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The asymptotic resonant charge exchange theory is developed for slow collisions of atoms and ions with valent
p-electrons. Because of a small rotation angle of the molecular axis in the course of the p-electron transition,
the resonant charge exchange cross-section is not sensitive to the rotational energy of colliding particles, and
the cross-sections are nearly equal for cases «a», «b», and «d» of the Hund coupling, and also for cases «c»
and «e» of the Hund coupling. The cross-sections of the resonant charge exchange process are evaluated under
various conditions and for various elements of the periodical table with p-electron shells of atoms and ions.
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1. INTRODUCTION

The resonant charge exchange process corresponds
to the tunnel transition of a valent electron from the
field of one atomic core to another one in the course
of a collision of an ion with the parent atom. Under
real conditions, one can consider nuclei to move along
classical trajectories [1-3]; at small collision velocities
compared to a typical atomic velocity, the rate of this
process can be expressed through the parameters of the
molecular ion consisting of the colliding atom and its
ion [4,5]. In particular, for the transiting s-electron
and structureless cores, with only two electron terms
of the molecular ion involved in this process, the prob-
ability P,.s of the electron transition from one core to
another after the collision is given by [4]

P = SiHQC(p)a C(p) = / @dt/ (1)

where R(t) is the distance between the nuclei, ¢ is time,
p is the impact parameter of the collision, ((p) is the
exchange phase, and the ion—atom exchange interaction
potential is defined as

A(R) = &4(R) — eu(R) (2)

where £4(R) and ¢,(R) are the energies of the even
and odd states of the molecular ion. These states are
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characterized by different symmetries of the electron re-
flection with respect to the symmetry plane that is per-
pendicular to the line joining the nuclei and bisects it.

In reality, the resonant charge exchange cross-secti-
on is large compared to a typical atomic value of this di-
mensionality. This implies that transitions at large sep-
arations give the leading contribution to the cross-secti-
on. This fact is the basis of the asymptotic theory of the
resonant charge exchange [6, 7], where the cross-secti-
on is expanded with respect to a small parameter that
is inversely proportional to the typical separation for
the electron transition. Within the framework of the
asymptotic theory, the cross-section of this process is
expressed through the collision parameters and the ra-
dial wave function parameters of the transiting valent
electron in the atom when the electron is located far
from the core. In particular, for the s-electron tran-
sition between structureless cores, the cross-section of
the resonant charge exchange is [7]

2
TR

05 = /27Tpdpsin2C(p) =
0

e C

((Ro) = — =028,

where C' = 0.577 is the Euler constant and the exchange
phase for the free motion of the nuclei R = \/v%t2 + p?
is given by [7]
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- - _A2 —1/y 2/y=1/2 _ ] 4
U\/% e p exp(—py). (4)

Here, v is the collision velocity, 7%/2 is the atom ioni-
zation potential or the electron binding energy, and
A is the asymptotic coefficient of the electron wave
function in this atom; we use the atomic units where
h = m, = e = 1. The asymptotic parameters of the
atom are contained in the normalized radial wave func-
tion of the electron at large distances r from the core,

Y(r — 00) = Art/77tem™, (5)

In particular, A = 2 for the hydrogen atom [§].

We note that the small asymptotic theory param-
eter is 1/Rg7v, and because the asymptotic theory in-
volves the information about the electron location far
from the core, we can keep only two expansion terms
in the expression for the cross-section, as we did in
Eq. (3). This corresponds to the asymptotic theory ac-
curacy for the transition of a valent s-electron in the
range 1-5% [9] for the eV-collision energies.

For a transiting p-electron, the asymptotic theory
of the resonant charge exchange process becomes cum-
bersome [10, 11] because on the one hand, the electron
transfer process is entangled with the rotation of the
molecular axis, and on the other hand, the fine splitting
of the ion and atom levels can be important in this pro-
cess. Therefore, the above formulas for the s-electron
transition are used in some recent calculations [12—14]
as model ones for the evaluation of the cross-section of
this process for the transiting p-electron. This leads
to an uncontrolled error that is absent in the asymp-
totic theory. We note that the contemporary computer
technique allows us to formulate the asymptotic theory
in a simple way and to exhibit various aspects of the
process under consideration. In this paper, we present
the asymptotic theory for the resonant charge exchange
process with the transiting p-electron. We are guided
mostly by the ground states of the colliding ion and
atom and focus on the cross-section averaging over the
directions of the initial momenta.

