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We discuss the interpretation of the non-Abelian Stokes theorem for the Wilson loop in the Yang—Mills theory.
For the «gravitational Wilson loops», i.e., holonomies in curved d = 2, 3, 4 spaces, we then derive «non-Abelian
Stokes theorems» that are similar to our formula in the Yang—Mills theory. In particular, we derive an elegant
formula for the holonomy in the case of a constant-curvature background in three dimensions and a formula for

small-area loops in any number of dimensions.
PACS: 11.15.Ha, 12.38.Gc

1. INTRODUCTION

One of the main objects in the Yang—Mills theory
and in gravity is the parallel transporter along closed
contours, or holonomy. In Yang—Mills theory, it is con-
ventionally called the Wilson loop; it can be written as
a path-ordered exponential

W, = T p  § ar B ga o 1
,—%r exp(z%rﬁu ), (1)
where z#(7) with 0 < 7 < 1 parameterizes the closed
contour, A, is the Yang—Mills field (or connection) and
T® are the gauge group generators in a given represen-
tation r whose dimension is d(r). For d-dimensional
vectors in curved Riemannian spaces, the «gravita-
tional Wilson loop», or holonomy, can also be written
as a trace of the path-ordered exponential of the con-
nection given by the Christoffel symbol,

1 dzH "
WEor = - {P exp <—j{d7 - Fuﬂ . (2)

One can also consider parallel transporters of spinors in
a curved background: the holonomy is then defined not
by the Christoffel symbols, but by the spin connection
that is not uniquely determined by the metric tensor
(see the precise definitions below).

*E-mail: diakonov@nordita.dk
**E-mail: victorp@thd.pnpi.spb.ru

The Yang-Mills Wilson loop is invariant under
gauge transformations of the background field A,; the
gravitational Wilson loop is invariant under general co-
ordinate transformations, or diffeomorphisms, provided
the contour is transformed as well.

It is generally believed that in three and four dimen-
sions, the average of the Wilson loop in a pure Yang—
Mills quantum theory exhibits the area-law behaviour
for large and simple (e.g., flat rectangular) contours.
This must be true not for all representations, but only
those with a nonzero «N-ality»; in the simplest case of
the SU(2) gauge group, these are the representations
with a half-integer spin J.

One of the difficulties in proving the area law for
the Wilson loop is that it is a complicated object by
itself: it is impossible to compute it analytically in a
general non-Abelian background field, not to mention
averaging it over an ensemble of configurations.

A decade ago, we suggested a formula for the Wil-
son loop in a given background belonging to any gauge
group and any representation [1]. In this formula, the
path ordering along the loop is removed at the price
of an additional integration over all gauge transfor-
mations of the given non-Abelian background field, or
more precisely, over a coset depending on the partic-
ular representation in which the Wilson loop is con-
sidered. Furthermore, the Wilson loop can be pre-
sented in the form of a surface integral [2], see the next
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section. We call this representation the non-Abelian
Stokes theorem. It is quite different from previous in-
teresting statements [3—6] that were also referred to as
«non-Abelian Stokes theorem» but which involved sur-
face ordering. Our formula has no surface ordering.
A classification of «non-Abelian Stokes theorems» for
arbitrary groups and their representations was recently
given by Kondo et al. [7] who used the naturally arising
techniques of flag manifolds.

Although these formulas do not usually facilitate
finding Wilson loops in particular backgrounds, they
can be used in averaging Wilson loops over ensembles
of Yang—Mills configurations or over different metrics,
and in more general settings, see, e.g., [T—11].

The main aim of this paper is to present new formu-
las for the gravitational holonomies in curved d = 2, 3,4
spaces; these formulas are similar to our non-Abelian
Stokes theorem for the Yang—Mills case. We eliminate
the path ordering in Eq. (2) and write the holonomies
as exponentials of surface integrals. Instead of path-or-
dering, we must integrate over certain covariantly unit
vectors (for d = 3) or covariantly unit (anti)self-dual
tensors (for d = 4). Remarkably, these formulas put
parallel transporters of different spins on the same foo-
ting. In particular, holonomies for half-integer spins
are presented in terms of the metric tensor (and its
derivatives) only, but not in terms of the vielbein or
the spin connection.

In addition to a purely theoretical interest, we have
a practical motivation in mind. Recently, it was shown,
both in the continuum and on the lattice, that the
SU(2) Yang-Mills partition function in d = 3 can
be exactly rewritten in terms of local gauge-invariant
quantities given by the six components of the dual
space metric tensor. This rewriting can be useful in
directly investigating the spectrum and the correlation
functions of the theory in a gauge-invariant way, but
it is insufficient to study the interactions of external
sources because these couple to the Yang—Mills poten-
tial and not to gauge-invariant quantities. The present
paper demonstrates, however, that a typical source, i.e.,
the Yang-Mills Wilson loop, can be expressed not only
through the potential (or connection) but also through
the metric tensor, which is gauge-invariant. Thus, not
only the partition function, but also the Wilson loops in
the d = 3 Yang—Mills theory can be expressed through
local gauge-invariant quantities. A detailed formula-
tion of the resulting theory is given elsewhere.

Although the main content of the paper is the non-
Abelian Stokes theorems for holonomies in 3 and 4 di-
mensions, we add three short sections with relevant ma-
terial. For completeness, we add the Stokes theorem in

two dimensions, compute the holonomy in the special
case of a constant curvature with a cylinder topology
in three dimensions, and give a general formula for the
«gravitational Wilson loop» for small loops in any num-
ber of dimensions.

