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NON-ABELIAN STOKES THEOREMS IN YANG�MILLSAND GRAVITY THEORIESD. I. Diakonov ab*, V. Yu. Petrov b**a NORDITA, DK-2100 Copenhagen Ø, Denmarkb St. Petersburg Nu
lear Physi
s Institute188350, Gat
hina, Leningrad region, RussiaSubmitted 1 February 2001We dis
uss the interpretation of the non-Abelian Stokes theorem for the Wilson loop in the Yang�Mills theory.For the �gravitational Wilson loops�, i. e., holonomies in 
urved d = 2; 3; 4 spa
es, we then derive �non-AbelianStokes theorems� that are similar to our formula in the Yang�Mills theory. In parti
ular, we derive an elegantformula for the holonomy in the 
ase of a 
onstant-
urvature ba
kground in three dimensions and a formula forsmall-area loops in any number of dimensions.PACS: 11.15.Ha, 12.38.G
1. INTRODUCTIONOne of the main obje
ts in the Yang�Mills theoryand in gravity is the parallel transporter along 
losed
ontours, or holonomy. In Yang�Mills theory, it is 
on-ventionally 
alled the Wilson loop; it 
an be written asa path-ordered exponentialWr = 1d(r) Tr P exp�i I d� dx�d� Aa� T a� ; (1)where x�(�) with 0 � � � 1 parameterizes the 
losed
ontour, Aa� is the Yang�Mills �eld (or 
onne
tion) andT a are the gauge group generators in a given represen-tation r whose dimension is d(r). For d-dimensionalve
tors in 
urved Riemannian spa
es, the �gravita-tional Wilson loop�, or holonomy, 
an also be writtenas a tra
e of the path-ordered exponential of the 
on-ne
tion given by the Christo�el symbol,WGve
tor = 1d �P exp�� I d� dx�d� ������ : (2)One 
an also 
onsider parallel transporters of spinors ina 
urved ba
kground: the holonomy is then de�ned notby the Christo�el symbols, but by the spin 
onne
tionthat is not uniquely determined by the metri
 tensor(see the pre
ise de�nitions below).*E-mail: diakonov�nordita.dk**E-mail: vi
torp�thd.pnpi.spb.ru

The Yang�Mills Wilson loop is invariant undergauge transformations of the ba
kground �eld A�; thegravitational Wilson loop is invariant under general 
o-ordinate transformations, or di�eomorphisms, providedthe 
ontour is transformed as well.It is generally believed that in three and four dimen-sions, the average of the Wilson loop in a pure Yang�Mills quantum theory exhibits the area-law behaviourfor large and simple (e. g., �at re
tangular) 
ontours.This must be true not for all representations, but onlythose with a nonzero �N -ality�; in the simplest 
ase ofthe SU(2) gauge group, these are the representationswith a half-integer spin J .One of the di�
ulties in proving the area law forthe Wilson loop is that it is a 
ompli
ated obje
t byitself: it is impossible to 
ompute it analyti
ally in ageneral non-Abelian ba
kground �eld, not to mentionaveraging it over an ensemble of 
on�gurations.A de
ade ago, we suggested a formula for the Wil-son loop in a given ba
kground belonging to any gaugegroup and any representation [1℄. In this formula, thepath ordering along the loop is removed at the pri
eof an additional integration over all gauge transfor-mations of the given non-Abelian ba
kground �eld, ormore pre
isely, over a 
oset depending on the parti
-ular representation in whi
h the Wilson loop is 
on-sidered. Furthermore, the Wilson loop 
an be pre-sented in the form of a surfa
e integral [2℄, see the next1050
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tion. We 
all this representation the non-AbelianStokes theorem. It is quite di�erent from previous in-teresting statements [3�6℄ that were also referred to as�non-Abelian Stokes theorem� but whi
h involved sur-fa
e ordering. Our formula has no surfa
e ordering.A 
lassi�
ation of �non-Abelian Stokes theorems� forarbitrary groups and their representations was re
entlygiven by Kondo et al. [7℄ who used the naturally arisingte
hniques of �ag manifolds.Although these formulas do not usually fa
ilitate�nding Wilson loops in parti
ular ba
kgrounds, they
an be used in averaging Wilson loops over ensemblesof Yang�Mills 
on�gurations or over di�erent metri
s,and in more general settings, see, e.g., [7�11℄.The main aim of this paper is to present new formu-las for the gravitational holonomies in 
urved d = 2; 3; 4spa
es; these formulas are similar to our non-AbelianStokes theorem for the Yang�Mills 
ase. We eliminatethe path ordering in Eq. (2) and write the holonomiesas exponentials of surfa
e integrals. Instead of path-or-dering, we must integrate over 
ertain 
ovariantly unitve
tors (for d = 3) or 
ovariantly unit (anti)self-dualtensors (for d = 4). Remarkably, these formulas putparallel transporters of di�erent spins on the same foo-ting. In parti
ular, holonomies for half-integer spinsare presented in terms of the metri
 tensor (and itsderivatives) only, but not in terms of the vielbein orthe spin 
onne
tion.In addition to a purely theoreti
al interest, we havea pra
ti
al motivation in mind. Re
ently, it was shown,both in the 
ontinuum and on the latti
e, that theSU(2) Yang�Mills partition fun
tion in d = 3 
anbe exa
tly rewritten in terms of lo
al gauge-invariantquantities given by the six 
omponents of the dualspa
e metri
 tensor. This rewriting 
an be useful indire
tly investigating the spe
trum and the 
orrelationfun
tions of the theory in a gauge-invariant way, butit is insu�
ient to study the intera
tions of externalsour
es be
ause these 
ouple to the Yang�Mills poten-tial and not to gauge-invariant quantities. The presentpaper demonstrates, however, that a typi
al sour
e, i.e.,the Yang-Mills Wilson loop, 
an be expressed not onlythrough the potential (or 
onne
tion) but also throughthe metri
 tensor, whi
h is gauge-invariant. Thus, notonly the partition fun
tion, but also the Wilson loops inthe d = 3 Yang�Mills theory 
an be expressed throughlo
al gauge-invariant quantities. A detailed formula-tion of the resulting theory is given elsewhere.Although the main 
ontent of the paper is the non-Abelian Stokes theorems for holonomies in 3 and 4 di-mensions, we add three short se
tions with relevant ma-terial. For 
ompleteness, we add the Stokes theorem in

two dimensions, 
ompute the holonomy in the spe
ial
ase of a 
onstant 
urvature with a 
ylinder topologyin three dimensions, and give a general formula for the�gravitationalWilson loop� for small loops in any num-ber of dimensions.2. NON-ABELIAN STOKES THEOREM IN THEYANG�MILLS THEORYWe let � parameterize the loop de�ned by the tra-je
tory x�(�) and let A(�) be the tangent 
omponent ofthe Yang�Mills �eld along the loop in the fundamentalrepresentation of the gauge group,A(�) = Aa�ta dx�d� ; Tr(tatb) = 12Æab:Gauge transformations of A(�) are given byA(�) ! S(�)A(�)S�1(�) + iS(�) dd� S�1(�): (3)Let Hi be the Cartan subalgebra generators(i = 1; : : : ; r, where r is the rank of the gaugegroup) and the r-dimensional ve
tor m be the highestweight of the representation r in whi
h the Wilsonloop is 
onsidered. The formula for the Wilson loopderived in Ref. [1℄ is a path integral over all gaugetransformations S(�) that are periodi
 along the
ontour:Wr = Z DS(�)�� exp�i Z d� Tr hmiHi(SAS�1 + iS _S�1)i� : (4)We stress that Eq. (4) is manifestly gauge invariant, asis the Wilson loop itself. For example, in the simple
ase of the SU(2) group, Eq. (4) be
omesWJ = Z DS(�)�� exp�i J Z d� Tr h�3(SASy + iS _Sy)i� ; (5)where �3 is the third Pauli matrix and J = 1=2, 1,3=2; : : : is the �spin� of the representation of the Wil-son loop 
onsidered.The path integrals over all gauge rotations inEqs. (4) and (5) are not of the Feynman type: theydo not 
ontain terms quadrati
 in the derivativesin � . A 
ertain regularization of these equationsis therefore implied ensuring that S(�) is su�-
iently smooth. For example, one 
an introdu
equadrati
 terms in the angular velo
ities iS _Sywith small 
oe�
ients eventually set equal to zero;1051