2. RESONANT CHARGE EXCHANGE WITH
THE TRANSITING p-ELECTRON FOR
LIGHT ATOMS

We first consider the case of a small spin—orbit split-
ting of atom and ion levels and neglect relativistic inter-

actions. This corresponds to the LS-coupling scheme
for the atom. At large separations, the quantum num-
bers of the molecular ion are the atom quantum num-
bers LSMy Mg (the orbital momentum, spin, and their
projections on the molecular axis) and the same quan-
tum numbers of the ion [smms. The atom orbital and
spin momenta L and S are given by the sum of the elec-
tron orbital and spin momenta [, and 1/2 and of the
respective momenta of the atomic core | and s. The
atom spin S and the spin of the other atom core s are
then summed into the total spin I of the molecular ion.
The atomic wave function is then expressed through the
parameters of the core and the valent electron by means
of the genealogical or Racah coefficients [15,16]. The
ion—atom exchange interaction potential is then given
by [10,17]

T+1/2
Alleps,Ims, LM.S) = 5—on(Gl)”
le | L le l L
Ale,ua (6)
pom m+p po Mp—p Mg

where n is the number of identical valent electrons
of the atom, GL® is the genealogical (Racah) coef-
ficient [15,16], the square brackets are the Clebsch—
Gordan coefficients that are responsible for the sum-
mation of the electron and ion orbital momenta into
the atom orbital momentum, and 4A;, , is the exchange
interaction potential for one valent electron located in
the field of structureless cores. We note a weak depen-
dence of the exchange interaction potential on the total
spin I of the molecular ion. Indeed, the level splitting
corresponding to different total spins of the molecular
ion is determined by the exchange of two electrons and
varies at large separations R as exp(—2vR). Therefore,
Eq. (6) contains the average spin of the molecular ion.
Next, because the exchange interaction potential A;_,
decreases as R™* with increasing u, we are restricted
by the term with the minimum value of u in Eq. (6).
As a result, for the valent p-electron, we have [10,17]

6
Aig(R) =3A A (R) = =—A 7
W0(F) =380, Au(R)= A0 (D
where [7]
Ay = A2RG/M—1e—By=(1/7) (8)

is the exchange interaction potential for a valent
s-electron [7] with the same asymptotic radial wave
function (5).

Equation (6) allows one to construct the matrix of
the exchange interaction potential of an ion and an
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atom with valent p-electrons. Below, we represent these
matrices in the case where the atom and the ion are in
the ground electron states. One can convince oneself
in the identity of the transiting electron and the hole.
In accordance with Eq. (6) for atoms of group 3 (with
one valent p-electron) and atoms of group 8 (with one
valent p-hole) in the periodical table of elements, with
the ground states of the atom and the ion given by
1S and 2P, the exchange interaction potential of the
interacting atom and the ion is given by the matrix

ML=—1 MLZO ML=+1

All A1[) A11

A(My) = , (9a)

where M7, is the orbital momentum projection for the
atom (elements of group 3) or the ion (elements of
group 8). For elements of groups 4 and 7 of the pe-
riodical table, with the ground electron states of the
atom and the ion given by 3P and 2P, the matrix of
the exchange interaction potential, in accordance with
Eq. (6), is

A(m, M) = g <

My = -1 Mg, =0 My = +1
=-1 A A A
y m 10 11 10 ’ (9b)
m=20 ANT! 2A11 Aqr
m=1 ART) Arr A1

where m and M, are the projections of the orbital ion
and atom momenta. For elements of groups 5 and 6
of the periodical table with the atom and ion ground
states S and ?P, the matrix of the exchange interac-
tion potential is given by

A(m) = L™ m T2 (9e)
3 A11 A10 A11

As the quantization axis, we take the direction on which
the projection of the electron momentum is zero. We
let # denote the angle between the quantization and
molecular axes. By definition, the exchange interac-
tion potential A(6) of the atom and its ion with valent
p-electrons is equal to

AB) = 3 3 | 8) Arus =

M

47
=73 > 1Vin(6,9)1 A,
M

where d};,(f) is the Wigner rotation function [20]
and Yi/(0) is the spherical function; it follows that

