ТРАНСПОРТНЫЕ ХАРАКТЕРИСТИКИ МАКРОЧАСТИЦ В ПЫЛЕВОЙ ПЛАЗМЕ, ИНДУЦИРОВАННОЙ СОЛНЕЧНЫМ ИЗЛУЧЕНИЕМ

О. С. Ваулина, А. П. Нефедов, О. Ф. Петров^{*}, В. Е. Фортов

Институт теплофизики экстремальных состояний Российской академии наук 127412, Москва, Россия

Поступила в редакцию 14 декабря 2000 г.

Представлены результаты экспериментального исследования динамического поведения макрочастиц, заряженных путем фотоэмиссии, в условиях микрогравитации. Экспериментальные данные были получены для частиц бронзы, находящихся под воздействием солнечного излучения в буферном газе при давлении 40 Торр (станция «Мир»). Рассмотрены различные методики определения транспортных характеристик макрочастиц путем анализа видеозаписей экспериментов. Найдены распределения скоростей, температура, заряд, коэффициент трения и коэффициенты диффузии пылевых частиц. Сопоставление экспериментальных и теоретических оценок показало, что динамическое поведение макрочастиц в исследуемых условиях определялось процессом их амбиполярной диффузии.

PACS: 52.25.Ub, 52.25.Zb, 82.70.Dd

1. ВВЕДЕНИЕ

Одним из основных механизмов зарядки пылевых частиц в условиях космического пространства является фотоэмиссия. Макрочастицы с размерами в несколько микрон могут приобретать положительный заряд порядка 10^2-10^5 заряда электрона и формировать газообразные, жидкостные или кристаллические пылевые структуры [1–4]. Фазовое состояние таких структур тесно связано с процессами диффузии макрочастиц.

Диффузия — неравновесный процесс, вызываемый тепловым движением частиц, который является одним из основных источников энергетических потерь (диссипации) в плазменно-пылевых системах. Диффундировать могут как взвешенные макрочастицы вещества в буферных газах (броуновское движение), так и сами молекулы газа или частицы плазменной компоненты (самодиффузия). Для плазменно-пылевых облаков, состоящих из заряженных макрочастиц, ионов и электронов, значительную влияние на транспортные свойства системы может оказывать совместный диффузионный перенос разноименно заряженных частиц (амбиполярная диффузия).

Большинство известных методов экспериментального определения коэффициентов диффузии ионов и электронов основано на результатах косвенных измерений подвижности микрочастиц во внешних электрических полях [5]. Такие методики непригодны для диагностики частиц в плазме, поскольку вносят значительные возмущения в исследуемую систему. Для определения транспортных характеристик слабовзаимодействующих макрочастиц широко используются методы спектроскопии корреляции фотонов, область применения которых ограничена ближним порядком межчастичного взаимодействия [6,7]. Наиболее простым и очевидным способом диагностики пылевых систем является анализ среднеквадратичных смещений или градиентов концентраций частиц с использованием видеозаписи экспериментов. Основные трудности, возникающие при решении данных задач, связаны либо с необходимостью корректной идентификации движения отдельных частиц, либо с отсутствием достаточного количества частиц в анализируемом объеме.

В настоящей работе представлены результаты ис-

^{*}E-mail: ipdustpl@redline.ru

следования транспортных характеристик макрочастиц, заряженных путем фотоэмиссии в условиях микрогравитации. Экспериментальные данные были получены для частиц бронзы, находящихся под воздействием солнечного излучения (станция «Мир», 1997).

2. ЭКСПЕРИМЕНТ

Эксперимент проводился на борту космической станции «Мир». Подробное описание экспериментальной установки дано в работе [2]. Основным элементом рабочей камеры являлась стеклянная ампула с частицами бронзы, покрытыми монослоем цезия. Частицы находились в буферном газе (неон) при давлении *P* около 40 Торр. Параметры частиц приведены табл. 1.