D. I. Diakonov, V. Yu. Petrov ÆÝÒÔ, òîì 119, âûï. 6, 2001see Ref. [1℄ for details. Equation (5) was derived inRef. [1℄ in two independent ways: i) by a dire
t dis-
retization and ii) by using the standard Feynman rep-resentation of path integrals as a sum over all interme-diate states, in this 
ase for the axial top supplementedby an a
tion of the �Wess�Zumino� type. Anotherdis
retization leading to the same result was re
entlyused by Kondo [7℄. A similar formula has been usedby Alekseev, Faddeev, and Shatashvili [16℄ in deriv-ing a formula for group 
hara
ters to whi
h the Wilsonloop is redu
ed for a 
onstant A �eld (whi
h is the

ase a
tually 
onsidered in [16℄). In Ref. [17℄, Eq. (4)was rederived in an independent way spe
i�
ally for thefundamental representation of the SU(N) gauge group.Finally, another derivation of a variant of Eq. (5) usinglatti
e regularization was re
ently given in Ref. [18℄.The se
ond term in the exponent in Eqs. (4) and (5)is in fa
t a �Wess�Zumino�-type a
tion, and it 
an berewritten not as a line but as a surfa
e integral asso
i-ated with a 
losed 
ontour. For simpli
ity, we 
onsiderthe SU(2) gauge group and parameterize the SU(2)matrix S in Eq. (5) by Euler's angles,

S = exp�i
�32 � exp�i��22 � exp�i��32 � = 0BBB� 
os �2 exp�i�+ 
2 � sin �2 exp��i�� 
2 �� sin �2 exp�i�� 
2 � 
os �2 exp��i�+ 
2 � 1CCCA : (6)The derivation of Eq. (5) implies that S(�) is a periodi
 matrix. This means that � � 
 and � are periodi
fun
tions of � with the period 4�.The se
ond term in the exponent in Eq. (5), whi
h we denote by �, is then� = Z d� Tr(�3iS _Sy) = Z d� ( _� 
os� + _
) = Z d� [ _�(
os� � 1) + ( _�+ _
)℄ = Z d� _�(
os� � 1): (7)The last term is a total derivative and 
an be a
tually dropped be
ause �+ 
 is 4�-periodi
, and therefore, doesnot 
ontribute to Eq. (5) even for half-integer representations J . We note that � 
an be 2�-periodi
 if 
 (whi
hdrops from Eq. (7)) is 2�-, 6�-, : : : -periodi
. If �(1) = �(0) + 2�k, �(�) makes k windings. The integration overall possible �(�) implied in Eq. (5) 
an be divided into distin
t se
tors with di�erent winding numbers k.Introdu
ing a unit 3-ve
torna = 12 Tr (S�aSy�3) = (sin� 
os�; sin� sin�; 
os�); (8)we 
an rewrite � as � = 12 Z d�d� �ab
 �ijna�inb�jn
; i; j = �; �; (9)where we integrate over any spanning surfa
e for the 
ontour (we 
all it a �disk�), and n or � and � are 
ontinuedto the interior of the disk without singularities. We denote the se
ond 
oordinate by � su
h that � = 1 
orrespondsto the edge of the disk 
oin
iding with the 
ontour and � = 0 
orresponds to the 
enter of the disk. See Ref. [18℄for the details on the 
ontinuation to the interior of the disk.We note that if the surfa
e is 
losed or in�nite, the right-hand side of Eq. (9) is the integer topologi
al 
hargeof the n �eld on the surfa
e, Q = 18� Z d�d� �ab
�ijna�inb�jn
: (10)Equation (9) 
an also be rewritten in the form that is invariant under surfa
e reparameterizations. Introdu
ingthe invariant surfa
e element d2S�� = d� d� ��x��� �x��� � �x��� �x��� � = ���d(Area); (11)1052
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an rewrite Eq. (9) as � = 12 Z d2S���ab
na��nb��n
: (12)For the Wilson loop, we then obtain [1℄WJ = Z Dn(�; �) exp �iJ Z d�(Aana) + iJ2 Z d2S���ab
na��nb��n
� : (13)The interpretation of this formula is obvious: the unit ve
tor n plays the role of the instant dire
tion of the
olour �spin� in the 
olor spa
e. However, multiplying its length by J does not guarantee that we deal with a truequantum state from the representation labelled by J ; this is a
hieved only by introdu
ing the �Wess�Zumino�term in Eq. (13) that �xes the representation to whi
h the probe quark of the Wilson loop belongs to be exa
tly J .Finally, we 
an rewrite the exponent in Eq. (13) su
h that both terms appear to be surfa
e integrals [2℄,W = Z Dn(�; �) exp � iJ2 Z d2S�� ��F a��na + �ab
na (D�n)b (D�n)
�� ; (14)where Dab� = ��Æab + �a
bA
�is the 
ovariant derivative andF a�� = ��Aa� � ��Aa� + �ab
Ab�Ab�is the �eld strength. Indeed, expanding the expo-nent in Eq. (14) in powers of A�, we observe that thequadrati
 term 
an
els while the linear term is a totalderivative reprodu
ing the Aana term in Eq. (13); thezero-order term is �Wess�Zumino� term (9) or (7). Wenote that both terms in Eq. (14) are expli
itly gaugeinvariant. We 
all Eq. (14) the non-Abelian Stokes the-orem. We stress that it is di�erent from the previ-ously proposed Stokes-like representations of the Wil-son loop, based on ordering elementary surfa
es insidethe loop [3�6℄. For a further dis
ussion of Eq. (14),see [18℄.We now brie�y dis
uss gauge groups higher thanSU(2): for that purpose, we must return to Eq. (4).Although it is valid for any group and any representa-tion, its surfa
e form depends expli
itly on the grouprepresentation in whi
h the Wilson loop is 
onsidered.Equation (4) says that one 
an in fa
t integrate notover all gauge transformations S but only over thosethat do not 
ommute with the 
ombination of Cartangenerators miHi where m is the highest weight of agiven representation. In the SU(2) 
ase, one hasmiHi = J�3; J = 1=2; 1; 3=2; : : : ;be
ause SU(2) has the rank 1 and there is only oneCartan generator. In the SU(2) 
ase, one thereforeintegrates over the 
oset SU(2)=U(1) for any represen-tation; this 
oset 
an be parameterized by the n �eldas des
ribed above.