47|Y1 ()% is the probability to find a state with the
momentum projection M at the angles # and ¢ with
respect to the molecular axis. The spherical function
satisfies to the normalization condition

1
1
/dc0s0|Y1M(9)\2 = —.
4
—1

It follows that for groups 3 and 8 of the periodical ta-
ble of elements, the exchange interaction potential of
an atom and a parent ion is given by

A(f) = Ajgcos®f + Ay sin 6. (10a)
Matrix (9b) gives the ion—atom exchange interaction
potential as a function of the angles between the quan-
tization and molecular axes for elements of groups 4
and 7 of the periodical system,

A(G):gx

X [Aw sin? 61 sin? Oy+Aq; (cos? B+ cos? 92)] , (10b)

where 6; and 6, are the respective angles between the
molecular axis and the quantization axes for the atom
and the ion, with zero electron momentum projection
on the quantization axis. For groups 4 and 7 of the pe-
riodical system, the exchange interaction potential is
similar to that for atoms of groups 3 and 8 and is given
by

A() = g (Ao cos® 6 + Aqqsin®6) . (10c¢)

Although we are restricted by the ground states of
the ion and the parent atom, this is a general scheme of
constructing the ion—atom exchange interaction poten-
tial. Being averaged over the total quasimolecule spin
I, the exchange interaction potential depends on the
ion (m) and the atom (Mp,) angular momentum pro-
jections on the molecular axis. This corresponds to the
LS-coupling scheme for atoms and ions, which means
neglecting the spin-orbital interaction. Therefore, the
above expressions correspond to the hierarchy of the
interaction potentials

Vea > U(R),  A(R), (11)
where V., is the typical exchange interaction potential
for valent electrons inside the atom or the ion, U(R) is
the long-range interaction potential between the atom
and the ion at large separations R, and A(R) is the ex-
change interaction potential between the atom and the
ion. Within the framework of the LS-coupling scheme
for atoms and ions, we assume the excitation energies
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inside the electron shell to be relatively large. This cri-
terion is fulfilled for light atoms and ions. In the same
manner, one can construct the exchange interaction po-
tential matrix for excited states within a given electron
shell.

Because the exchange interaction potential is deter-
mined by the transition of one electron from the valent
electron shell and the transiting electron carries a cer-
tain momentum and spin, additional selection rules ap-
ply for the one-electron interaction. In particular, for
the transition of a p-electron, the selection rules are
given by

L-l <1, |S—s/<1/2 (12)

These selection rules follow from the properties of the
Clebsch—-Gordan coefficients entering Eq. (6). If these
conditions are violated, the ion—atom exchange inter-
action potential is zero at the scale of one-electron in-
teraction potentials. In Table 1, we list the states of
atoms and their ions with valent p-electrons for which
the ion—atom one-electron exchange interaction poten-
tial is zero.

When a valent p-electron transits from one atomic
core to the other in the course of collision, the processes
of charge exchange and the electron momentum rota-
tion are entangled. One can partially separate these
processes because the charge exchange proceeds in a
narrow range of separations R where the molecular
axis turns at a small angle of the order 1/v/Ro7y. In-
deed, the range of distances AR between the nuclei
where the charge exchange phase ( varies considerably
is AR ~ 1/~, which corresponds to the rotation an-
gle 9 ~ vt/R ~ 1//Ry < 1. This fact allows us to
simplify the derivation of the resonant charge exchange
cross-section. In what follows, we find the cross-section
averaged over angles between the collision impact pa-
rameter and the quantization axis on which the orbital
momentum projection is zero.

Proceeding along this way, we orientate the quanti-
zation axis with respect to the direction of the collision
impact parameter as the motionless axis; the average
cross-section of the resonant charge exchange is then
given by