2. NON-ABELIAN STOKES THEOREM IN THE
YANG-MILLS THEORY

We let 7 parameterize the loop defined by the tra-
jectory x#(7) and let A(7) be the tangent component of
the Yang—Mills field along the loop in the fundamental
representation of the gauge group,

dat

1
_ paqa agby _ — sab
A(r) = Ajt I Tr(t*t") 2(5 .

Gauge transformations of A(r) are given by
A(T) = S(T)A(T)S™ (1) + iS(T)diS_l(T). (3)
T

Let H; be the Cartan subalgebra generators
(¢ = 1,...,r, where r is the rank of the gauge
group) and the r-dimensional vector m be the highest
weight of the representation r in which the Wilson
loop is considered. The formula for the Wilson loop
derived in Ref. [1] is a path integral over all gauge
transformations S(r) that are periodic along the
contour:

W, = /DS(T) X

X exp <i/dr Tr [m,»Hi(SAS” +z'ssl)]> L 4)

We stress that Eq. (4) is manifestly gauge invariant, as
is the Wilson loop itself. For example, in the simple
case of the SU(2) group, Eq. (4) becomes

Wy = /DS(T) X

X exp <z’J/dT Tr [TS(SAST +iss'*)]> . (5)

where 73 is the third Pauli matrix and J = 1/2, 1,
3/2,... is the «spin» of the representation of the Wil-
son loop considered.

The path integrals over all gauge rotations in
Eqs. (4) and (5) are not of the Feynman type: they
do not contain terms quadratic in the derivatives
in 7. A certain regularization of these equations
is therefore implied ensuring that S(r) is suffi-
ciently smooth. For example, one can introduce
quadratic terms in the angular velocities iSST
with small coefficients eventually set equal to zero;
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see Ref. [1] for details. Equation (5) was derived in
Ref. [1] in two independent ways: i) by a direct dis-
cretization and ii) by using the standard Feynman rep-
resentation of path integrals as a sum over all interme-
diate states, in this case for the axial top supplemented
by an action of the «Wess—Zumino» type. Another
discretization leading to the same result was recently
used by Kondo [7]. A similar formula has been used
by Alekseev, Faddeev, and Shatashvili [16] in deriv-
ing a formula for group characters to which the Wilson
loop is reduced for a constant A field (which is the

S =exp <2L;3) exp <z%> exp (z?) =

3 <‘oz-|-’y>
cos —exp | i

—sinéexp <Z,a—'y> cosﬁexp <—ia+7>

case actually considered in [16]). In Ref. [17], Eq. (4)
was rederived in an independent way specifically for the
fundamental representation of the SU(N) gauge group.
Finally, another derivation of a variant of Eq. (5) using
lattice regularization was recently given in Ref. [18].

The second term in the exponent in Eqgs. (4) and (5)
is in fact a «Wess—Zuminoy»-type action, and it can be
rewritten not as a line but as a surface integral associ-
ated with a closed contour. For simplicity, we consider
the SU(2) gauge group and parameterize the SU(2)
matrix S in Eq. (5) by Euler’s angles,

sinéexp _ioz—'y
2 2 2

2
(6)

2 2 2 2

The derivation of Eq. (5) implies that S(7) is a periodic matrix. This means that « &+ v and 8 are periodic

functions of 7 with the period 4.

The second term in the exponent in Eq. (5), which we denote by @, is then

= /dr Tr(ryiSSH) = /dr (crcos B+ 4) = /dr [(cos B — 1) + (& +4)] = /drd(cosﬂ .M

The last term is a total derivative and can be actually dropped because o + 7 is 4m-periodic, and therefore, does

not contribute to Eq. (5) even for half-integer representations J. We note that « can be 27-periodic if vy (which

drops from Eq. (7)) is 27-, 67, .. .-periodic. If a(1) = «(0) + 27k, a(r) makes k windings. The integration over

all possible a(7) implied in Eq. (5) can be divided into distinct sectors with different winding numbers k.
Introducing a unit 3-vector

1
n® = 3 Tr (S72Str3) = (sin § cos a, sin B sin a, cos 3), (])
we can rewrite ® as
1
d = B /drda € e OmPome, i,j =10, (9)

where we integrate over any spanning surface for the contour (we call it a «disk»), and n or a and /8 are continued
to the interior of the disk without singularities. We denote the second coordinate by ¢ such that ¢ = 1 corresponds
to the edge of the disk coinciding with the contour and ¢ = 0 corresponds to the center of the disk. See Ref. [18]
for the details on the continuation to the interior of the disk.

We note that if the surface is closed or infinite, the right-hand side of Eq. (9) is the integer topological charge
of the n field on the surface,

1
Q= g /do’d‘l‘ e“bceijnaamb@jnc. (10)
Equation (9) can also be rewritten in the form that is invariant under surface reparameterizations. Introducing
the invariant surface element

BPSH — dodr [ 22— 22 _ 22 —> = e""d(Area), (11)

or Oo or Oo
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we can rewrite Eq. (9) as
1 dZSul/ abe ay ba c

=3 €n*dyn’0yn’. (12)

For the Wilson loop, we then obtain [1]

_ . Aa a Z‘] 2 quv abe, a b c

Wy = [ Dn(o,7)exp |iJ | dr(A%n )+? d=S* e n*9,n’d,n°| . (13)
The interpretation of this formula is obvious: the unit vector n plays the role of the instant direction of the
colour «spin» in the color space. However, multiplying its length by J does not guarantee that we deal with a true
quantum state from the representation labelled by J; this is achieved only by introducing the «Wess—Zumino»

term in Eq. (13) that fixes the representation to which the probe quark of the Wilson loop belongs to be exactly .J.
Finally, we can rewrite the exponent in Eq. (13) such that both terms appear to be surface integrals [2],