For higher groups, there are several possibilities oftaking 
osets: a parti
ular 
oset depends on the repre-sentation of the Wilson loop. For example, in the 
asewhere the Wilson loop is in the fundamental represen-tation of the SU(N) group, the 
ombination miHi isproportional to one parti
ular generator of the Cartansubalgebra that 
ommutes with the SU(N � 1)�U(1)subgroup. (For SU(3), this generator is the Gell-Mann�8 matrix or a permutation of its elements.) For thefundamental representation of the SU(N) group, theappropriate 
oset is therefore given bySU(N)=SU(N � 1)=U(1) = CPN�1:A possible parameterization of this 
oset is given by a
omplex N -ve
tor u� of the unit length, uy�u� = 1. Tobe spe
i�
, the Cartan 
ombination in the fundamentalrepresentation 
an always be set equal tomiHi = diag(1; 0; : : : ; 0)by rotating the axes and subtra
ting the unit matrix.In this basis, u� is just the �rst 
olumn of the unitarymatrix Sy and uy� is the �rst row of S. Unitarity of Simplies that uy�u� = 1:In this parameterization, Eq. (4) 
an be written asWSU(N)fund = Z DuDuy Æ(uy�u� � 1)�� exp i Z d� dx�d� uy� (ir�)�� u�;(r�)�� = ��Æ�� � iAa� (ta)�� : (15)1053



D. I. Diakonov, V. Yu. Petrov ÆÝÒÔ, òîì 119, âûï. 6, 2001Using the identity�ij�i �uyriu� = �ij h(riu)y (rju) + uyrirjui == �ij �� i2(uyFiju) + (riu)y (rju)� ; (16)we 
an present Eq. (15) in a surfa
e form,WSU(N)fund = Z DuDuyÆ(juj2 � 1)�� exp�iZ dS�� �12(uyF��u)+i (r�u)y (r�u)�� ; (17)where F�� is the �eld strength in the fundamentalrepresentation. Equation (17) was �rst published inRef. [17℄, however with an unexpe
ted overall 
oe�-
ient 2 in the exponent. Equation (17) presents thenon-Abelian Stokes theorem for the Wilson loop in thefundamental representation of SU(N). In the parti
u-lar 
ase of the SU(2) group, transition to Eq. (14) isa
hieved by identifying the unit 3-ve
torna = uy�(�a)��u� ;whereu� = 0BBB� 
os �2 exp��i�+ 
2 �sin �2 exp�i�� 
2 � 1CCCA ;2i uy��u = _�(
os� � 1) + ( _�+ _
): (18)It must be mentioned that the quantityZ d�d��ij i�iuy��ju� = 2�Q (19)appearing in Eq. (17) is the topologi
al 
harge of the2-dimensional CPN�1 model. For 
losed or in�nite sur-fa
es, Q is an integer.In the 
ase where the Wilson loop is taken in theadjoint represention of the SU(N) gauge group, the
ombination miHi in Eq. (4) is the highest root. Onlygroup elements of the form exp(i�iHi) 
ommute withthis 
ombination (these elements belong to the maxi-mum torus subgroup U(1)N�1). In the 
ase of the ad-joint representation, one therefore integrates over the�ag manifold [19; 7℄SU(N)=U(1)N�1 = FN�1:3. �GRAVITATIONAL WILSON LOOPS�An obje
t similar to the Wilson loop of the Yang�Mills theory also exists in gravity theory. It is the par-allel transporter of a ve
tor on a Riemannian manifold

along a 
losed 
ontour, also 
alled a holonomy. Theholonomy is trivial if the spa
e is �at but be
omes anon-trivial fun
tional of the 
urvature if it is nonzero.In the remaining se
tions, we present new formulasfor the parallel transporters on d = 2; 3; 4 Riemannianmanifolds.We �rst re
all some notation from di�erential ge-ometry. We use [20℄ as a general referen
e book. Letg�� = g�� (�; � = 1; : : : d) be the 
ovariant metri
 ten-sor, with the 
ontravariant tensor g�� being its inverse,g��g�� = Æ��. The determinant of the 
ovariant met-ri
 tensor is denoted by g. The Christo�el symbol isde�ned by���� = g����;�� = g��2 (��g��+�� g�����g��);���� = �� g2g : (20)The a
tion of the 
ovariant derivative on a 
ontravari-ant ve
tor is de�ned as(r�)��v� = (��Æ�� + ����)v�: (21)The 
ommutator of two 
ovariant derivatives deter-mines the Riemann tensor,[r�r� ℄�� = R���� = g��0R�0��� == ������ � ������ + �������� � ��������: (22)A 
ontra
tion of the Riemann tensor gives the symmet-ri
 Ri

i tensor,R�� = R���� ; R�� = R����g�� : (23)Its full 
ontra
tion is the s
alar 
urvatureR = R��g�� = R��: (24)The parallel transporter of a 
ontravariant ve
toralong a 
urve x�(�) is determined by solving the equa-tion dx�d� (r�)�� v�(�) = 0: (25)The solution 
an be written using the evolution opera-tor v�(�) = �WG(�)��� v�(0); (26)where v�(0) is the ve
tor at the starting point of the
ontour and v�(�) is the parallel-transported ve
tor atthe point labelled by � . The evolution operator 
an be1054
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ally written as a path-ordered exponential ofthe Christo�el symbol,�WG(�)��� = 24P exp0�� �Z0 d� dx�d� ��1A35�� : (27)We de�ne the �gravitational Wilson loop� as thetra
e of the parallel transporting evolution operatoralong the 
losed 
urve x�(�) with x�(1) = x�(0),WGve
tor = 1d �WG(1)��� : (28)This quantity is di�eomorphism-invariant: the met-ri
 tensor is transformed under 
oordinate 
hangesx� ! x0�(x), but if the 
ontour is 
hanged asx�(�)! x0�(x(�));the gravitational Wilson loop or the holonomy remainsthe same. In this respe
t, the gravitational holonomyis di�erent from the Yang�Mills Wilson loop that is in-variant under gauge transformations without 
hangingthe 
ontour.The parallel transporter of a 
ovariant ve
tor isgiven by the transposed matrix; its tra
e 
oin
ides withthat of the matrix used in transporting 
ontravariantve
tors.4. RELATION OF GRAVITY QUANTITIES TOTHOSE OF THE YANG�MILLS THEORYWe now show that the �gravitational Wilson loop�is not only analogous to but dire
tly expressiblethrough the Yang�Mills Wilson loops of the SU(2)group. For this purpose, we introdu
e the standardvielbein eA� and its inverse eA� su
h thateA� eA� = g�� ; eA� eB� = ÆAB ;eA�eA� = g�� ; det eA� = pg: (29)We de
ompose the ve
tor experien
ing the paralleltransport in vielbeins, v� = 
AeA�, with the re
ipro
alde
omposition 
A = eA� v�; (30)and insert this in Eq. (25) de�ning the parallel trans-port. We then have0 = dx�d� (r�)��
AeA� == dx�d� �eA���
A + 
A(��eA� + ����eA�)� == dx�d� eB�(��ÆBA + !BA� )
A; (31)

where we introdu
ed the spin 
onne
tion!AB� = �!BA� = 12eA�(��eB� � ��eB� )�� 12eB�(��eA� � ��eA� )�� 12eA�eB�eC� (��eC� � ��eC� ) (32)and used the fundamental relations��eA� + ����eA� = �!AB� eB�; (33)��eA� � ����eA� = �!AB� eB� : (34)One 
an introdu
e the SO(d) ��eld strength�FAB�� = [�� + !�; �� + !� ℄AB == ��!AB� � ��!AB� + !AC� !CB� � !AC� !CB� (35)related to the Riemann tensor asFAB�� eA� eB� = �R���� ;FAB�� = �R����eA�eB�;FAB�� eA�eB� = R: (36)The above material is 
ommon for any number ofdimensions. To pro
eed further, we 
onsider the 
aseswhere d = 3 and d = 4 separately. The 
ase whered = 2 is 
onsidered in Se
. 6.4.1. d= 3In three dimensions, one 
an immediately identifythe spin 
onne
tion with the su(2)-valued Yang�Mills�eld as A
i = �12�ab
 !abi : (37)Working in three dimensions, we denote the Lorentzindi
es by i; j; : : : = 1; 2; 3 and the �at triade indi
es bya; b; : : : = 1; 2; 3. Re
alling the generators in the J = 1representation,(T 
)ab = �i�
ab; [T 
T d℄ = i�
dfT f ; (38)we 
an rewrite the last parenthesis in Eq. (31) as�iÆab + !abi = �iÆab � iA
i (T 
)ab � (Di)ab; (39)whi
h is the standard Yang�Mills 
ovariant deriva-tive in the adjoint representation. In the fundamen-tal (spinor) representation, the Yang�Mills 
ovariantderivative is(ri)�� = �iÆ�� � iA
i ��
2 ��� == �iÆ�� + 18!abi ��a�b��� ; �; � = 1; 2; (40)1055
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h 
oin
ides with the known expression for the 
o-variant derivative in the spinor representation in a
urved spa
e.The standard Yang�Mills �eld strength is dire
tlyrelated to that in Eq. (35),F aij = �iAaj � �jAai + �ab
AbiA
j = �12�ab
Fb
ij : (41)It then follows from Eq. (36) that�ab
 F aijebke
l = Rijkl: (42)We next 
onsider the parallel transporter of a 3-ve
tor in a 
urved spa
e, as de�ned by Eq. (25). Ina