1 2w
1
7= —/ a(V, @) dcos Vdyp, (13)
dr
Z10

where ¥ and ¢ are the polar angles of the impact
parameter direction with respect to the quantization
axis direction and o (4, ) is the charge exchange cross-
section at a given direction of the collision impact pa-
rameter. We first consider the cases where the momen-

tum projection on the molecular axis conserves in the

course of the electron transfer. This corresponds to a
small rotational energy, and under condition (11), is
determined by the condition

g < Ulp), Alp), (14)

which means that the rotational energy v/p at the clos-
est approach distance is small compared to the long-
range splitting U(p) of molecular levels for states with
different projections of the orbital momentum on the
molecular axis or the exchange interaction splitting
A(p). Criterion (14) corresponds to cases «a» and
«b» of the Hund coupling [18,19]. For the free motion
of colliding particles, the current angle 6 between the
molecular and quantization axes and the angle 9 be-
tween these axes at the closest approach distance are
related by

cosf = cos ) cos a + sin ¥ sin a cos ¢, (15)

where a and ¢ are the polar angles of the molecular axis
with respect to its direction at the closest approach dis-
tance; we have sina = vt/R, where v is the collision
velocity, t is time, and R is a current distance between
the colliding particles.

Using Eqs. (15) and (10), we can represent the ex-
change phases in the form of an expansion in the small
parameter of the theory 1/pv if criterion (14) is sat-
isfied. For elements of groups 3, 5, 6, and 8 of the
periodical system, we have

C(p, ¥, ) = ((p,0) x

x |cos? ﬁ—i cos? 19-|—L sin® 9(2+4cos® )| . (16a)
vp VP

This expression applies to large collision impact param-
eters and ((p,0) is the phase of the charge exchange
process when the quantization axis has the same di-
rection as the molecular axis at the closest approach
distance; ((p,0) = 3 (o(p) for elements of groups 3 and
8 and ((p,0) =7 (o(p) for elements of groups 5 and 6,
where the charge exchange phase (g is given by Eq. (4)
and is related to the s-electron transition with the same
asymptotic parameters v and A. For atoms of groups
4 and 7, the charge exchange phase at large impact
parameters of the collision is given by

1
C = 5(0(p) {sin2 191 sin2 192 + — X
P

x[2 cos? 91 +2 cos® s+ sin’ ¥4 cos® ¥o+ cos? U sin® ¥y —

— sin? 9y sin? ¥a(cos? o1 + cos® o) +

+ sin 299 sin 2195 cos 1 oS 902]} , (16b)
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Table 1. The ion and parent atom states with valent p-electrons. The one-electron transition is forbidden between
these states and the exchange interaction potential of the ion and the parent atom is zero
Electron configuration and ion state Electron configuration and atom state

(‘D) p*(19)
p*('S) p*('S)
p*('S) p*(*D)
p*('S) p'('D)
p*(1S) p'('S)
p*(*D) p'('S)

where 91, and v, s are the respective polar an-
gles of the quantization axes of the atom and the ion
relative to the molecular axis at the closest approach
distance.

We now determine the average cross-section from
Eq. (13) using Eq. (4) for the cross-section at a given
angle and the dependence ( o exp(—~yp) for the ex-
change phase. For elements of groups 3, 5, 6, and 8 of
the periodical system, this gives

1

1 2r
1
/ / { Ro
00
where Ry = /20s/m. The same expression applies
to elements of groups 4 and 7 with the integration
over 4 angles 91, p1,Ja, p2; here oy is the cross-section
in Eq. (3) for the transiting s-electron with the same
asymptotic parameters as for the p-electron. Table 2
contains these reduced cross-sections depending on the
parameter Ry7y. The value of £3 in Table 2 gives 7 /0,
for elements of groups 3 and 8 of the periodical table,
the value of ¥4 is /o for elements of groups 4 and 7,
and the value of X5 gives /o, for elements of groups
5 and 6. In addition, this table contains the reduced
cross-sections Y19 and X1y corresponding to the respec-
tive projections 0 and 1 of the orbital momentum on
the impact parameter direction.
We also consider the opposite case to (14), where

% > Ulp), Alp). (18)

S|Q|

(Ro 9,9)]

"R dcosddy, (17)

In this case, the exchange phase for elements of groups
3, 5, 6, and 8 is given by

C(p. Y, ) = ((p.0) ((:052 J+ % sin? 19> (19)

