^{3/2}$ — эффективная плотность состояний в зоне проводимости (валентной зоне), E_i — энергия ионизации примеси.

Известно (см., например, [21]), что при увеличении концентрации примеси в полупроводнике имеет место снижение энергии ее ионизации. Так, в кремнии E_i уменьшается от максимального значения (≈ 45 мэВ) при $n \approx 10^{17}$ см⁻³ до нуля при $n \approx n_c$ (*n_c* — критическая концентрация примеси, соответствующая переходу диэлектрик-металл; в кремнии $n_c \approx 4 \cdot 10^{18} \ \mathrm{cm^{-3}}$ [22]). На рисунке 4 приведены оценки зависимости N = f(n) и $\nu_e = f(n)$, рассчитанные по формулам (8) и (6), (7) в предположении, что E_i уменьшается от 45 мэВ при $n = 10^{17}$ см⁻³ до нуля при $n = 4 \cdot 10^{18}$ см⁻³ по линейному закону, $m^* = 0.3 m_e$ и $\sigma = \pi a^2$ (a = 10 Å [23] — величина порядка боровского радиуса акцептора). Вблизи n_c формула (8) неприменима, и при $n = n_c$ концентрация носителей заряда N принималась равной концентрации примесных атомов *n*. На рисунке видно, что в интересующей нас области концентраций примеси выше $\sim 10^{17}$ см⁻³ концентрация свободных носителей заряда N в кремнии быстро возрастает, приближаясь к концентрации примесных атомов *n*. Также в этой области концентраций имеет место быстрый рост скорости спин-обменного рассеяния.

Сравнение расчетных значений скорости ν_e

спин-обменного рассеяния, приведенных на рис. 4, с экспериментальными значениями скорости релаксации ν магнитного момента акцептора (см. таблицу) показывает, что при T = 5-30 К и $n \leq 2 \cdot 10^{17}$ см⁻³ имеем $\nu_e/\nu < 10^{-4}$. При увеличении концентрации примеси выше $\sim 2 \cdot 10^{17}$ см⁻³ скорость спин-обменного рассеяния возрастает и при $N \approx n = 4 \cdot 10^{18}$ см⁻³ (вырожденный кремний) $\nu_e \approx \nu$.

Таким образом, расчеты показывают, что спин-обменное рассеяние не дает существенного вклада в релаксацию магнитного момента акцепторного центра в области концентраций примеси до $\sim 2 \cdot 10^{17}$ см⁻³ при $T \lesssim 30$ К. По-видимому, основным механизмом релаксации в данной области концентраций является рамановское рассеяние фононов. Как уже отмечалось в [10], отличие температурной зависимости скорости релаксации магнитного момента акцепторного центра от зависимости вида T⁵ [18] может быть обусловлено тем фактом, что в [18] при рассмотрении идеального кристалла кремния не учитывалось время жизни фононов, которое при температурах ниже температуры Дебая меняется как T^{-2} , а в ряде случаев даже сильнее [24].

При увеличении концентрации примеси выше $\sim 10^{18} \, {\rm cm}^{-3}$ наблюдается существенное ослабление температурной зависимости скорости релаксации (уменьшение параметра q), одновременно скорость релаксации при T = 10 К возрастает более чем на порядок в узком диапазоне изменения концентраций. Известно [20], что при высоких концентрациях примеси фононный спектр кристалла существенно меняется, что должно приводить к изменению скорости спин-решеточной релаксации. Однако, исходя из того факта, что наблюдаемая в эксперименте скорость релаксации магнитного момента акцептора практически постоянна в широком диапазоне концентраций примеси от ~ $5 \cdot 10^{12}$ до ~ $2 \cdot 10^{17}$ см⁻³, трудно ожидать столь резкого изменения скорости спин-решеточной релаксации при увеличении концентрации выше ~ 10¹⁸ см⁻³. С другой стороны, при $n > 10^{18}$ см⁻³ в кремнии происходит переход к металлическому типу проводимости [22] и, как показывают приведенные выше оценки, доминирующим механизмом релаксации магнитного момента акцептора может стать спин-обменное рассеяние свободных носителей заряда.