W= / Dn(o, ) exp [% / d2SHv (—ngna + eabena (D“n)b(D,,n)c)] ., (14)

where
Dzb — auéab + eachg

is the covariant derivative and
Fi, =0,A;, — 8,,AZ +

is the field strength. Indeed, expanding the expo-
nent in Eq. (14) in powers of A,, we observe that the
quadratic term cancels while the linear term is a total
derivative reproducing the A%n® term in Eq. (13); the
zero-order term is « Wess—Zumino» term (9) or (7). We
note that both terms in Eq. (14) are explicitly gauge
invariant. We call Eq. (14) the non-Abelian Stokes the-
orem. We stress that it is different from the previ-
ously proposed Stokes-like representations of the Wil-
son loop, based on ordering elementary surfaces inside
the loop [3-6]. For a further discussion of Eq. (14),
see [18].

We now briefly discuss gauge groups higher than
SU(2): for that purpose, we must return to Eq. (4).
Although it is valid for any group and any representa-
tion, its surface form depends explicitly on the group
representation in which the Wilson loop is considered.
Equation (4) says that one can in fact integrate not
over all gauge transformations S but only over those
that do not commute with the combination of Cartan
generators m;H; where m is the highest weight of a
given representation. In the SU(2) case, one has

miHi:JTg., J:1/2,173/2,...,

abc Ab Ab
€A A

because SU(2) has the rank 1 and there is only one
Cartan generator. In the SU(2) case, one therefore
integrates over the coset SU(2)/U(1) for any represen-
tation; this coset can be parameterized by the n field
as described above.

For higher groups, there are several possibilities of
taking cosets: a particular coset depends on the repre-
sentation of the Wilson loop. For example, in the case
where the Wilson loop is in the fundamental represen-
tation of the SU(N) group, the combination m;H; is
proportional to one particular generator of the Cartan
subalgebra that commutes with the SU(N —1) x U(1)
subgroup. (For SU(3), this generator is the Gell-Mann
Ag matrix or a permutation of its elements.) For the
fundamental representation of the SU(N) group, the
appropriate coset is therefore given by

U(N)/SU(N —1)/U(1) = CcPN 1L,
A possible parameterization of this coset is given by a
complex N-vector u® of the unit length, uf,u® = 1. To
be specific, the Cartan combination in the fundamental
representation can always be set equal to

m;H; = diag(1,0,...,0)

by rotating the axes and subtracting the unit matrix.
In this basis, u® is just the first column of the unitary
matrix St and uf is the first row of S. Unitarity of S
implies that

ufu® = 1.

In this parameterization, Eq. (4) can be written as

fund /DuDufé (uf u® — 1) x
X expz/dT )g u®, (15)
(Vi) g = 0ud5 — (ta)g
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Using the identity
€ij0; (ufviu) = €jj [(VZ'U)Jr (Vju) + ufvivju} =
=y [~ By + (T (V)] . (16)
we can present Eq. (15) in a surface form,

Wit = /Du Duts(juf®> = 1) x

X exp <i/dS“” B(UTFWU)H (V) (vyu)D . (17)

where F),, is the field strength in the fundamental
representation. Equation (17) was first published in
Ref. [17], however with an unexpected overall coeffi-
cient 2 in the exponent. Equation (17) presents the
non-Abelian Stokes theorem for the Wilson loop in the
fundamental representation of SU(N). In the particu-
lar case of the SU(2) group, transition to Eq. (14) is
achieved by identifying the unit 3-vector

nt =l (r*)3u°,

where

cosé ex —ia+7
g P 2

sin é exp <ia ; 7) (18)

2
2iufd,u = a(cos B —1) + (a +4).
It must be mentioned that the quantity

/dodreij i0iul, 0;u® = 21Q (19)

appearing in Eq. (17) is the topological charge of the
2-dimensional C PN ~! model. For closed or infinite sur-
faces, @) is an integer.

In the case where the Wilson loop is taken in the
adjoint represention of the SU(N) gauge group, the
combination m; H; in Eq. (4) is the highest root. Only
group elements of the form exp(ia;H;) commute with
this combination (these elements belong to the maxi-
mum torus subgroup U(1)¥~1). In the case of the ad-
joint representation, one therefore integrates over the
flag manifold [19, 7]

SU(N)/U(1)N-1 = FN~1

3. «GRAVITATIONAL WILSON LOOPS»

An object similar to the Wilson loop of the Yang—
Mills theory also exists in gravity theory. It is the par-
allel transporter of a vector on a Riemannian manifold

along a closed contour, also called a holonomy. The
holonomy is trivial if the space is flat but becomes a
non-trivial functional of the curvature if it is nonzero.
In the remaining sections, we present new formulas
for the parallel transporters on d = 2, 3,4 Riemannian
manifolds.