Table 2.  The reduced cross-sections of the resonant

charge exchange

Roy | 6 8 |10 | 12 | 14 | 16

Yo | 140 | 1.29 | 1.23 | 1.19 | 1.16 | 1.14

¥ip | 1.08 | 0.98 | 0.94 | 0.92 | 0.91 | 0.91

) 1.19 | 1.08 | 1.04 | 1.01 | 0.99 | 0.95

Y3 1.17 | 1.09 | 1.05 | 1.03 | 1.02 | 1.01

Eg 1.16 | 1.08 | 1.04 | 1.02 | 1.01 | 1.00

¥y | 150 1.32 ] 1.23 | 1.18 | 1.14 | 1.12

DI 144 | 1.29 | 1.22 | 1.17 | 1.14 | 1.11

Y10 | 118 | 1.10 | 1.07 | 1.05 | 1.04 | 1.03

Y3/ | 1.18 | 1.10 | 1.06 | 1.04 | 1.03 | 1.02

e

Yo | 116 | 1.09 | 1.06 | 1.04 | 1.03 | 1.02

instead of (16a). The corresponding reduced average
cross-section is denoted by X¢ in Table 2. This corre-
sponds to cases «b» and «d» of the Hund coupling, and
according to the data in Table 2, the results for this
case practically coincide with case «a» of the Hund
coupling. The value ¥ in Table 2 is

Y =%10/3+2%1,/3.

Comparing it to the average cross-section testifies the
sensitivity of the cross-section to different methods of
averaging.
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Table 3.  The Hund coupling cases
Hund coupling case Relation
a Ve dp >V,
b Ve >V, > 0y
c o> Ve >V,
d Ve > Ve > 0y
e Vo> > Ve
e' >V, >V,

3. RESONANT CHARGE EXCHANGE WITH
THE TRANSITING p-ELECTRON FOR
HEAVY ATOMS

In considering the resonant charge exchange pro-
cess, we follow the general scheme of classifying the
limiting cases of momentum coupling in diatomic
molecules. This scheme is given in Table 3 [18,19].
The cases of the Hund coupling unify different rela-
tions between energetic parameters of colliding parti-
cles. An important energetic parameter of the quasi-
molecule consisting of colliding particles is the inter-
action potential V. between the orbital angular mo-
mentum of the electrons and the molecular axis. This
includes the exchange interaction potential V., inside
the atom and the ion due to the Pauli exclusion princi-
ple, the splitting of the molecular ion levels due to the
long-range interaction U(R), and the exchange interac-
tion A(R) between the ion and the atom. Within the
framework of the Hund schemes, we compare this inter-
action potential to the relativistic interaction d; given
by the sum of spin-orbit interactions of the individual
electrons and other relativistic interactions and the ro-
tational energy given by V,. = vp/R? for the free motion
of colliding particles. For colliding atomic particles, in
contrast to a molecule, different types of the Hund cou-
pling can be realized on one classical trajectory of par-
ticles. We use the general Nikitin scheme [21-23] that
relates the characters of the momentum coupling of
colliding atomic particles moving along one trajectory.
The problem under consideration is simpler because we
are interested in the behavior of colliding particles on
the trajectory element where the electron transition oc-
curs. Only one type of the momentum coupling is re-
alized on this part of the trajectory.

Above, we considered the cases where relativistic
interactions are negligible and the projection of the
orbital electron momentum on the molecular or the

Table 4.
shells in the framework of the LS and jj coupling

The ground states of atoms with p-electron

schemes and the ion—atom exchange interaction poten-
tial A for the Hund coupling cases «c» and «e»

Shell | J | LS-term jj-shell A
p | 1/2] 2P [1/2]' Ay
p? 0 3P [1/2)? Ay
P’ [3/2 | 'Sy | [1/2P3/2]' | Agys
pt | 2 Py | [1/2'[3/2P | 0
P’ 3/2 PPy | [1/2PP[3/2F | Ay
P8 0 1So [1/2]7[3/2]* | As)s

motionless axis conserves in the course of the electron
transfer, which corresponds to cases «a», «b», and «d»
of the Hund coupling and is realized for light atomic
particles. In what follows, we are guided by heavy
atoms and examine the cases where relativistic interac-
tions are important.