ordan
e with Eqs. (31) and (39), solving Eq. (25) isequivalent to solving the Yang�Mills equation for theparallel transporter,dxid� (Di)ab
b = 0; (43)whose solution is
a(�) = �W YM1 (�)�ab 
b(0);�W YM1 (�)�ab = �P exp�i Z d� dxid� A
i T 
��ab ; (44)where the subs
ript �1� indi
ates that the path-orderedexponential is taken in the J = 1 representation. Theparallel transport of a 
ontravariant ve
tor is thereforegiven byvk(�) = 
a(�)eak(�) == eak(�) �W YM1 (�)�ab ebl (0)vl(0); (45)whi
h immediately implies the sought relation betweenthe �gravitational� and Yang�Mills parallel trans-porters, �WG1 (�)�kl = eak(�) �W YM1 (�)�ab ebl(0): (46)The relation be
omes espe
ially neat for the Wilsonloops, i.e., for the tra
es of parallel transporters along
losed 
ontours. Be
ause the vielbeins take iden-ti
al values at the end points of a 
losed 
ontour,eak(1) = eak(0), we obtainWGve
tor = 13 �WG1 �kk = 13 �W YM1 �aa =W YM1 : (47)In a similar way, one 
an show that the same equa-tion is valid for the gravitational parallel transporterof 
ovariant ve
tors and, more generally, for paralleltransporters of any integer spin J . In this 
ase, the

Yang�Mills Wilson loop must be taken in the same rep-resentation as the gravitational one,WGJ =W YMJ : (48)It is understood that the right-hand side of Eq. (48)is expressed through the Yang�Mills �eld equal to thespin 
onne
tion in a

ordan
e with Eq. (37), while theleft-hand side is expressed through the Christo�el sym-bols, that is, through the metri
. It must be stressedthat the spin 
onne
tion is de�ned via the vielbein,whi
h is not uniquely determined by the metri
 tensor.The Wilson loop, being a gauge-invariant quantity, isnevertheless uniquely determined by the metri
 tensorand its derivatives. This is the meaning of Eq. (48).For a half-integer J , there is no way to de�ne theparallel transporter other than through the spin 
on-ne
tion. Nevertheless, as we show in Se
. 8, where wepresent the holonomy for any spin in a surfa
e form, the�gravitational Wilson loop� is also expressible throughthe metri
 tensor and its derivatives, even for half-integer spins. 4.2. d= 4In four Eu
lidean dimensions, the rotation groupis SO(4), with its algebra isomorphi
 to that ofSU(2)�SU(2), and therefore, all irredu
ible represen-tations of SO(4) 
an be 
lassi�ed by (J1; J2), whereJ1;2 = 0; 1=2; 1; : : : label the representations of the twoSU(2) subgroups. For example, the 4-ve
tor represen-tation whose parallel transporter was 
onsidered in thebeginning of this se
tion, transforms in the (1=2; 1=2)representation of SU(2)�SU(2). Be
ause of this, it is
onvenient to de
ompose the spin 
onne
tion !AB� intoself-dual and anti-self-dual parts using 't Hooft's � and�� symbols�aAB = 12i Tr �a(�A+�B� � �B+�A�);�A� = (�i�; 1); (49)��aAB = 12i Tr �a(�A��B+ � �B��A+): (50)We use the 
apital Latin 
hara
ters to denote �at 4-dimensional vierbein indi
es, A;B; : : : = 1; 2; 3; 4, whilea; b; : : : = 1; 2; 3; �a are the three Pauli matri
es. Thespin 
onne
tion !AB� transforms in the 6-dimensionalrepresentation of SO(4), whi
h 
an be de
omposed intothe sum (1; 0) + (0; 1) of the adjoint representations ofthe two SU(2) subgroups. We write!AB� = �12 �a� �aAB � 12 �a� ��aAB : (51)1056
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om-posed asFAB�� = �12 F a��(�) �aAB � 12 F a��(�) ��aAB ; (52)where F a��(�) = ���a� � ���a� + �ab
�b��
� ; (53)F a��(�) = ���a� � ���a� + �ab
�b��
� (54)are the usual Yang�Mills �eld strengths of the SU(2)Yang�Mills potentials �a� and �a�. We stress that6 � 4 = 24 variables !AB� equivalent to 2 � 3 � 4 = 24variables �a�, and �a� are de�ned by only 4 � 4 = 16tetrades eA� via Eq. (32), and therefore not all of themare independent.Contra
ting Eq. (36) with the � and �� symbols, weobtain F a��(�) = 12�aABeA�eB�R���� ; (55)F a��(�) = 12 ��aABeA�eB�R���� : (56)We now return to the parallel transporter of a 4-ve
-tor. As shown in the beginning of this se
tion, �nd-ing this parallel transporter is equivalent to solving theequation dx�d� ��� ÆAB + !AB� � 
B = 0: (57)We represent the 4-ve
tor 
A as a 
ombination of twospinors,
A = �y� ��A+���  � ; �y� � = 12
A ��A���� ;�; � = 1; 2: (58)Inserting this in Eq. (57) and de
omposing !AB� asin Eq. (51), we obtaindx�d� ��� ��y�A+ � ��12 ��a� �aAB + �a� ��aAB� ��y�B+ �� = 0: (59)Using the de�nition of the �-symbols in Eqs. (49)and (50), it is easy to verify that this equation is satis-�ed provided the spinors � and  satisfydx�d� "�� Æ�� � i �a���a2 ���#�� = 0or dx�d� �y� " �� � Æ�� + i �a� ��a2 ���# = 0; (60)

dx�d� "�� Æ�� � i �a���a2 ���# � = 0: (61)The expressions in square bra
kets are identi
al to theYang�Mills 
ovariant derivatives, with the role of theYang�Mills potentials played by �a� and �a�, respe
-tively. Equations (60) and (61) de�ne the Yang�Millsparallel transporters in the fundamental representa-tion. Their solution 
an be written as evolution op-erators,��(�) = [W �(�)℄�
 �
(0) or�y�(�) = �y
(0) �W �y(�)�
� ; (62) �(�) = [W �(�)℄�Æ  Æ(0); (63)[W �(�)℄�
 = �P exp�i Z d� dx�d� �a� �a2 ���
 ; (64)[W �(�)℄�
 = �P exp�i Z d� dx�d� �a� �a2 ���
 : (65)Returning to the 4-ve
tor 
A in Eq. (58), we see thatits evolution is determined by
A(�) = [Wve
tor(�)℄AB 
B(0);[Wve
tor(�)℄AB == 12 Tr �W �y(�)�A+W �(�)�B�� : (66)We now 
hoose a 
losed 
ontour and take the tra
eof the evolution operator. The �gravitational Wilsonloop� for a 4-ve
tor is then given byWG( 12 ; 12 ) = 14eA�(1) [Wve
tor(1)℄AB eB� (0) == 14 [Wve
tor(1)℄AA = 12 Tr W � � 12 Tr W �: (67)Its generalization to the holonomy in an arbitrary rep-resentation (J1; J2) is obvious,WG(J1;J2) =W �J1 �W �J2 ;W �;�J = 12J + 1 Tr(2J+1) W �;�: (68)Thus, the holonomy in the (J1; J2) representation in a
urved d = 4 spa
e is equal to the produ
t of two Yang�Mills Wilson loops, with the role of the Yang�Mills po-tentials played by the self-dual �a� and anti-self-dual �a�parts of the spin 
onne
tion. In Se
. 9, we show thatbothW � andW � 
an be written in terms of the metri
tensor.3 ÆÝÒÔ, âûï. 6 1057
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ontours, the �gravitational Wilsonloop� 
an be expanded in powers of the area. Themost straightforward way to do this is to use the path-ordered form of WG in Eq. (27). We take a square
ontour of the size a� a lying in the 12 plane and ex-pand the path-ordered exponential in powers of a. Af-ter some simple algebra, we obtain the �rst nontrivialterm of this expansion, whi
h happens to be O(a4),WGve
tor = 1d �WGve
tor��� = 1 + a4d R��12R��12 == 1� 2(�S)��(�S)�0�04d R����R���0�0g��g��; (69)where (�S)�� is the surfa
e element lying in the ��plane. We note that the �rst 
orre
tion to the holon-omy is negative-de�nite. We emphasize that the �rst-order term in �S is in general present in the expansionof the parallel transporter, however it vanishes aftertaking the tra
e owing to the identity R���� � 0, andtherefore, the expansion of the tra
e starts with the(�S)2 term.In three dimensions, Eq. (69) 
an be further simpli-�ed be
ause the Riemann tensor is expressed throughthe Ri