Ампула представляла собой цилиндр, один торец которого являлся плоским увиолевым окном и был предназначен для освещения частиц солнечным излучением (рис. 1*a*). Частицы в ампуле дополнительно освещались плоским лазерным пучком («лазер-

Рис.1. Геометрические размеры рабочей ампулы (*a*) и траектории движения макрочастиц (*б*) после радиационного воздействия на систему

ный нож»), ширина которого составляла не более 200 мкм. Для этого использовался полупроводниковый лазер с рабочей длиной волны 0.67 мкм. Изображение регистрировалось при помощи ПЗС-камеры, сигнал с которой записывался на магнитную ленту (частота кадров 25 с⁻¹). Поле зрения видеокамеры представляло собой прямоугольник размером приблизительно 8 × 9 мм (рис. 1), видеокамера настраивалась на центр ампулы, глубина резкости при выбранном значении диафрагмы «16» была около 9 мм (см. рис. 1а). Впоследствии видеозапись обрабатывалась при помощи специальной программы, позволяющей идентифицировать смещения отдельных частиц, находящихся в поле зрения видеокамеры. В присутствии интенсивных потоков солнечного излучения число частиц, регистрируемых видеокамерой, определялось глубиной резкости видеосистемы, что позволяло отслеживать положения отдельных частиц в течение времен $t > 5\tau$ (где $\tau = \nu_{\perp}^{-1}$ — время торможения, а ν_+ — частота столкновений пылевых частиц с молекулами буферного газа), достаточных для анализа транспортных характеристик системы. Число идентифицированных частиц при этом составляло менее 40% от общего числа частиц, зафиксированных видеокамерой в начальный момент времени.

Первый этап эксперимента заключался в наблюдении за поведением макрочастиц в условиях микрогравитации без воздействия солнечного излучения («темновой» режим). За время наблюдений (15–20 мин) число частиц в поле зрения видеосистемы заметно не менялось. Концентрация пыли n_0 определялась по частицам, попадающим в плоскость лазерного ножа, и находилась в пределах от 200 до 400 см⁻³.

Второй этап эксперимента состоял в наблюдении за поведением макрочастиц при освещении пылевого облака солнечным излучением. В исходном состоянии частицы бронзы находились на стенках ампулы, поэтому эксперименты проводились по следующей схеме:

1) динамическое воздействие (толчок) на систему при закрытых шторках иллюминатора;

2) выдержка в темноте в течение 2–4 с $\gg \tau$ для уменьшения скорости частиц, приобретенной от начального импульса (толчка);

3) освещение ампулы солнечным излучением;

4) релаксация частиц к исходному состоянию (уход на стенки), после чего шторки иллюминатора закрывались.

Время ухода частиц на стенки колбы составляло от 3 до 5 мин, что более чем на три порядка ни-

r_p , MKM	$ ho,\ { m r}/{ m cm^3}$	W, эВ	$Z_{max}(e)$	ν_{+1}, c^{-1}	ν_{+2}, c^{-1}
37.5	8.2	1.5	$6.9\cdot 10^4$	7.7	7.8

Таблица 1. Средний радиус r_p частиц бронзы с плотностью ρ и работой выхода W. Предельный заряд Z_{max} (7) частиц и коэффициенты трения: ν_{+1} (формула Стокса), ν_{+2} (свободномолекулярный режим)

же времени полных диффузионных потерь макрочастиц при комнатной температуре за счет их броуновского движения. Векторы скорости частиц на начальной стадии освещения были направлены хаотически. Через некоторое время (~ 1–3 с) после воздействия солнечного излучения движение частиц приобретало ярко выраженное направление к стенкам колбы. На рис. 16 приведены траектории 40 частиц после радиационного воздействия на систему.

3. ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ И СПЕКТРОВ СКОРОСТИ ПЫЛЕВЫХ ЧАСТИЦ

При анализе видеозаписей экспериментов были обнаружены нерегулярные изменения величины и направления скорости отдельных частиц на фоне их общего дрейфового движения. Такие нерегулярные флуктуации скорости частиц отражают их кинетическую температуру, которая для максвелловского спектра скоростей (V_x, V_y) может быть получена из оценки дисперсии как [8]:

$$T_{x(y)} = m_+ \left\{ \langle V_{x(y)}^2 \rangle - \langle V_{x(y)} \rangle^2 \right\}, \qquad (1)$$

где m_+ — масса пылевой частицы, а () описывает усреднение по ансамблю и по времени в предположении эргодичности системы. Величина $\langle V_{x(y)} \rangle = V_d^{x(y)}$ является дрейфовой скоростью ре гулярного сноса частиц, на фоне которого происходит их тепловое движение. Определение температуры из соотношения (1) для различной выборки частиц (20–60) дает $T_x\approx 51$
эВ, $T_y\approx 22$
эВ с точностью до 5%, что значительно выше их комнатной температуры $T \approx 0.03$ эВ. При этом регистрируемые распределения скоростей (V_x, V_y) частиц как в направлении оси *x*, так и в направлении оси *y* были близки к максвелловским с температурой, полученной по формуле (1). Спектры $f(V_x), f(V_y)$ скоростей частиц приведены на рис. 2а, б для различных областей измерительного объема, отмеченных на рис. 16 как x1, x2 (рис. 2a) и y1, y2 (рис. 2б). Дрейфовые скорости частиц для данных областей соответствовали

$$V_d^{x1} = 0.011 \text{ cm/c}, \quad V_d^{x2} = 0.0145 \text{ cm/c},$$

$$V_d^{y1} = 0.0072 \text{ cm/c}, \quad V_d^{y2} = 0.0061 \text{ cm/c}.$$

Следует отметить, что пылевые частицы в плазме могут не иметь равномерного распределения нерегулярной кинетической энергии по степеням свободы (т. е. возможно появление максвелловских спектров с $T_x \neq T_y$), а величина кинетической температуры макрочастиц может значительно превышать температуру окружающего их газа. Данные эффекты могут быть связаны, например, с флуктуациями заряда частиц или с пространственной неоднородностью параметров плазменно-пылевой системы [9–13]. Аномальный «разогрев» макрочастиц неоднократно наблюдался в экспериментах по изучению пылевых структур в лабораторной плазме [12–15].

4. ДИФФУЗИЯ МАКРОЧАСТИЦ

Поскольку рассматриваемая плазменно-пылевая система состоит из положительно заряженных макрочастиц и эмитированных ими фотоэлектронов, можно предположить, что транспортные свойства такой системы будут зависеть от амбиполярной диффузии частиц. Вследствие существенного различия подвижностей электронов μ_e и пылевых частиц μ_+ компоненты такой системы будут разделяться во всем объеме колбы, а на стенках появится отрицательный поверхностный заряд. Возникающее электрическое поле поляризации препятствует дальнейшему разделению заряженных компонент. В результате электроны и тяжелые частицы могут диффундировать «вместе» с некоторым эффективным коэффициентом D_a амбиполярной диффузии. Величина D_a определяется коэффициентом диффузии более медленной компоненты и при отсутствии магнитных и внешних электрических полей может быть записана в виде [5, 16]:

$$D_a = \{ D_e \mu_+ + D_+ \mu_e \} / \{ \mu_+ + \mu_e \}, \qquad (2)$$

где D_e , D_+ — коэффициенты свободной диффузии электронов и частиц, которые при наличии максвел-

Рис. 2. Экспериментальные спектры скоростей V_x (*a*) и V_y (*б*) частиц для различных областей, указанных на рис. 1*б*: \triangle — области *x*1, *y*1; \blacktriangle — области *x*2, *y*2. Штриховые линии показывают аппроксимацию экспериментальных данных распределением Максвелла с температурами $T_x \approx 51$ эВ (*a*) и $T_y \approx 22$ эВ (*б*)