We first recall some notation from differential ge-
ometry. We use [20] as a general reference book. Let
Guv = gup (1t,v =1,...d) be the covariant metric ten-
sor, with the contravariant tensor g*” being its inverse,
guvg"™ = 0. The determinant of the covariant met-
ric tensor is denoted by g. The Christoffel symbol is
defined by

A
Fﬁn = gﬂ/\rx\,l/n - gT(al/g/\n'i'an g)\u_a/\gun)a
9y g (20)
VK = 2g ‘

The action of the covariant derivative on a contravari-
ant vector is defined as

(Vp)ivt = (9,05 + Tpy)v. (21)

The commutator of two covariant derivatives deter-
mines the Riemann tensor,
[VoVoly = Ry = 9™ Rurnpo =
= 0plgy — Os Uy + T3, T0\ =T T\ (22)
A contraction of the Riemann tensor gives the symmet-
ric Ricci tensor,

Ryxs = R%.,, RS =R",,9". (23)
Its full contraction is the scalar curvature
R = Ry\,g"° = R~. (24)

The parallel transporter of a contravariant vector
along a curve z#(7) is determined by solving the equa-
tion

dzt

(Vi) =0 (25)

The solution can be written using the evolution opera-
tor

K

v (r) = [WE(D)]} v*(0), (26)
where v*(0) is the vector at the starting point of the
contour and v*(7) is the parallel-transported vector at

the point labelled by 7. The evolution operator can be
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symbolically written as a path-ordered exponential of
the Christoffel symbol,
K

K

T d "
[WG(T)])‘ = |P exp _/dT;—TF“ .21
0 A
We define the «gravitational Wilson loop» as the
trace of the parallel transporting evolution operator
along the closed curve z#(7) with 2#(1) = 2#(0),

W0 =

vector — d

(WY, . (28)

K

This quantity is diffeomorphism-invariant: the met-
ric tensor is transformed under coordinate changes
x# — 2'H(x), but if the contour is changed as

(1) = 2" (2(7)),

the gravitational Wilson loop or the holonomy remains
the same. In this respect, the gravitational holonomy
is different from the Yang—Mills Wilson loop that is in-
variant under gauge transformations without changing
the contour.

The parallel transporter of a covariant vector is
given by the transposed matrix; its trace coincides with
that of the matrix used in transporting contravariant
vectors.

4. RELATION OF GRAVITY QUANTITIES TO
THOSE OF THE YANG-MILLS THEORY

We now show that the «gravitational Wilson loop»
is not only analogous to but directly expressible
through the Yang-Mills Wilson loops of the SU(2)
group. For this purpose, we introduce the standard

vielbein ef} and its inverse e# such that

A A _ A_Bu _ sAB
€,€, = Guv, €,e’t =567,

29
eAreAv — gtv, det eﬁ =./9. (29)

We decompose the vector experiencing the parallel
transport in vielbeins, v* = ¢4e4*, with the reciprocal
decomposition

A =eMvt, (30)

and insert this in Eq. (25) defining the parallel trans-
port. We then have

dz* .
0= W(VM)ACA
dat

- [eA“aucA + cA(aueA” + F,’j)‘em‘)] =

dr
dz g BA BA\ A
=€ F(0u07" +w, e, (31)

AN —

where we introduced the spin connection

w;;AB _ _wa _ %eAN(aueE _ 8nef) —
_ %63“(8ue£ — 8,&3) -
- %e*"*emef(anef —0xel) (32)
and used the fundamental relations
aueA” + F,’j)‘em‘ = —w;‘BeBN, (33)
R R L

One can introduce the SO(d) «field strength»

FAB =10, + w9y +w)]*?

_ AB AB | AC, CB _ , AC, CB
= 0w, " = Oyw, " tw, "W, —w, “w,” (35)

related to the Riemann tensor as
ffVBeQef = —Rixuw,
FioP = —RuxuwerePA, (36)
flfyBeA“eB” =R.
The above material is common for any number of
dimensions. To proceed further, we consider the cases

where d = 3 and d = 4 separately. The case where
d = 2 is considered in Sec. 6.

4.1. d=3

In three dimensions, one can immediately identify
the spin connection with the su(2)-valued Yang-Mills
field as

c 1 aoc a
Af =3¢ be ab, (37)
Working in three dimensions, we denote the Lorentz
indices by i,7,... = 1,2,3 and the flat triade indices by
a,b,...=1,2,3. Recalling the generators in the J =1
representation,
(Tc)ab — _iecab_/ [Tch] — iECdfo, (38)
we can rewrite the last parenthesis in Eq. (31) as
Di0 + Wit = 9;6" — i AS(T)** = (D;)™, (39)

which is the standard Yang-Mills covariant deriva-
tive in the adjoint representation. In the fundamen-
tal (spinor) representation, the Yang—Mills covariant
derivative is

« « - AC GC “ _
(VZ)B = 6165 — ZAZ» <7>B =

1
=005 + gwfb [0%0"]

o]

,8 b a’/B = 172’ (40)
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which coincides with the known expression for the co-
variant derivative in the spinor representation in a
curved space.

The standard Yang—Mills field strength is directly
related to that in Eq. (35),

1
Ffj = 0,47 — 0, A} + P AVAS = —S e FlE. (41)

It then follows from Eq. (36) that
eabc F{}eief = Rijkl- (42)

We next consider the parallel transporter of a 3-
vector in a curved space, as defined by Eq. (25). In
accordance with Eqs. (31) and (39), solving Eq. (25) is
equivalent to solving the Yang—Mills equation for the
parallel transporter,

da’ “
F(Di) beb =0, (43)
whose solution is

(r) = WM™ (o),

[WYM(T)]G’J _ {P exp <¢/de2_95 A Tc>rb_, (44)

where the subscript «1» indicates that the path-ordered
exponential is taken in the J = 1 representation. The
parallel transport of a contravariant vector is therefore
given by

R (1) = (1) (1) =

= e (1) [WY M (1)] " eb(0)0! (0),  (45)

which immediately implies the sought relation between
the «gravitationaly» and Yang-Mills parallel trans-
porters,