i tensor viaRijkl = Rikgjl �Rilgjk +Rjlgik �Rjkgil ++ R2 (gilgjk � gikgjl): (70)Be
ause the Riemann tensor is antisymmetri
 with re-spe
t to ea
h pair of subs
ripts, we 
an repla
egkmgln ! 12(gkmgln � gknglm) == 12g �kli�mnj gij : (71)Introdu
ing the dual surfa
e element�Spq = �pqr�Sr; (72)we have �kli�pqr Rklpq = �4�Rir � 12Rgir� ; (73)whi
h as a matter of fa
t is the Einstein tensor. Forthe parallel transporter of an arbitrary spin J , the fa
-tor 2 in the numerator of Eq. (69) must be repla
ed byJ(J + 1).

Combining all the fa
tors, we obtainWGJ = 1� 2J(J + 1)3g �Rir � 12Rgir��� gij �Rjs � 12Rgjs��Sr �Ss : (74)This is our �nal expression for the tra
e of thespin-J parallel transporter for small loops in a 
urvedd = 3 spa
e. We note that Eq. (74) is invariant underdi�eomorphisms.6. GRAVITATIONAL WILSON LOOP IN TWODIMENSIONSIn a 
urved d = 2 spa
e, the tra
e of the paralleltransporter along a 
losed loop 
an be 
omputed ex-a
tly for any metri
 and 
an be presented in the form ofa �Stokes theorem�. The result is related to the Gauss�Bonnet theorem and is generally known: we present ithere for the sake of 
ompleteness.The key observation is that in two dimensions, spin
onne
tion (32) has only one 
omponent,!abi = �ab !i: (75)In this se
tion, all indi
es take only two values 1; 2. Ina

ordan
e with Eq. (31), the parallel transporter of ave
tor is determined by the equationd
ad� � dxid� !i �ab 
b = 0; (76)whi
h is solved by
a(�) =W ab(�) 
b(0);W ab(�) =  
os 
(�) sin 
(�)� sin 
(�) 
os 
(�) ! ;
(�) = �Z0 d� dxid� !i: (77)A

ording to the general theorem in Se
. 4, the gra-vitational Wilson loop is equal to the Yang�Mills one,and we obtainWG1 = 12W aa(1) = 
os�; (78)where� = 
(1) = 1Z0 d� dxid� !i = 12 I dxi �ab !abi : (79)1058
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tory be
ause the holon-omy is expressed through the spin 
onne
tion and notthrough the metri
. Expressing it through the metri

an be a
hieved if we apply the Stokes theorem andwrite Eq. (79) in a surfa
e form. We have� = 12 Z dS �ab �ij �i!abj ; (80)where dS is the element of the spanning surfa
e for the
ontour. Introdu
ing the �eld strength related to theRiemann tensor,F abij = �i!abj � �j!abj + !a
i !
bj � !a
j !
bi == Rklij eak ebl ;�ab eak ebl = �klpg; (81)and noti
ing that the 
ommutator term is zero in twodimensions, we rewrite Eq. (80) as� = 12 Z dSpg R; WG1 = 
os�; (82)where R = (1=2) �ij �kl Rklijis the s
alar 
urvature. It is gratifying that the holon-omy is expressed through the Einstein�Hilbert a
tion,whi
h is known to be a total derivative in two dimen-sions. Needless to explain, Eq. (82) is di�eomorphism-invariant.In two dimensions, there is essentially only one 
om-ponent of the Riemann tensor,R1212 = 12 Rg (83)(see [20℄). Taking this into a

ount, it is easy to verifythat for small areas, the expansion of Eq. (82) gives thesame result as Eq. (69) written for small loops.7. AN EXAMPLE OF BIG LOOPS: ACONSTANT-CURVATURE BACKGROUNDIN THREE DIMENSIONSIn three dimensions, the Riemann tensor is express-ible through the Ri

i tensor, see Eq. (70). Therefore,the di�eomorphism-invariant information about 
urvedspa
es is fully 
ontained in the three eigenvalues of thesymmetri
 Ri

i tensor,Rij = � Æij ; (84)with the s
alar 
urvature being the sum of the three,R = �1 + �2 + �3:

For example, the de Sitter S3 spa
e 
orresponds to�1 = �2 = �3 = R=3 = 
onst:In this se
tion, we 
onsider another 
onstant-
urvature
ase, namely the 
ylinder spa
e S2 � R 
hara
terizedby �1 = �2 = R=2 = 
onst; �3 = 0:We show that the parallel transporter in these spa
es
an be 
omputed for any form of the 
ontour and anymetri
 and that the gravitational Wilson loop is givenby an elegant formula.A general metri
 
an be 
onsidered as the one in-du
ed by 6 external 
oordinates wA(x1; x2; x3),gij = �iwA�jwA; A = 1; : : : ; 6: (85)In the spe
ial 
ase of the 
ylinder spa
e S2 � R, itis su�
ient to use only four external 
oordinates wa(a = 1; 2; 3) and w4 subje
t to the 
onstraint3Xa=1(wa)2 = 2R: (86)An example of su
h external 
oordinates is given byw1;2;3(x) =r 2R x1;2;3r ; w4(x) =r 2R ln r; (87)leading to the metri
 tensorgij = 2R 1r2 Æij ; pg = � 2R�3=2 1r3 : (88)A simple 
al
ulation using formulas in Se
. 3 shows thatthis metri
 indeed gives a zero eigenvalue of the Ri

itensor with the other two eigenvalues equal to the 
on-stant R=2. Be
ause the eigenvalues of the Ri

i tensorare di�eomorphism-invariant, a general 
hange of 
o-ordinates xi ! yi(x) in Eq. (87) results in the sameeigenvalues. Therefore, the most general des
ription ofthe 
ylinder spa
es S2 �R is given bywa(x) =r 2R ya(x)jy(x)j ; w4(x) =r 2R ln jy(x)j;gij = 2R �iya�iyay2 ; (89)pg = � 2R� 32 13! �ijk �ab
 �iya�jyb�ky
jyj3 == 12rR2 �ijk �ab
 �iwa �jwb w
 �kw4; (90)1059 3*
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tions of the 
oor-dinates xi. We note that gij is given by the produ
t oftwo matri
es Mai = �iya=jyj;and hen
e,pg is itself a determinant (of the matrixM).Our aim is to 
al
ulate the Wilson loop for any 
on-tour in any metri
 (89) 
orresponding to the 
ylinderspa
es. We use the di�eomorphism invarian
e of theWilson loop. If we 
ompute it for a general 
ontourin some metri
 representing 
ylinder spa
es, the mostgeneral 
ase is re
overed by di�eomorphisms of boththe 
ontour and the metri
. We start with the spe
i�
metri
 given by Eqs. (87) and (88).Given metri
 tensor (88), we 
onstru
t a vielbein
orresponding to it. This is, of 
ourse, not unique butany 
hoi
e of the vielbein suits us. We 
hooseeai =r 2R 1r Æai ; eai eaj = gij : (91)Given the vielbein, we 
onstru
t the spin 
onne
tion(or the Yang�Mills �eld) from its de�nition (32) andobtain Aai = �12�ab
!b
i = �aij xjr2 ; (92)whi
h happens to be the �eld of the Wu�Yangmonopole; the s
alar 
urvature R has dropped from thespin 
onne
tion. A