ловского спектра скоростей подчиняются соотношению

$$D_{e(+)} = T_{e(+)} / \nu_{e(+)} m_{e(+)}, \qquad (3)$$

где $T_{e(+)}$, $m_{e(+)}$ и $\nu_{e(+)}$ — соответственно температура, масса и частота столкновений (коэффициент трения) с нейтралами буферного газа для электронов и частиц. Поскольку $\mu_e \gg \mu_+$, коэффициент амбиполярной диффузии можно записать как

$$D_a \approx D_+ + D_e \mu_+ / \mu_e,$$

откуда с учетом формулы (3) имеем

$$D_a \approx (1 + ZT_e/T_+)D_+,\tag{4}$$

где Z — заряд макрочастиц в элементарных зарядах электрона (e). Температура T_e фотоэлектронов, покидающих поверхность частиц, зависит от материала частиц и в большинстве случаев находится в диапазоне от 1 до 2 эВ [17, 18].

Следует отметить, что соотношения (2)–(4) имеют место только для случая слабоионизированной плазменно-пылевой системы, когда диссипация определяется нейтралами буферного газа, а столкновения заряженных компонент несущественны. С другой стороны, коэффициент амбиполярной диффузии описывает поляризационные эффекты, которые невозможны в разреженной плазме с низкой плотностью заряженных компонент. Диффузия частиц в такой плазме определяется коэффициентами (3).

5. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ ТРЕНИЯ И СВОБОДНОЙ ДИФФУЗИИ МАКРОЧАСТИЦ

Прямое определение коэффициентов диффузии макрочастиц путем обработки видеозаписей экспериментов осложняется рядом трудностей, главная из которых — невозможность идентификации движения отдельных частиц в течение времени, достаточного для диагностики их параметров. Именно это обстоятельство (связанное с узким полем зрения, ограниченным плоскостью «лазерного ножа») явилось причиной безуспешной попытки восстановления коэффициента свободной диффузии D_+ макрочастиц в «темновом» режиме. Освещение пылевого облака солнечным излучением расширяет измерительный объем, что позволяет отслеживать движение достаточного числа частиц в течение времени, необходимого для диагностики их параметров.

При известной температуре частиц коэффициенты свободной диффузии D_+ можно оценить, используя соотношение (3). Однако, несмотря на близкие значения коэффициентов трения ν_{+1} (формула Стокса [19]) и ν_{+2} (свободномолекулярный режим [20]), которые дают различные теоретические модели (см. табл. 1), величина ν_+ в значительной мере зависит от точности определения эффективного размера частиц и давления окружающего газа. Поэтому данные о коэффициенте ν_+ нуждаются в независимой экспериментальной проверке.

Коэффициенты трения ν_+ и диффузии $D_+^{x(y)}$ макрочастиц можно восстановить, используя резуль-

Рис. 3. Иллюстрация экспериментальных (сплошные линии) зависимостей $D_+^{x(y)}$ и их аппроксимаций (штриховые линии) кривыми (б) от характерного параметра t/τ (от числа времен торможения) для различных областей измерительного объема: x1, x2, y1, y2 (рис. 16)

таты измерения температуры и скорости $V_d^{x(y)}$ регулярного дрейфа частиц (см. разд. 3):

$$D_{+}^{x(y)}(t) = \frac{\langle \Delta r(t)^{2} \rangle - (V_{d}^{x(y)}t)^{2}}{2t},$$
(5)

где $\langle \Delta r(t)^2 \rangle$ — среднеквадратичное смещение отдельной частицы в направлении оси x (или y), а величина

$$D_{+}^{x(y)}(t \to \infty) = D_{+}^{x(y)}$$

соответствует соотношению (3). Функцию $D^{x(y)}_+(t)$ для теплового движения частиц можно также представить в виде

$$D_{+}^{x(y)}(t) = D_{+}^{x(y)} \left(1 - \frac{1 - \exp(-\nu_{+}t)}{\nu_{+}t} \right).$$
(6)