(WE @]} = ep(m) WM ()] e?(0).  (46)

The relation becomes especially neat for the Wilson
loops, i.e., for the traces of parallel transporters along
closed contours. Because the vielbeins take iden-
tical values at the end points of a closed contour,
e (1) = e}(0), we obtain

1 k 1 aa
Wv(ictor = g [WlG]k = g [WIYM] = 1YM‘ (47)

In a similar way, one can show that the same equa-
tion is valid for the gravitational parallel transporter
of covariant vectors and, more generally, for parallel
transporters of any integer spin J. In this case, the

Yang—-Mills Wilson loop must be taken in the same rep-
resentation as the gravitational one,

W& =w¥M, (48)

It is understood that the right-hand side of Eq. (48)
is expressed through the Yang—Mills field equal to the
spin connection in accordance with Eq. (37), while the
left-hand side is expressed through the Christoffel sym-
bols, that is, through the metric. It must be stressed
that the spin connection is defined via the vielbein,
which is not uniquely determined by the metric tensor.
The Wilson loop, being a gauge-invariant quantity, is
nevertheless uniquely determined by the metric tensor
and its derivatives. This is the meaning of Eq. (48).

For a half-integer J, there is no way to define the
parallel transporter other than through the spin con-
nection. Nevertheless, as we show in Sec. 8, where we
present the holonomy for any spin in a surface form, the
«gravitational Wilson loop» is also expressible through
the metric tensor and its derivatives, even for half-
integer spins.

4.2. d=14

In four Euclidean dimensions, the rotation group
is SO(4), with its algebra isomorphic to that of
SU(2) x SU(2), and therefore, all irreducible represen-
tations of SO(4) can be classified by (Ji,.J2), where
Ji2=0,1/2,1,... label the representations of the two
SU(2) subgroups. For example, the 4-vector represen-
tation whose parallel transporter was considered in the
beginning of this section, transforms in the (1/2,1/2)
representation of SU(2) x SU(2). Because of this, it is
convenient to decompose the spin connection wf}B into
self-dual and anti-self-dual parts using 't Hooft’s 17 and
7 symbols

1
aAB a( A+ B-— B+ _A—
=—=Tro%(c" 0" —0c""0 ,
1 2i ( ) (49)
o* = (+io, 1),

1
AR = % Tr 0% (04~ 0Bt — oB=oA). (50)

i
We use the capital Latin characters to denote flat 4-
dimensional vierbein indices, 4, B, ... = 1,2,3,4, while
a,b,...=1,2,3; 0 are the three Pauli matrices. The
spin connection wﬁ‘B transforms in the 6-dimensional

representation of SO(4), which can be decomposed into
the sum (1,0) + (0, 1) of the adjoint representations of
the two SU(2) subgroups. We write

1 1,
w;\B — _5 ﬂ_z naAB _ 5 pZ naAB. (51)
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The SO(4) «field strength» in Eq. (35) is then decom-
posed as

1 1

Fal = -3 FS, (m)n* AP — 3 FS,(p)n**P,  (52)
where

Fi,(m) = 0ums — 0,7l + e®nbn, (53)

Ff,(p) = 0upl — Duply + € phpf, (54)

are the usual Yang-Mills field strengths of the SU(2)
Yang-Mills potentials 7; and pj. We stress that
6 -4 = 24 variables w:}B equivalent to 2 -3 -4 = 24
variables 7, and pj; are defined by only 4 -4 = 16
tetrades ef} via Eq. (32), and therefore not all of them
are independent.

Contracting Eq. (36) with the 1 and 7 symbols, we

obtain

1

Fi(m) = g0 P e e Ry, (55)
1

Fi(p) = 50" P et eP Ry (56)

We now return to the parallel transporter of a 4-vec-
tor. As shown in the beginning of this section, find-
ing this parallel transporter is equivalent to solving the
equation

dz" AB AB\ .B
We represent the 4-vector ¢ as a combination of two
spinors,

@ 1 _\B
CA - XL (UA+)B /wﬁ', XIJ/’B = §CA (UA )a’ (58)
a,f=1,2.

Inserting this in Eq. (57) and decomposing w/? as

“w
in Eq. (51), we obtain

da*
dr

1
= (mn™? + p g P) [x*aBW]} =0. (59)

{% [to+y] —

Using the definition of the 7-symbols in Eqs. (49)
and (50), it is easy to verify that this equation is satis-
fied provided the spinors x and ¢ satisfy

dzt Ca (T
?[8ﬂdg_lﬁu<?> X6:0
B
dzH — o\ ¢
T o a _
or ——xL|9u05+im <—> ]—0 (60)
dr [ m 2 3

3 ZKOT®, Bein. 6

dxH

—— 18,08 —ip" <”—a>a] PP =0. (61)
dr [“ p mA\ 2 3

The expressions in square brackets are identical to the
Yang—Mills covariant derivatives, with the role of the
Yang-Mills potentials played by 7, and pj;, respec-
tively. Equations (60) and (61) define the Yang-Mills
parallel transporters in the fundamental representa-
tion. Their solution can be written as evolution op-
erators,

X (1) = [W(D)]5x7(0) or
L) = x0) W] L (62)

V() = WP (n))5 v°(0), (63)
(W ()] = [P exp <z /dr‘?—:wg %)]a (64)

Wo () = [P exp <z /dTLZE—:pZ %)K (65)

Returning to the 4-vector ¢ in Eq. (58), we see that
its evolution is determined by