ording to the theorem in Se
. 4,the gravitationalWilson loop is equal to the Yang�MillsWilson loop, provided the Yang�Mills potential Aai isthe spin 
onne
tion of the metri
 under 
onsideration.Therefore, all we have to do is to 
ompute the Wilsonloop for a general 
ontour in the �eld of the Wu�Yangmonopole.This task is easily solvable if we use another in-varian
e, the gauge invarian
e of the Wilson loop. Itis well known that the Wu�Yang monopole in hedge-hog gauge (92) 
an be transformed to the string gaugewhere the potential has only one nonzero 
omponentalong the third 
olor axis (plus a Dira
 string). In thisgauge, the Yang�Mills potential is basi
ally Abelian,and the Wilson loop in any representation J is there-fore given byWGJ =W YMJ = 12J + 1 JXm=�J exp(im�);� = I dxiA3i = Z dSi xir3 : (93)In the last equation, we used the normal Stokes theo-rem for the 
ir
ulation and also used the fa
t that in

the string gauge, the magneti
 �eld of the monopoleis the Coulomb �eld of a point 
harge; dSi is the el-ement of the spanning surfa
e for the 
ontour and isorthogonal to the surfa
e.Equation (93) is the gravitational Wilson loopfor arbitrary 
ontours but in a spe
i�
 metri
 givenby Eq. (88). To generalize it to the general metri
given by (89), it only remains to perform the general
oordinate transformation of Eq. (93). To this end, itis 
onvenient to use, instead of dSi, its dual dSij su
hthat dSi = �ijk dSjk . We re
all that under a general
oordinate transformation xi ! yi(x), the 
ontravari-ant ve
tor transforms asV i ! V k�kyi;and the antisymmetri
 
ontravariant tensor transformsas dSij ! dSmn �myi �nyj :The �ux in Eq. (93) is therefore given by� = Z dSi xir3 = Z dSij �ijk xkr3 !! Z dSmn �ijk �myi �nyj ykjyj3 : (94)This equation takes a more symmetri
 form in terms ofexternal 
oordinates (89),� = � 2R� 32 12 Z dSk �ab
 �ijk �iwa �jwb w
;3Xa=1wa2 = 2R: (95)Equations (93) and (95) are our �nal result for the grav-itational Wilson loop in the 
ylinder S2 � R spa
e ofthe 
onstant 
urvature R. The Wilson loop impli
itlydepends on the metri
 through Eq. (89). We now makeseveral 
omments.1) The parallel transporter must depend on the met-ri
 along the 
ontour but not on the spanning surfa
efor the 
ontour, be
ause this surfa
e 
an be drawn ar-bitrarily. This is indeed so despite the surfa
e form ofthe result, be
ause�k ��ab
 �ijk �iwa �jwb w
� = 0: (96)Therefore, the �ux in Eq. (95) 
an be presented as a
ir
ulation of a 
ertain ve
tor.2) The �ux in Eq. (95) has the form of a well-known expression for the winding number of a mapping1060
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losed or in�nite surfa
e, the windingnumber is normalized as18� � 2R�3=2 �� Z dSk�ab
�ijk�iwa�jwb w
 = Q = integer: (97)3) For small 
ontours, Eqs. (93) and (95) reprodu
ethe result of the previous se
tion. To 
he
k this, werewrite the general small-loop expansion (69) for thespe
i�
 metri
 in Eq. (87). We �ndRklpq = 2Rr6 �kluxu�pqvxv ; gij = R2 r2Æij : (98)Inserting this in Eq. (69) and then performing a general
oordinate transformation xi ! yi(x), we obtain, aftersome simple algebra,WGJ = 1� J(J + 1)6 ��pquyu�iyp�jyq�Sijjyj3 �2 ; (99)whi
h exa
tly 
oin
ides with the expansion of Eq. (93)in the small loop area �S up to the se
ond order.8. THE NON-ABELIAN STOKES THEOREM INd= 3 GRAVITYIn Se
. 4, we have shown that the gravitational Wil-son loop viewed as a fun
tional of the metri
 is equalto the Yang�Mills Wilson loop viewed as a fun
tionalof the Yang�Mills potential, provided this potential isset equal to the spin 
onne
tion 
orresponding to themetri
 in question.We now present the Yang�Mills Wilson loop interms of our non-Abelian Stokes formula, see Eq. (14):WGJ [metri
℄ =W YMJ [spin 
onne
tion℄ == Z Dn Æ(n2 � 1) exp iJ2 �� Z d2Sij h�F aijna + �ab
na (Din)b (Djn)
i : (100)We next repla
e the surfa
e element by its dualdSij = �ijp dSp with the aim to rewrite this represen-tation for the Wilson loop in terms of the metri
 of the
urved three-dimensional spa
e. To this end, we �rstde
ompose the integration unit ve
tor n in the dreibein:na = mi eai ; nana = mimjeai eaj == mimjgij = 1: (101)

The new 3-ve
torm is a 
ovariant unit ve
tor. Be
ausethe ba
kground metri
 gij is �xed, we only 
hange theintegration variables from n to m asZ Dn Æ(n2 � 1) : : : == Z Dmpg Æ(mimj gij � 1) : : : (102)We next use relation (42) of the �eld strength F aij
omputed from the spin 
onne
tionAai = (1=2)�ab
!b
ito the Riemann tensor. The �rst term in the exponentof Eq. (100) be
omes�rst term == �dSp�ijp ��12� �ab
mneanRlkij ebl e
k: (103)Using�ab
eble
k = 1pg �lkmeam; pg = det eai ; (104)equation (103) 
an be 
ontinued as�rst term = dSp�ijp 12pg Rijkl�klmgmnmn: (105)The 
ombination of the 
ovariant Riemann tensor andtwo antisymmetri
 epsilon symbols has been en
oun-tered in Se
. 5: in three dimensions, it gives the Ein-stein tensor, see Eq. (73). We thus obtain�rst term = dSppg (RÆpn � 2Rpn) mn; (106)where Rpn is the Ri

i tensor and R = Rkk is the s
alar
urvature.We now turn to the se
ond term in the exponentin Eq. (100) and again use de
omposition (101). Weexploit fundamental relation (33) that 
an be presentedas Dbb0j nb0 = ebk (rj)kl ml; (107)where Dbb0j = �jÆbb0 + �b
b0A
jis the Yang�Mills 
ovariant derivative and(rj)kl = �jÆkl + �kjlis the gravitational 
ovariant derivative. The se
ondterm is therefore given byse
ond term = dSp �ab
eakebl e
n �ijpmk(ri)ll0 ��ml0(rj)nn0mn0 == dSppg �ijp �klnmk(rim)l(rj m)n: (108)1061