Иллюстрация зависимостей $D_{+}^{x(y)}$ от времени для различных областей измерительного объема (x1, x2, y1, y2, рис. 16) и результаты наилучшей аппроксимации этих зависимостей кривыми (6) при $\nu_{+}^{exp} = 3.1 \text{ c}^{-1}$ для $T_{+}^{x} \approx 51$ эВ и $T_{+}^{y} \approx 22$ эВ показаны на рис. 3. Таким образом, для коэффициентов свободной диффузии частиц можно получить

$$D^x_+ \approx 1.4 \cdot 10^{-5} \text{ cm}^2/\text{c}, \quad D^y_+ \approx 6.2 \cdot 10^{-6} \text{ cm}^2/\text{c}.$$

6. ЗАРЯД МАКРОЧАСТИЦ

Для определения коэффициента D_a амбиполярной диффузии из соотношения (4) необходимы данные о заряде Z макрочастиц. Предельную оценку

Рис.4. Зависимости относительной концентрации $n(t)/n_0$ от времени t: точки — экспериментальная; жирная линия — метод молекулярной динамики; тонкая линия — аппроксимация (8); пунктир — область амбиполярной диффузии

заряда пылевых частиц $Z_{max} = 69000$ можно получить из условия равенства потенциала поверхности ϕ_S величине $h\nu_{max} - W$ [2,3]:

$$Z_{max} = (h\nu_{max} - W)r_p/e, \tag{7}$$

где $h\nu_{max}$ — максимальная энергия кванта, которая в нашем случае соответствует длине волны $\lambda_{min} \approx 0.3$ мкм и определяется функцией пропускания экспериментальной камеры. Более точная оценка заряда Z может быть получена на основании анализа зависимости относительного изменения концентрации частиц $n(t)/n_0$ от времени [2]. Экспериментальные зависимости $n(t)/n_0$ приведены на рис. 4. Начальная концентрация макрочастиц $n_0 \equiv n(t=0)$ была близка к $1.95 \cdot 10^2$ см⁻³.

В случае, когда силы электрического поля, действующие на отдельную макрочастицу со стороны других частиц, уравновешиваются силами трения, зависимость $n(t)/n_0$ можно аппроксимировать следующей функцией [2]:

$$n(t)/n_0 = (1 + 3\omega_0^2 t/\nu_+)^{-1},$$
 (8)

где $\omega_0 = \sqrt{(Ze)^2 n_0/m_+}$ — пылевая частота при t = 0. Соотношение (8) позволяет определять ω_0 путем наилучшего согласования экспериментальных и расчетных данных. Отсюда может быть получен заряд макрочастиц при известной начальной концентрации n_0 . Аппроксимация экспериментальной зависимости $n(t)/n_0$ функцией (8) показана на рис. 4 для

$$\nu_+^{exp} = 3.1 \text{ c}^{-1}, \quad \omega_0 = 0.2 \text{ c}^{-1}.$$

Исходя из найденных величин $n_0 = 195 \text{ см}^{-3}$ и $\omega_0 = 0.2 \text{ c}^{-1}$, заряд частиц можно оценить как

$$Z_{exp} = (\omega_0/e)\sqrt{m_+/n_0} = 4.03 \cdot 10^4 e.$$

Результаты тестовых расчетов зависимости $n(t)/n_0$ методом молекулярной динамики представлены на рис. 4 для системы частиц с Z = 40300 при $n_0 = 195$ см⁻³ и $\nu_+ = 3.1$ с⁻¹. Трехмерная система уравнений движения была решена для цилиндрической колбы (рис. 1a) с учетом F_{br} теплового движения частиц при условиях равенства нулю их начальных скоростей и поглощения макрочастиц на стенках цилиндра:

$$m_{+}\frac{d^{2}\mathbf{r}_{k}}{dt^{2}} = \sum_{j} \Phi(r) \left| \mathbf{r}_{k} - \mathbf{r}_{j} \right| - m_{+}\nu_{+}\frac{d\mathbf{r}_{k}}{dt} + \mathbf{F}_{br}.$$
 (9)