A1) = Waeetor (1] B (0),

[erctor (T)] AB =

= %Tr [wi (T)O'A+WP(T)O'B_] . (66)

We now choose a closed contour and take the trace
of the evolution operator. The «gravitational Wilson
loop» for a 4-vector is then given by

)~ ieAN(]') [erctor(l)]AB e, (0)=

1
= Z [erctor(l)]AA =

WG

(35

o=

1
T W™ . ETr Wr. (67)

1
2
Its generalization to the holonomy in an arbitrary rep-
resentation (Jy,J2) is obvious,

G _ s
W(J1,J2) - WJl ‘Wf])27

1 (68)

™p TI'(QJ+1) WP,

Y ES

Thus, the holonomy in the (Ji, J2) representation in a
curved d = 4 space is equal to the product of two Yang—
Mills Wilson loops, with the role of the Yang—Mills po-
tentials played by the self-dual 7}, and anti-self-dual pf,
parts of the spin connection. In Sec. 9, we show that
both W™ and W? can be written in terms of the metric
tensor.
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5. SMALL WILSON LOOPS

For small-area contours, the «gravitational Wilson
loop» can be expanded in powers of the area. The
most straightforward way to do this is to use the path-
ordered form of W& in Eq. (27). We take a square
contour of the size a x a lying in the 12 plane and ex-
pand the path-ordered exponential in powers of a. Af-
ter some simple algebra, we obtain the first nontrivial
term of this expansion, which happens to be O(a?),

1
chéctor = E [chictor

_2(AS)H(AS)H
4d

K a4 A
]n =1+ FRN/\IQRN12 =

=1 Rm\;prau’V’ngg)‘aa (69)

where (AS)* is the surface element lying in the pv
plane. We note that the first correction to the holon-
omy is negative-definite. We emphasize that the first-
order term in AS is in general present in the expansion
of the parallel transporter, however it vanishes after
taking the trace owing to the identity R, =0, and
therefore, the expansion of the trace starts with the
(AS)? term.

In three dimensions, Eq. (69) can be further simpli-
fied because the Riemann tensor is expressed through
the Ricci tensor via

Rijri = Rirgji — Rugjr + Rjgix — Rjrga +

R
+ E(gz’lgjk — girgjt)-  (70)

Because the Riemann tensor is antisymmetric with re-
spect to each pair of subscripts, we can replace

1
gkmgln N E(gkmgln _ gknglm) —

1 . )
= 5, gy ()

Introducing the dual surface element

ASPT = ePITAS, (72)

we have
kli _pqr ir 1 ir
M Ry = —4 (R" — 5Rg™ ). (13)

which as a matter of fact is the Einstein tensor. For
the parallel transporter of an arbitrary spin .J, the fac-
tor 2 in the numerator of Eq. (69) must be replaced by
J(J+1).

Combining all the factors, we obtain

2 1 . 1 )
WJG:]-_%<R”’_§RQW>X

. 1 .
X gij <R“ - 5Rg”> AS, AS,. (74)

This is our final expression for the trace of the
spin-.J parallel transporter for small loops in a curved
d = 3 space. We note that Eq. (74) is invariant under
diffeomorphisms.

6. GRAVITATIONAL WILSON LOOP IN TWO
DIMENSIONS

In a curved d = 2 space, the trace of the parallel
transporter along a closed loop can be computed ex-
actly for any metric and can be presented in the form of
a «Stokes theorem». The result is related to the Gauss—
Bonnet theorem and is generally known: we present it
here for the sake of completeness.

The key observation is that in two dimensions, spin
connection (32) has only one component,

Wit = et ;. (75)

In this section, all indices take only two values 1,2. In
accordance with Eq. (31), the parallel transporter of a
vector is determined by the equation

de* daxt o,
dr - Ewl € C = 0, (76)

which is solved by
ct(r) = W(r) ¢ (0),

weab(r) = (

cos (1)

—sinvy(7)

[ doi
(1) = /dT Wi
0

sin (1) > .
cosy(r) | (77)

According to the general theorem in Sec. 4, the gra-
vitational Wilson loop is equal to the Yang—Mills one,
and we obtain

1
W = §W’m(1) =cos P, (78)

1

i 1 .
¢ = ’}/(1) = /dTC(liiT Wi = 5 %dﬂﬁl €ab w?b. (79)
0
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This formula is not fully satisfactory because the holon-
omy is expressed through the spin connection and not
through the metric. Expressing it through the metric
can be achieved if we apply the Stokes theorem and
write Eq. (79) in a surface form. We have
1 ij ab
P = 5 dsS €ab € &wj y (80)
where dS is the element of the spanning surface for the
contour. Introducing the field strength related to the
Riemann tensor,
Fit = 0iwi® — 0jw’ + wiws? — wiwi® =
= RMepel, (81)

b
€ab € €] = €117,

and noticing that the commutator term is zero in two
dimensions, we rewrite Eq. (80) as

1
¢ =3 /dS\/gR, WE = cos ®, (82)

where
R=(1/2) " e R}

is the scalar curvature. It is gratifying that the holon-
omy is expressed through the Einstein—Hilbert action,
which is known to be a total derivative in two dimen-
sions. Needless to explain, Eq. (82) is diffeomorphism-
invariant.

In two dimensions, there is essentially only one com-
ponent of the Riemann tensor,

1
Rizip = 3 Rg (83)

(see [20]). Taking this into account, it is easy to verify
that for small areas, the expansion of Eq. (82) gives the
same result as Eq. (69) written for small loops.