D. I. Diakonov, V. Yu. Petrov ÆÝÒÔ, òîì 119, âûï. 6, 2001Gathering Eqs. (102), (106), and (108) together, we�nally obtain a non-Abelian Stokes theorem for thegravitational Wilson loop or the tra
e of the spin-Jparallel transporter along a 
losed 
ontour:WGJ = Z Dmpg Æ(mimj gij � 1)�� exp iJ2 Z dSkpg ��RÆkp � 2Rkp� mp++ �ijk �pqrmp(rim)q(rj m)r� : (109)Several 
omments are in order here.1) The holonomy, whi
h was de�ned as a path-ordered exponential, is here expressed by a simple ex-ponential of an integral over the spanning surfa
e forthe 
losed 
ontour. That is why we 
all our formula a�Stokes theorem�. The pri
e to pay is the fun
tionalintegration over the 
ovariantly unit ve
tor m de�nedon the surfa
e.2) Equation (109) is invariant under di�eomor-phisms in the sense that the holonomy remains invari-ant under a general 
oordinate transformationxi ! x0 i(xi)and the appropriate 
hange of the surfa
e.3) The parallel transporter depends only on the 
on-tour but must not depend on the spanning surfa
e. Thesurfa
e integral in Eq. (109) has the formZ dSk pg V k; (110)and the 
ondition that it does not depend on the formof the surfa
e is �k �pg V k� = 0; (111)or equivalently, (rk)kl V l = 0; (112)be
ause �kkl = �klk = �l lnpg:The veri�
ation of Eq. (112) is rather lengthy and werelegate it to the Appendix.4) With 
ondition (112) or equivalently (111) satis-�ed, the surfa
e integral 
an be written asZ dSk pg V k = Z dSk�ijk�jBk = � I dxi Bi (113)proving that it depends only on the 
ontour, as itshould be. However, the ve
tor �eld Bi 
annot be

uniquely determined from the metri
 tensor and the
ovariantly unit ve
tor m.5) The following 
omment is 
losely related to theprevious one. Parallel transporters of integer spins1; 2; : : : are de�ned via Christo�el's � symbols andhen
e by the metri
 tensor, while parallel transportersof half-integer spins 1=2; 3=2; : : : are not: they arede�ned by the spin 
onne
tion that is not uniquely
onstru
ted from the metri
. Nevertheless, it shouldbe expe
ted that the holonomy for half-integer spins,being a di�eomorphism-invariant quantity, 
an be ex-pressed through the metri
 only. Equation (109) solvesthis non-trivial problem: only the metri
 and its deriva-tives are involved. The solution is possible only withthe holonomy represented in the form of a surfa
e in-tegral, as in Eq. (109). One 
annot solve this problemin a 
ontour form be
ause it is not uniquely expressiblethrough the metri
. If that were possible, one wouldbe able to write a parallel transporter along an open
ontour in terms of the metri
 as well, but that is notso for half-integer spins.6) Equation (109) solves another long-standingproblem in the Yang�Mills theory. It was re
entlyshown [12�14℄ that the SU(2) Yang�Mills partitionfun
tion in three dimensions 
an be exa
tly rewrittenin terms of gauge-invariant quantities given by the six
omponents of the dual spa
e metri
 tensor. The usualargument why this rewriting is not very useful is thatexternal sour
es 
ouple to the Yang�Mills potential andnot to gauge-invariant quantities. However, we nowhave demonstrated that a typi
al sour
e�the Yang�Mills Wilson loop�
an be expressed not only throughthe potential but also through the metri
 tensor, whi
his gauge-invariant. Thus, not only the partition fun
-tion, but also the Wilson loops in the d = 3 Yang�Millstheory 
an be expressed through lo
al gauge-invariantquantities.9. THE NON-ABELIAN STOKES THEOREM INd= 4 GRAVITYThe aim of this se
tion is to express the holonomyWG(J1;J2) in the representation (J1; J2) in a 
urved d = 4spa
e through the metri
 tensor and its derivatives.Equation (68) presents the holonomy in terms of the(anti)self-dual parts of the spin 
onne
tion. The lat-ter is not uniquely determined by the metri
, whi
h isnot satisfa
tory. In addition, we would like to elimi-nate the path ordering in the Yang�Mills Wilson loopsW �;� entering Eq. (68). Both goals are a
hieved via1062



ÆÝÒÔ, òîì 119, âûï. 6, 2001 Non-Abelian Stokes theorems in Yang�Mills : : :the non-Abelian Stokes theorem similar to that of theprevious se
tion, whi
h we now derive.We start by applying representation (14) to theYang�Mills Wilson loop W �,W �J = Z DnÆ(n2�1) exp�iJ2 Z dS�� h�F a��(�)na++ �ab
na (D�(�)n)b (D�(�)n)
i� ; (114)where Dab� (�) = �� Æab + �a
b �
�is the 
ovariant derivative with respe
t to the self-dualpart of the spin 
onne
tion and F a�� (�) is the appro-priate �eld strength (53); it is related to the Riemanntensor via Eq. (55). We next introdu
e the antisym-metri
 tensor m�� = 12na �aAB eA�eB�: (115)The �rst term in Eq. (114) 
an be written as�R����m��. The tensor m�� has a
tually only twoindependent 
omponents. To see this, we introdu
etwo 
ovariant proje
tor operatorsP+���� = 14�aAB�aCDeA� eB� eC� eD� == 14(g��g�� � g��g�� +pg�����); (116)P����� = 14 ��aAB ��aCDeA� eB� eC� eD� == 14(g��g�� � g��g�� �pg�����); (117)satisfying the proje
tor 
onditionsP����� g��0g��0P��0�0�� = P����� ; (118)P����� g��0g��0P��0�0�� = 0; (119)P����� g��g�� = 3: (120)P����� are (
ovariantly) orthogonal proje
tors, ea
hhaving three zero and three nonzero eigenvalues. Theyproje
t a general antisymmetri
 tensor into (
ovari-antly) self-dual and anti-self-dual parts, respe
tively.It is easy to verify that the tensor m�� introdu
edin Eq. (115) is self-dual,P����� m�� = 0; (121)and satis�es the normalization 
onditionm��m�� = P+���� m��m�� = 1; (122)whi
h follows from the normalization n2 = 1. There-fore, m�� indeed has only two independent degrees of

freedom in a given metri
. We 
hange the integrationvariables in Eq. (114) from n to m��,Z Dn Æ(n2 � 1) : : : = Z Dm��pg �� Æ(P����� m��) Æ(m��m�� � 1) : : : (123)We now 
ompute the 
ovariant derivative of m�� asm��;� = ��m�� + ����m�� + ����m�� = 12�aAB �� ���na eA�eB� + na(��eA� + ����eA�)eB� ++naeA�(��eB� + ����eB�)� == 12�aAB ���na eA�eB��� na!AC� eC�eB� � naeA�!BC� eC�� ; (124)where in the last equation, we have used fundamentalrelation (33). We now insert the de
omposition of thespin 
onne
tion !AB� into the self-dual and anti-self-dual parts, Eq. (51). Using the relations for the �; ��symbols, �aAB�bAC = ÆabÆBC + �ab
�
BC ;��aAB ��bAC = ÆabÆBC + �ab
��
BC ; (125)�aAB ��bAC = �aAC ��bAB ; (126)it is easy to see that only the self-dual pie
e of !AB�survives in Eq. (124), givingm��;� = 12�aABeA�eB� ��� Æab + �a
b�
�� nb == 12�aABeA�eB� (D�(�)n)a : (127)In other words, the gravitational 
ovariant derivativeof m�� is expressed through the Yang�Mills 
ovari-ant derivative of the n �eld entering the se
ond termin Eq. (114).Using 
onse
utively Eqs. (125) and (127), we �nallyrewrite Eq. (114) in terms of the metri
:W �J1 = Z Dm��pg Æ(P����� m��)Æ(m��m�� � 1)�� exp�iJ12 Z dS�� ��R���� m���� 12 pg ����� g��0 m��0 m��;�m��;��� : (128)1063