Здесь

$$\Phi(r) = \frac{(eZ)^2}{r^2}$$

— параметр электрического взаимодействия, а r — расстояние между парой взаимодействующих частиц. Анализ решения уравнений (9) при различных параметрах частиц показал, что зависимость $n(t)/n_0$ определяется отношением собственной частоты ω_0 к коэффициенту трения ν_+ . Тепловое движение частиц не оказывает существенного влияния на изменение концентрации $n(t)/n_0$ при их кинетических температурах вплоть до 50 эВ.

Легко увидеть (см. рис. 4), что для времен $t < 15\tau = (\nu_+^{exp})^{-1} \approx 5$ с частицы бронзы движутся в режиме, близком к (8). Дальнейшее уменьшение концентрации частиц при t > 10 с приводит к уменьшению сил межчастичного взаимодействия и, соответственно, к совпадению экспериментальных кривых с расчетами методом броуновской динамики (9) и приближением (8).

Следует отметить, что эффекты поляризации разноименных зарядов не были учтены в явном виде ни в одной из численных задач (8), (9). Тем не менее данные эффекты косвенным образом влияют на величину равновесного заряда пылевых частиц. Потенциал частиц ϕ_S устанавливается в результате баланса между рекомбинацией электронов на их поверхности и фотоэмиссионным потоком с частицы. При этом плавающий потенциал ϕ_w поверхности стенок колбы определятся фотоэлектронами, уходящими с частиц. Электрическое поле, возникающее в ампуле, не позволяет всем эмитированным электронам покинуть пылевое облако. Наличие фотоэлектронов, возвращающихся на поверхность макрочастиц, может существенно снизить их равновесный заряд относительно предельного значения Z_{max} (7). Для рассматриваемых условий $(n_0 \approx (1-3) \cdot 10^2 \text{ см}^{-3})$ определение заряда из уравнения баланса дает $Z \approx (3.5-5) \cdot 10^4 e$ [2], что соответствует величине Z_{exp} , полученной путем измерений.

7. ЭКСПЕРИМЕНТАЛЬНЫЙ АНАЛИЗ АМБИПОЛЯРНОЙ ДИФФУЗИИ МАКРОЧАСТИЦ

Используя результаты измерений, представленные в разд. 3–6, можно определить коэффициент амбиполярный диффузии D_a макрочастиц из соотношения (4) при известной температуре электронов в системе эмитирующих их пылевых частиц. Температура T_e электронов, находящихся в рассматриваемой системе, может отличаться от температуры фотоэлектронов, покидающих поверхность частиц. Так, в отсутствие электрических полей время релаксации энергии электронов (время, за которое электрон снижает свою энергию в ≈ 2.78 раз) определяется как