7. AN EXAMPLE OF BIG LOOPS: A
CONSTANT-CURVATURE BACKGROUND
IN THREE DIMENSIONS

In three dimensions, the Riemann tensor is express-
ible through the Ricci tensor, see Eq. (70). Therefore,
the diffeomorphism-invariant information about curved
spaces is fully contained in the three eigenvalues of the
symmetric Ricci tensor,

R; =03, (84)
with the scalar curvature being the sum of the three,

R:)\1+A2+)\3.

For example, the de Sitter S? space corresponds to
A1 = A2 = A3 = R/3 = const.

In this section, we consider another constant-curvature
case, namely the cylinder space S? x R characterized
by

)\1 = /\2 = R/2 = COIlSt7 )\3 = 0.

We show that the parallel transporter in these spaces
can be computed for any form of the contour and any
metric and that the gravitational Wilson loop is given
by an elegant formula.

A general metric can be considered as the one in-
duced by 6 external coordinates w (1, zo, 73)

3

gii = Owd;wt, A=1,...,6. 85
J J

In the special case of the cylinder space S? x R, it
is sufficient to use only four external coordinates w®
(a =1,2,3) and w? subject to the constraint

> () = %. (86)

An example of such external coordinates is given by

9 1,2,3 2
w'?3(x) = i z pa wt(z) = \/ i Inr, (87)

leading to the metric tensor

2 1 32
g¢j=§r—25i]’, \/§=<§> ey (88)

A simple calculation using formulas in Sec. 3 shows that
this metric indeed gives a zero eigenvalue of the Ricci
tensor with the other two eigenvalues equal to the con-
stant R/2. Because the eigenvalues of the Ricci tensor
are diffeomorphism-invariant, a general change of co-
ordinates #' — yi(x) in Eq. (87) results in the same
eigenvalues. Therefore, the most general description of
the cylinder spaces S% x R is given by

wh(@) = /2 nly()],
TERTEN

[N

= —1/ g eijk Eabe 62'11)& 8jwb w* 8kw4, (90)
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where y®(z) are three arbitrary functions of the coor-
dinates z'. We note that g;; is given by the product of
two matrices

M =iy /lyl,

and hence, ,/g is itself a determinant (of the matrix M).

Our aim is to calculate the Wilson loop for any con-
tour in any metric (89) corresponding to the cylinder
spaces. We use the diffeomorphism invariance of the
Wilson loop. If we compute it for a general contour
in some metric representing cylinder spaces, the most
general case is recovered by diffeomorphisms of both
the contour and the metric. We start with the specific
metric given by Eqs. (87) and (88).

Given metric tensor (88), we construct a vielbein
corresponding to it. This is, of course, not unique but
any choice of the vielbein suits us. We choose

21
e?zwﬁ =0, eje = gij. (91)

Given the vielbein, we construct the spin connection
(or the Yang-Mills field) from its definition (32) and
obtain

A = —%eabcwbc =i T, (92)

which happens to be the field of the Wu—Yang
monopole; the scalar curvature R has dropped from the
spin connection. According to the theorem in Sec. 4,
the gravitational Wilson loop is equal to the Yang—Mills
Wilson loop, provided the Yang-Mills potential A} is
the spin connection of the metric under consideration.
Therefore, all we have to do is to compute the Wilson
loop for a general contour in the field of the Wu-Yang
monopole.

This task is easily solvable if we use another in-
variance, the gauge invariance of the Wilson loop. It
is well known that the Wu—Yang monopole in hedge-
hog gauge (92) can be transformed to the string gauge
where the potential has only one nonzero component
along the third color axis (plus a Dirac string). In this
gauge, the Yang—Mills potential is basically Abelian,
and the Wilson loop in any representation .J is there-
fore given by

J

Z p(im®),

= (93)

@z%daz"Afz/dSix—B.
r

In the last equation, we used the normal Stokes theo-
rem for the circulation and also used the fact that in

w¢ =wyM

2J+

the string gauge, the magnetic field of the monopole
is the Coulomb field of a point charge; dS; is the el-
ement of the spanning surface for the contour and is
orthogonal to the surface.

Equation (93) is the gravitational Wilson loop
for arbitrary contours but in a specific metric given
by Eq. (88). To generalize it to the general metric
given by (89), it only remains to perform the general
coordinate transformation of Eq. (93). To this end, it
is convenient to use, instead of dS;, its dual dS% such
that dS; = €;;x dS7*. We recall that under a general
coordinate transformation ' — y'(x), the contravari-
ant vector transforms as

Vi VRO,

and the antisymmetric contravariant tensor transforms
as

dSY — dS™ 9,,y¢ Ony’ .

The flux in Eq. (93) is therefore given by

2 y 2k
:/dSir_s:/dS]qf’“T_s_)

. i J ok
_>/dsmn €ijk 3m:Z|33niy Y ) (94)

This equation takes a more symmetric form in terms of
external coordinates (89),

3
<I>—< ) 1/dSkeabcej o;w” aww
5 (95)

Equations (93) and (95) are our final result for the grav-
itational Wilson loop in the cylinder S? x R space of
the constant curvature R. The Wilson loop implicitly
depends on the metric through Eq. (89). We now make
several comments.

1) The parallel transporter must depend on the met-
ric along the contour but not on the spanning surface
for the contour, because this surface can be drawn ar-
bitrarily. This is indeed so despite the surface form of
the result, because

O (eabc €7k 9w ajwb wc) =0. (96)

Therefore, the flux in Eq. (95) can be presented as a
circulation of a certain vector.