D. I. Diakonov, V. Yu. Petrov ÆÝÒÔ, òîì 119, âûï. 6, 2001Similarly, W � is obtained by integrating over the anti-self-dual 
ovariantly unit tensors:W �J2 = Z Dm��pg Æ(P+���� m��) Æ(m��m�� � 1)�� exp�iJ22 Z dS�� ��R���� m��++ 12 pg ����� g��0 m��0 m��;�m��;��� : (129)As derived in Se
. 4.2, the gravitational holonomy inthe representation (J1; J2) is the produ
t of the two
omponents, WG(J1;J2) =W �J1W �J2 : (130)Equations (128), (129), and (130) 
onstitute the �non-Abelian Stokes theorem� for the holonomy in a 
urvedd = 4 spa
e. It expresses the holonomy via surfa
eintegrals over spanning surfa
es for the 
ontour, andpresents the holonomy in terms of the metri
 tensor andits derivatives only, without refering to the spin 
onne
-tion, even for half-integer representations (J1; J2).10. CONCLUSIONSThe main results of this paper are the non-AbelianStokes theorems for holonomies: the Yang�Mills Wil-son loop (Eq. (14)) and the tra
es of parallel trans-porters in 
urved d = 3 (Eq. (109)) and d = 4(Eqs. (128) and (129)) spa
es. In all these 
ases, thepath-ordered exponentials of the 
onne
tions are re-pla
ed by ordinary exponentials of surfa
e integrals,whi
h, however, do not a
tually depend on the waythe surfa
e is spanned on the 
ontour. The pri
e topay for the removal of path ordering is high: we ob-tain fun
tional integrals instead. In the simplest 
aseof the SU(2) Yang�Mills theory, this is an integral overa unit 3-ve
tor n �living� on the surfa
e; for the d = 3Riemannian manifold, this is an integral over a 
ovari-antly unit 3-ve
tor m, and for d = 4, one integratesover (anti)self-dual 
ovariantly unit tensors.In spite of the o

urren
e of fun
tional integration,we believe that our formulas are aestheti
ally appeal-ing. Compared to path-ordered exponentials, they arebetter suited to averaging over quantum ensembles ofYang�Mills �elds or over various metri
s. We hope thatelegant formulas 
an also be used in more general set-tings.In addition to the general non-Abelian Stokes for-mulas, we have presented holonomy as a surfa
e inte-gral for a spe
i�
 ba
kground, namely for a 
onstant-
urvature d = 3 spa
e with the 
ylinder topology

S2 �R. The �gravitational Wilson loop� is given by aformula for the 
hara
ter whose argument is the wind-ing number of external 
oordinates, see Se
. 8.Parallel transporters of integer spins have a dualdes
ription: su
h a transporter 
an be de�ned eitheras a path-ordered exponential of Christo�el symbols oras a path-ordered exponential of the spin 
onne
tionin the appropriate representation. In Se
. 4, we haveshown that these representations are equivalent. Eventhough the spin 
onne
tion is not uniquely determinedby the metri
 tensor, this equivalen
e implies that theholonomy written in terms of the spin 
onne
tion 
anin fa
t be expressed through the metri
 only.For half-integer spins, the situation is far less trivialbe
ause the only way to de�ne the holonomy is via thespin 
onne
tion, and it is not at all 
lear beforehandthat the holonomy 
an be uniquely written throughthe metri
 tensor and its derivatives. The non-AbelianStokes theorem proved in this paper demonstrates thatthis rewriting 
an be a
hieved, but only with the holon-omy presented in the surfa
e form. Although the sur-fa
e integral does not depend on the way one drawsthe surfa
e and 
an a
tually be written as an integralalong the 
ontour, the 
ontour form is not uniquely de-�ned by the surfa
e one, whi
h re�e
ts the ambiguityin determining the spin 
onne
tion from the metri
.This �nding has an interesting impli
ation for theYang�Mills theory in three dimensions, whi
h 
an beidenti
ally reformulated as a quantum gravity theorywith the partition fun
tion written as a fun
tionalintegral over the metri
 tensor of the dual spa
e[12�14℄. This metri
 tensor is lo
al and gauge invariant(in the Yang�Mills sense). However, one might wishto 
al
ulate the average of the Wilson loop, whi
h isoriginally de�ned by the Yang�Mills potential, butnot by the metri
 tensor. In the �quantum gravity�formulation, the Yang�Mills Wilson loop be
omes aparallel transporter in the gravitational sense. It istherefore very important that the Yang�Mills Wilsonloop in any representation 
an be expressed throughthe gauge-invariant metri
 tensor. Thus, not only thepartition fun
tion but also the Wilson loop 
an be pre-sented in terms of lo
al and gauge-invariant quantities.This subje
t is des
ribed in more detail elsewhere [15℄.One of us (V. P.) thanks NORDITA for kind hospi-tality and the Russian Foundation for Basi
 Resear
hfor partial support (grant � 97-27-15L).
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ÆÝÒÔ, òîì 119, âûï. 6, 2001 Non-Abelian Stokes theorems in Yang�Mills : : :APPENDIXProof that Eq. (109) does not depend on thesurfa
eThe path-integral representation for the �gravita-tional Wilson loop� in Eq. (109) must not depend onthe 
hoi
e of the spanning surfa
e for a given 
ontour,but only on the 
ontour itself. To prove that this is so,we verify Eq. (112), (rk)kl V l = 0; (131)where V k = �RÆkp � 2Rkp�mp ++ �ijk�pqrmp(rim)q(rjm)r;mimjgij = 1: (132)To simplify the notation, we denote 
ovariantderivatives by � ; � (see [20℄). Expli
itly, the 
ovari-ant derivatives of a s
alar, a ve
tor, and a tensor aregiven byS;k = �k S;V i;k = �k V i + �ikl V l; Vi;k = �k Vi � �lik Vl;T ij;k = �k T ij + �ikl T lj + �jkl T il;Tij;k = �k Tij � �lik Tlj � �ljk Til; et
: (133)The ordinary derivative of a 
onvolution of two tensors
an be written as the sum of 
ovariant derivatives,�k �T (1):::i::: T (2)::::::i � = T (1):::i::: ;k T (2)::::::i ++ T (1):::i::: T (2)::::::i;k : (134)We apply the 
ovariant derivative to the �rst termof the ve
tor V k,rk ��RÆkp � 2Rkp� mp� == �RÆkp � 2Rkp�;k mp + �RÆkp � 2Rkp� mp;k: (135)The 
ovariant derivative of the Einstein tensor is knownto be zero [20, Eq. (92.10)℄. Therefore, only the se
ondterm survives in Eq. (135).We next apply the 
ovariant derivative to the se
-ond term of V k asrk ��ijk �pqrmp(rim)q(rj m)r� == �ijk �pqr (rkm)p(rim)q(rj m)r ++ 2 �ijk �pqrmp(rim)q(rkrj m)r: (136)

The �rst term here vanishes, for the following reasons.Di�erentiating the 
ondition that mi is a 
ovariantlyunit ve
tor, we obtain0 = �k �mimjgij� = 2gij (rkm)imj == 2 (rkm)imi; (137)be
ause the 
ovariant derivative of the metri
 tensor iszero. This implies that the three ve
tors (r1;2;3m)i arenot linearly independent, be
ause three linearly inde-pendent ve
tors 
annot be orthogonal to a given ve
tor(in this 
ase, mi) in three dimensions. The �rst termin Eq. (136) is the antisymmetrized produ
t of thesethree linearly dependent ve
tors and is therefore zero.The se
ond term in Eq. (136) 
ontains the 
ommu-tator of 
ovariant derivatives, equal to�ijk(rkrj m)r = 12�ijk [rkrj ℄rs ms == 12�ijk grtRtskj ms (138)where Rtskj is the Riemann tensor. Therefore, the se
-ond (and the only nonzero) term in Eq. (136) 
an bewritten as �ijk �pqr grtRtskj mpms (rim)q : (139)We next use Eq. (70) to express the Riemann tensorthrough the Ri

i and metri
 tensors and write theprodu
t of two epsilon symbols as a determinant madeof Krone
ker deltas. Performing all 
onvolutions, weobtain that Eq. (139) 
an be identi
ally rewritten as�gqs �RÆip � 2Rip�� gps �RÆiq � 2Riq����mpms (rim)q : (140)Here, the �rst term is zero be
ause of Eq. (137) and inthe se
ond term, we usegpsmpms = 1:This gives � �RÆiq � 2Riq� (rim)q ; (141)whi
h 
an
els exa
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