In the collisions of heavy atomic particles, the rela-
tivistic interactions are dominant, and therefore, the jj
coupling scheme becomes valid for an individual atomic
particle. The quantum numbers of the interacting atom
and ion are therefore given by J and M, the total
atomic electron momentum and its projection on the
molecular axis for the atom, and also by the respective
ion quantum numbers j and m;. At large separations,
these quantum numbers are related to the molecular
ion consisting of the ion and the parent atom. We note
that the total momentum J and its projection on a
given direction M are the quantum numbers of an in-
dividual atomic particle in both momentum coupling
schemes (LS and jj), which simplifies the analysis in
the general case. Next, taking the relativistic effects
into account reduces the atom symmetry. For this rea-
son, on the one hand, the ion—-atom exchange inter-
action potential is expressed through the one-electron
exchange interaction potential in a simpler way, and
on the other hand, the prohibition of some one-electron
transitions strengthens in the presence of relativistic in-
teractions because of a weaker mixing of states in this
case. Table 4 contains parameters of the electron shells
for the ground electron states of atoms and ions with
p electron shells. We note that for the jj-coupling, the
similarity between the transitions of the p-electron and
the p-hole is lost because of different signs of the spin—
orbit interaction potential for the electron and the hole.
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Table 5.  The exchange interaction potential for atoms of group 5 of the periodical system of elements whose atomic
electron shell is p® and their ions have the electron shell p?
LS 4S3)5 *Dy)s ’Ds)s R P35
y (3 1) (3) 1) (3’ 1) (3’ 3’
I 2) \2 2) \2 2)\2 2)\2 P
3/2 3/2 5/2 1/2 3/2
1\2
3P |:<§> } Azya(+) 0(+) 0(+) 0(+) 0(+)
0
N /1Y /3)]
Pl <§> <§> Aya(+) Ag/a(+) Aaya(+) Asa(+) 0(+)
L 41
3 (/1 3\ ]
P 3) 3 Arja(+) Asya(+) Aaya(+) Daya(+) 0(+)
L 42
o
| |(3) 0(0) Auja(+) Avjal+) Aipp(+) Aaja(+)
L 42
o]
15, <§> 0(0) Avya(0) A1/2(0) Arja(+) Assa(+)
L do

Hence, the ion—atom exchange interaction potential is
different in the cases where the p-electron shells of the
atom and its ion are replaced by the shells consisting
of identical p-holes. Moreover, for group 6 of the pe-
riodical system of elements, the one-electron ion—atom
exchange interaction potential is zero if the atom and
the ion are found in the ground states. We note that
for all the groups in the periodic table of elements with
valent p-electrons, the ion—atom one-electron exchange
interaction potential is not zero for light atoms if atoms
and their ions are found in the ground states.

It follows from the data in Table 4 that the ion—
atom exchange interaction potential is simpler in the
presence of relativistic interactions because of a lower
symmetry of atomic particles in this case. For the
LS-coupling scheme for individual atomic particles, we
were restricted by the ground states of atomic parti-
cles because of a cumbersome problem, but the pres-
ence of relativistic effects simplifies this problem. As a
demonstration of this, Table 5 contains the matrix of
the exchange interaction potential for elements of group
5. The notation for the ion and atom electron terms

6 ZKOT®, Bein. 6

used in Table 5 applies to the LS- and jj-coupling
schemes. The values of the exchange interaction po-
tentials are given assuming that the 77 momentum cou-
pling scheme applies, and it is indicated in parentheses
whether this potential is zero (0) or non zero (+) for
the LS-coupling scheme. In particular, for the ground
atom and ion states, the exchange interaction potential
occupies one cell in Table 5, while within the framework
of the LS-coupling scheme, it is given by matrix (9c).

We note that for the jj-coupling scheme, the
p-electron shell of an atom or an ion is separated into
two independent subshells with j = 1/2 and j = 3/2.
Hence, the difference between the numbers of elec-
trons in these subshells for the interacting ion and the
atom cannot exceed one. This is the criterion of the
one-electron transition replacing Eq. (12) for the LS-
coupling scheme. If this criterion is not satisfied, the
one-electron ion—atom exchange interaction potential
is zero; otherwise, it is equal to A/, or Ag/, depend-
ing on the momentum of the transiting electron (see
Tables 4 and 5).