$$\tau_u \approx \tau \delta^{-1}$$
,

где $\tau = \nu_{+}^{-1}$, δ^{-1} — число эффективных столкновений, а эффективная длина релаксации составляет $\Lambda_u \approx (0.8-1) \cdot \lambda \delta^{-1/2}$ (λ — длина свободного пробега электрона с энергией, равной начальной [5]). Для неона $\delta = 10^{-4}$, а длина релаксации Λ_u [см] ≈ 10 –12/P [Торр] при рассматриваемом давлении составляет величину $\approx 0.25 - 0.3$ см, превышающую среднее расстояние $l_p \approx 0.15 - 0.18$ см между пылевыми частицами, которые и являются фоновыми источниками электронов. Отсюда получим, что в отсутствие электрических полей потери энергии электронов на расстояниях $\sim l_p/2$ составят около 30% от первоначальной энергии фотоэлектронов у поверхности пылевой частицы. Следует отметить, что при наличии электрических полей Е электрон может также приобретать дополнительную стохастическую энергию ε , которая является некоторой функцией от величины $E\delta^{-1/2}$ [5]. Таким образом, строгое определение величины температуры электронов в системе эмитирующих пылевых частиц требует решения полного кинетического уравнения. Поэтому для оценки величины коэффициента амбиполярной диффузии D_a мы будем полагать, что температура электронов в системе практически не отличается от температуры фотоэлектронов у поверхности частицы, откуда для $T_e \approx 1\text{--}2$ эВ найдем $D_a \approx (1.07 - 2.14) \cdot 10^{-2} \text{ cm}^2/\text{c}.$

Поскольку потери зарядов в рассматриваемом эксперименте связаны с их диффузией к стенкам,

Таблица 2. Результаты измерений заряда Z_{exp} , коэффициента трения ν_{+}^{exp} , температуры (T_x, T_y) , коэффициентов свободной диффузии (D_{+}^x, D_{+}^y) и коэффициента амбиполярной диффузии D_a для частиц бронзы

$Z_{exp}(e)$	ν_{+}^{exp}, c^{-1}	T_x , эВ	T_y , эВ	$D^x_+, \mathrm{cm}^2/\mathrm{c}$	$D^y_+,\mathrm{cm}^2/\mathrm{c}$	$D_a,{ m cm^2/c}$
$4.03\cdot 10^4$	3.1	51	22	$1.4 \cdot 10^{-5}$	$6.2 \cdot 10^{-6}$	$(1.1 - 2.1) \cdot 10^{-2}$

для проверки корректности определения коэффициента амбиполярной диффузии можно записать дополнительную оценочную формулу, учитывающую среднюю скорость диффузионных потерь пылевых частиц [5]:

$$dn/dt = -n\nu_d \equiv -nD_a/\Lambda^2,\tag{10}$$

где ν_d — частота диффузионных уходов, Λ — некоторый характерный масштаб. Для цилиндрического объема с радиусом R и длиной L = 4R величина $\Lambda \approx R/2 = 0.75$ см (рис. 1) с точностью до коэффициента 2 [5]. Более точное определение Л нуждается в решении уравнения диффузии макрочастиц с конкретными граничными условиями. Частоту диффузионных уходов можно оценить по скорости изменения относительной концентрации $n(t)/n_0$ частиц (рис. 4). Эффекты поляризации зарядов, отвечающие за амбиполярную диффузию частиц, проявляются при сравнительном анализе расчетных и экспериментальных кривых $n(t)/n_0$. Экспериментальная кривая $n(t)/n_0$ при t < 10 с хорошо согласуется с экспоненциальным решением $n = n_0 \exp(-\nu_d t)$ уравнения (10) с $\nu_d \approx 3\omega^2/v_+^{exp} = 0.035 \ {
m c}^{-1}$ (рис. 4), откуда для коэффициента амбиполярной диффузии получим независимую оценку $-D_a = \Lambda^2 \nu_d \approx 1.97 \cdot 10^{-2} \text{ см}^2/\text{с}$. Данный результат полностью согласуется с оценками, приведенными в начале параграфа. Это позволяет предположить, что температура электронов в системе пылевых частиц была близка к температуре фотоэлектронов у их поверхности.

Легко увидеть, что полученный коэффициент D_a много выше коэффициента свободной диффузии D_+ и находится в согласии с теоретическими прогнозами (4) с точностью определения характерной диффузионной длины Λ , предположения $T_e = 1-2$ эВ и ошибок при измерении параметров частиц (Z, T, ν_+). Таким образом, можно сделать вывод, что в настоящем эксперименте наблюдался процесс амбиполярной диффузии частиц, т. е. плотности зарядов обоих знаков были достаточно велики, чтобы в результате их разделения образовывался значительный пространственный заряд, который приводил к возникновению электрического поля поляризации.