4. ЗАКЛЮЧЕНИЕ

1. Исследована температурная зависимость скорости релаксации магнитного момента акцепторного центра в Si с разными концентрациями примеси и показано, что при $n < 2 \cdot 10^{17}$ см⁻³ экспериментальные данные хорошо описываются эмпирической зависимостью $\nu(T) = CT^q$ со значением $q \approx 3$.

2. Впервые получена оценка константы сверхтонкого взаимодействия для акцепторного центра алюминия в кремнии: $|A_{hf}(\mathrm{Al})/2\pi| \sim 2.5 \cdot 10^6 \ \mathrm{c}^{-1}$.

3. Обнаружено изменение характера температурной зависимости скорости релаксации магнитного момента акцепторного центра в области концентраций примеси, соответствующих переходу полупроводник-металл.

4. Анализ данных позволяет заключить, что при концентрациях примеси меньше 2 · 10¹⁷ см⁻³ основным механизмом релаксации акцепторного центра в кремнии является спин-решеточное взаимодействие. В области более высоких концентраций примеси значимый вклад в релаксацию может давать спин-обменное рассеяние свободных носителей заряда, которое, по-видимому, и является основным механизмом релаксации магнитного момента акцептора в металлической фазе.

Авторы выражают благодарность дирекции Института Пауля Шеррера (Швейцария) за предоставление возможности проведения данных измерений. Частичное финансирование настоящих исследований осуществлялось Федеральным министерством по образованию и научным исследованиям Германии (Bundesministerium für Bildung und Forschung), контракты 03-MA5ST1 и 03-MA5ST2.

ЛИТЕРАТУРА

- 1. G. D. Watkins, ΦTT 41, 826 (1999).
- A. Baldereschi and N. O. Lipari, Phys. Rev. B 8, 2697 (1973).
- А. В. Малышев, И. А. Меркулов, А. В. Родина, ФТП 30, 159 (1996).
- 4. Т. Л. Линник, В. И. Шека, ФТТ 41, 1556 (1999).

- G. W. Ludwig and H. H. Woodbury, *Electron Spin* Resonance in Semiconductors, Academic Press, New York (1962).
- 6. В. Н. Горелкин, В. П. Смилга, ЖЭТФ 66, 1201 (1974).
- В. Н. Горелкин, В. Г. Гребинник, К. И. Грицай и др., ЯФ 56, вып. 10, 29 (1993).
- В. Н. Горелкин, В. Г. Гребинник, К. И. Грицай и др., Письма в ЖЭТФ 63, 539 (1996).
- Т. Н. Мамедов, В. Н. Дугинов, Д. Герлах и др., Письма в ЖЭТФ 68, 61 (1998).
- Т. Н. Мамедов, Д. Г. Андрианов, Д. Герлах и др., Письма в ЖЭТФ 71, 637 (2000).
- V. N. Gorelkin, T. N. Mamedov, and D. V. Rubtsov, Hyperfine Interact. C 1, 191 (1996).
- A. S. Baturin and V. N. Gorelkin, Physica B 289–290, 578 (2000).
- 13. V. N. Gorelkin, T. N. Mamedov, and A. S. Baturin, Physica B 289–290, 585 (2000).
- 14. Г. Л. Бир, Г. Е. Пикус, Симметрия и деформационные эффекты в полупроводниках, Наука, Москва (1972).
- R. Scheuermann, J. Schmidl, A. Seeger et al., Hyperfine Interact. 106, 295 (1997).
- 16. T. Suzuki, D. F. Measday, and J. P. Roalsvig, Phys. Rev. C 35, 2212 (1987).
- 17. H. Neubrand, Phys. Stat. Sol. (b) 86, 269 (1978).
- 18. Y. Yafet, J. Phys. Chem. Sol. 26, 647 (1965).
- **19**. Ю. Г. Семенов, ФТТ **22**, 3190 (1980).
- **20**. Ч. Киттель, Введение в физику твердого тела, Наука, Москва (1978).
- **21**. В. И. Фистуль, Сильно легированные полупроводники, Наука, Москва (1967).
- 22. P. Ph. Edwards and M. J. Sienko, Phys. Rev. B 17, 2575 (1978).
- 23. R. C. Enck and A. Honig, Phys. Rev. 177, 1182 (1969).
- 24. И. Я. Померанчук, Собрание научных трудов, т. 1, Наука, Москва (1972).