We now focus on elements of groups 3 or 8 of the pe-
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Table 6.
process for collisions of atoms of group 3 of the peri-

Parameters of the resonant charge exchange

odical system with their ions at the energy 1€V in the
laboratory coordinate system

B Al | Ga In T1
7,107 em? | 1.1 | 1.8 | 2.0 | 2.2 2.1

YRy 12 14 14 15 14

Ac/z,% | 07]05|04]| 03 | 04

8¢, em™! 15 | 112 | 826 | 2213 | 7793

U(Rg), em™! | 360 | 350 | 320 | 330 | 390

A(Rp), em~! | 11 | 5 3 2.5 2

riodical table, where one transiting p-electron (or p-ho-
le) is located in the field of two structureless cores. If
the spin—orbit splitting of the electron levels is large
compared to the electrostatic ion—atom interaction, the
quantum numbers of the molecular ion are jm;, the to-
tal electron momentum and its projection on the molec-
ular axis. The exchange interaction potential Aj,,; per-
taining to the jj-coupling scheme for atoms and ions
and the exchange interaction potentials Ay, pertaining
to the LS-coupling schemes are related by

2
Ly
ANPR

-

This follows from the relation between the electron
wave functions for the respective states. For the ex-
change interaction potentials Aj,,,, where m; = o + u
in accordance with the properties of the Clebsch—
Gordan coefficients, this gives

1 2
Ayjoie = §A10 + §A117
2 1
Azjaiy = §A10 + §A117 (20)

Aszjo3/0 = Aqy,
where Ajg and Aqq are given by Eqgs. (7) and (8).

By analogy with the previous operations, if the
molecular axis is at the angle 6 to the quantization axis
on which the angular momentum projection is zero, the
exchange interaction potentials are given by

Table 7.
process for collisions of atoms of group 8 of the peri-

Parameters of the resonant charge exchange

odical system with their ions at the energy 1€V in the
laboratory coordinate system

Ne Ar Kr Xe
7,105 cm? 33| 58 | 75 | 10
YRo 11 12 13 14
Ao /T, % 08 | 05 0.4 0.3

5p, em™! 780 | 1432 | 5370 | 10537
U(Rp), 1073 cm ™! 5 4 2 2
A(Rp), cm™! 13| 8 5 3

1 2
Ay = §A10 + §A11,

1 1
Azpp(0) = <6 t3 cos” 9) Ay + (21)
1 1
+ <§ + isin2 0) A11~

This corresponds to elements of groups 3 and 8 of the
periodical system and gives the exchange phases for
case «c» of the Hund coupling,

Giya(p, V) 4 (3/2(p, V)

1 3
=14 —, 2 =" 4 cos®I+
0 P bl 202
1 /1 9 . 3 :
+ H <§ + §Sin2ﬁ+ 5sin219cos2 <p> , (22)

where (o(p) is the charge exchange phase for the tran-
siting s-electron with the same asymptotic parameters
A and v as defined in accordance with Eq. (4) and 9, ¢
are the polar angles of the impact parameter direction
with respect to the quantization axis. Table 2 contains
the reduced cross-sections ¥; = @;/0,, where the ave-
rage cross-section @; for a given total momentum is de-
termined by Eq. (13). As can be seen, the difference of
the average cross-sections for different total momenta
is small compared to the accuracy of determining the
cross-sections, and we neglect this difference. One can
determine the cross-sections for case «e» of the Hund
coupling, where because of a large rotational energy,
the momentum projection on the motionless axis con-
serves for the state with j = 3/2. In Table 2, 23/2
is the reduced cross-section of the resonant charge ex-
change for the state with j = 3/2 in case «e» of the
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Table 8.  The parameters of the cross-section of the resonant charge exchange for elements with valent p-electrons of
atoms and ions at the collision energy 1eV

Element B C N 0 F Ne Al Si P
o,1071° cm? 11 8.6 6.2 6.6 4.9 3.3 18 15 11
a=—dlno/dlnv 0.16 0.16 0.16 0.16 0.17 0.18 0.15 0.14 0.14
Element S Cl Ar Ga Ge As Se Br Kr
0,10715 cm? 10 8.0 5.8 20 18 13 13 10 7.5
a=—dlno/dlnv 0.15 0.15 0.16 0.14 0.13 0.14 0.14 0.13 0.15
Element In Sn Sh Te I Xe T1 Pb Bi
0,10715 cm? 22 19 17 16 13 10 21 20 22
a=—dlno/dlnv 0.14 0.13 0.13 0.13 0.13 0.14 0.14 0.13 0.12

Hund coupling. According to the data in Table 2, the
connection between the molecular and motionless axis
is not essential for the cross-section of this process.