8. ЗАКЛЮЧЕНИЕ

Целью данной работы являлось экспериментальное и теоретическое изучение транспортных характеристик макрочастиц, заряженных путем фотоэмиссии под воздействием солнечного излучения в условиях микрогравитации. Для решения поставленной задачи была проведена обработка данных (видеозаписей) экспериментов, выполненных на борту космической станции «Мир» с частицами бронзы в буферном газе (неон) при давлении 40 Торр.

Рассмотрены различные методики для определения транспортных характеристик макрочастиц путем анализа видеозаписей экспериментов. Найдены распределения скоростей, температура, заряд, коэффициент трения и коэффициенты диффузии пылевых частиц (табл. 2). Сопоставление экспериментальных и теоретических оценок показало, что динамическое поведение макрочастиц в исследуемых условиях определялось процессом их амбиполярной диффузии. Анализ представленных экспериментальных результатов позволяет сделать вывод, что электрическое взаимодействие между частицами не оказывает существенного влияния на транспортные характеристики плазменно-пылевых систем при величинах параметра межчастичного взаимодействия

$$\Gamma = (eZ)^2 (4\pi n/3)^{1/3}/T < 50.$$

Данная работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проекты № 00-02-81036 и № 01-02-16658) и проекта CRDE (№ RP2-2250).

ЛИТЕРАТУРА

- А. П. Нефедов, О. Ф. Петров, В. Е. Фортов, УФН 167, 1215 (1997).
- В. Е. Фортов, А. П. Нефедов, О. С. Ваулина и др., ЖЭТФ 114, 2004 (1998).
- 3. M. Rosenberg and D. A. Mendis, IEEE Trans. on Plasma Science 23, 177 (1995).

4. В. Н. Цытович, УФН 167, 57 (1997).

- 5. Ю. П. Райзер, *Физика газового разряда*, Наука, Москва (1987).
- А. П. Нефедов, О. Ф. Петров, С. А. Храпак, Тезисы докл. V международ. научно-технической конф. по оптическим методам исследования потоков, Москва (1999), стр. 235.
- 7. Г. Камминс, Э. Пайк, Спектроскопия оптического смешения и корреляции фотонов, Мир, Москва (1978).
- 8. И. Бронштейн, К. Семендяев, Справочник по математике, Наука, Москва (1986).
- 9. О. С. Ваулина, А. П. Нефедов, О. Ф. Петров, С. А. Храпак, ЖЭТФ 115, 2067 (1999).
- О. С. Ваулина, А. П. Нефедов, О. Ф. Петров и др., ЖЭТФ 118, 1325 (2000).
- O. S. Vaulina, S. A. Khrapak, A. P. Nefedov, and O. F. Petrov, Phys. Rev. E 60, 5959 (1999).

- 12. В. Жаховский, В. Молотков, А. Нефедов, и др., Письма в ЖЭТФ 66, 392 (1997).
- 13. H. Thomas and G. Morfill, Nature 379, 806 (1996).
- 14. A. Melzer, A. Homann, and A. Piel, Phys. Rev. E 53, 2757 (1996).
- 15. J. Pieper and J. Goree, Phys. Rev. Lett. 77, 3137 (1996).
- 16. Д. А. Франк-Каменецкий, Лекции по физике плазмы, Атомиздат, Москва (1964).
- 17. C. K. Goertz, Geophys. Rev. 27, 271 (1989).
- 18. В. А. Грилихис, П. П. Орлов, Л. Б. Попов, Солнечная энергия и космические полеты, Наука, Москва (1986).
- **19**. Д. В. Сивухин, *Общий курс физики*, т. 1, Наука, Москва (1979), стр. 496.
- 20. I. T. Yakubov and A. G. Khrapak, Sov. Tech. Rev. B Therm. Phys. 2, 269 (1989).