Thus, one can see that the molecular axis rotation
gives a small contribution to the resonant charge ex-
change cross-section. That is, the difference between
cases «a», «by», and «d» of the Hund coupling, as well
as between cases «c» and «e», is not essential for this
process. Next, according to the data in Table 2, the
difference between the cross-sections for cases «a» and
«c» of the Hund coupling is not significant for atoms
of groups 3 and 8 of the periodical system of elements,
and it is essential for atoms of groups 4, 5, 6, and 7.
Thus, the transition between these coupling cases re-
sults from the competition between the splitting U (R)
due to the long-range ion—atom interaction, the split-
ting A(R) due to the exchange interaction, and the fine
level splitting é¢. Tables 6 and 7 contain these values
for atoms of groups 3 and 8 of the periodical system
of elements. Next, the long-range splitting of levels de-
pends on the atom and ion states. If atoms and ions
are found in the ground states, the long-range splitting
U(R) of atomic levels for elements of groups 3, 4, 6, and
7 results from the interaction of the ion charge with the
atom quadrupole moment and is given by

5(r?)

6R?

U(R) = (23a)
where R is the distance between the interacting parti-
cles and <r2> is the mean square of the electron orbit
radius of the valent electron in the atom. The long-
range splitting of ion levels for elements of groups 4
and 7, where the quadrupole momenta of the atom and

the ion is not zero, is determined by the interaction of
the quadrupole momenta, and the long-range ion-atom
interaction potential V' (R) is then given by

v(r) = e,

(23b)

where ), and (@); are the respective quadrupole mo-
menta of the atom and the ion, which are +2 <r2> /5
for states with zero orbital momentum projection and
F4(r?) /5 for states for which the orbital momentum
projection on the motionless axis is 1. Expression (23b)
relates to elements of groups 4 and 7 of the periodical
system, where the quadrupole moment of atoms and
ions is not zero. Next, the splitting of ion levels for
elements of groups 5 and 8, whose atoms have zero
quadrupole moment, is given by

(23c)
where  is the atom polarizability. The value Ao /7
in Tables 6 and 7 characterizes the error in the cross-
section arising from using only the exponential depen-
dence of the exchange phase ((p) o exp(—vp), as we
did in Table 2.

The information in Tables 6 and 7 exhibits the
role of different interactions for the resonant charge ex-
change process involving real ions and atoms. In par-
ticular, it follows from these tables that the long-range
splitting of molecular terms is important for elements
of group 3 and is negligibly small compared to the ex-
change interaction potential for molecular ions of rare
gases. In addition, in Table 8 we give the average cross-
sections of the resonant charge exchange processes for
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elements with valent p-electrons. We note that in ac-
cordance with Eqs. (3) and (4), the cross-section ¢ of
this process depends on the collision velocity v as [1, 5]

T (24)

7= 22 v

where C'is a constant. The first order of the asymptotic
theory allows representing this relation as

ov) (vg)a
o(vg) \v/

Table 8 gives the parameters of this formula at the col-
lision energy 1 eV in the laboratory coordinate system.

_dlna_a_ 1 or
dlnv  2Rpy’

(25)

4. CONCLUSION

We have developed the asymptotic theory for the
resonant charge exchange process in slow collisions of
an ion and a parent atom with the transiting p-electron.
The cross-section of this process is not sensitive to the
relation between the rotational interaction and other
interactions of the colliding particles and inside them,
but can depend on the spin-orbit interaction. We have
two limiting cases that correspond to cases «a», «b»,
and «d» and cases «c» and «e» of the Hund coupling,
or to the LS- and jj-coupling schemes for isolated col-
liding atomic particles. For elements of groups 3 and 8
of the periodical system, the average cross-sections of
the resonant charge exchange are nearly equal for these
limiting cases of the momentum coupling, while for
other groups the difference between the cross-sections
for different coupling schemes exceeds the accuracy of
the evaluation of these cross-sections. The accuracy of
the asymptotic theory of the resonant charge exchange
with the transiting p-electron is worse than that in
the case of the transiting s-electron (1-5% [9]) and is
estimated as ~ 10% at eV energies.

This study is supported in part by the Rus-
sian Foundation for Basic Researches (grant Ne(00-02-
17090).
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