2) The flux in Eq. (95) has the form of a well-
known expression for the winding number of a mapping
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S? + S2. For a closed or infinite surface, the winding
number is normalized as

1 /2\%2
— = X
8w <R>
X /dSkeabceijk&waajwb w’ = @Q = integer. (97)

3) For small contours, Eqgs. (93) and (95) reproduce
the result of the previous section. To check this, we
rewrite the general small-loop expansion (69) for the
specific metric in Eq. (87). We find

g = §r26ij. (98)

u v
5 ¢ Cklul €Epgul

Rklpq - R 16

Inserting this in Eq. (69) and then performing a general

coordinate transformation 2 — y(2), we obtain, after
some simple algebra,

W =1-

J(T+1) [ €pquy OiyPdjyI ASY ?

which exactly coincides with the expansion of Eq. (93)
in the small loop area AS up to the second order.

8. THE NON-ABELIAN STOKES THEOREM IN
d = 3 GRAVITY

In Sec. 4, we have shown that the gravitational Wil-
son loop viewed as a functional of the metric is equal
to the Yang-Mills Wilson loop viewed as a functional
of the Yang—Mills potential, provided this potential is
set equal to the spin connection corresponding to the
metric in question.

We now present the Yang—Mills Wilson loop in
terms of our non-Abelian Stokes formula, see Eq. (14):

W& metric] = W) M [spin connection] =
i J
= /Dné(n2 - l)exp% X

X /dQSij [—Fi’;na + €%bep (Dm)b (D;jn)" (100)
We next replace the surface element by its dual
dS% = €'P dS,, with the aim to rewrite this represen-
tation for the Wilson loop in terms of the metric of the
curved three-dimensional space. To this end, we first
decompose the integration unit vector n in the dreibein:

a i

n =m'ef, n'n"=m'mefe] =

=m'm/g;; = 1. (101)

The new 3-vector m is a covariant unit vector. Because
the background metric g;; is fixed, we only change the
integration variables from n to m as

/Dné(nQ—l)...z
:/Dm\/gé(mimjgij—l)...

We next use relation (42) of the field strength F};
computed from the spin connection

A7 = (1))l

(102)

to the Riemann tensor. The first term in the exponent
of Eq. (100) becomes

first term =
= —dSpeP <—%) e m" el Ry el e (103)
Using
eabeebloch — % thmea = /g = det e, (104)
equation (103) can be continued as
first term = dSpeiij Rijk[eklmgmnm”. (105)

2\/5
The combination of the covariant Riemann tensor and
two antisymmetric epsilon symbols has been encoun-
tered in Sec. 5: in three dimensions, it gives the Ein-
stein tensor, see Eq. (73). We thus obtain

first term = dS, /g (R6? — 2RP) m™, (106)

where RP is the Ricci tensor and R = R¥ is the scalar
curvature.

We now turn to the second term in the exponent
in Eq. (100) and again use decomposition (101). We
exploit fundamental relation (33) that can be presented
as

bb' b b kol
D3 n” = ey (Vj), m', (107)
where
bb' _ o sbb' | _beb!
D3> = 0;0" + e Aj
is the Yang—Mills covariant derivative and
k k k
(Vi) =00 + T}
is the gravitational covariant derivative. The second
term is therefore given by
second term = dS, e efelel, P m* (V) x
xm! (V;)hm" =

= dSp /9 €77 €3 m*(Vim)' (V; m)™.  (108)
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Gathering Eqs. (102), (106), and (108) together, we
finally obtain a non-Abelian Stokes theorem for the
gravitational Wilson loop or the trace of the spin-.J

parallel transporter along a closed contour:

w¢ = /Dm\/g S(mim? gi; — 1) x

X exp i%/dsk V9 [(Ro; — 2RY) mP+

+ €% ep0r mP (Vi) (V; m)"] . (109)

Several comments are in order here.

1) The holonomy, which was defined as a path-
ordered exponential, is here expressed by a simple ex-
ponential of an integral over the spanning surface for
the closed contour. That is why we call our formula a
«Stokes theorem». The price to pay is the functional
integration over the covariantly unit vector m defined
on the surface.

2) Equation (109) is invariant under diffeomor-
phisms in the sense that the holonomy remains invari-
ant under a general coordinate transformation

zt = 'z

and the appropriate change of the surface.

3) The parallel transporter depends only on the con-
tour but must not depend on the spanning surface. The
surface integral in Eq. (109) has the form

/dSk Vavr, (110)

and the condition that it does not depend on the form
of the surface is

o (Vav*) =0, (111)

or equivalently,

(Ve)Fvi=o, (112)

because

The verification of Eq. (112) is rather lengthy and we
relegate it to the Appendix.

4) With condition (112) or equivalently (111) satis-
fied, the surface integral can be written as

/dSk VoVt = /dSkeijkajBk = —fdxi B; (113)

proving that it depends only on the contour, as it
should be. However, the vector field B; cannot be

uniquely determined from the metric tensor and the
covariantly unit vector m.

5) The following comment is closely related to the
previous one. Parallel transporters of integer spins
1,2,... are defined via Christoffel’s I' symbols and
hence by the metric tensor, while parallel transporters
of half-integer spins 1/2, 3/2,... are not: they are
defined by the spin connection that is not uniquely
constructed from the metric. Nevertheless, it should
be expected that the holonomy for half-integer spins,
being a diffeomorphism-invariant quantity, can be ex-
pressed through the metric only. Equation (109) solves
this non-trivial problem: only the metric and its deriva-
tives are involved. The solution is possible only with
the holonomy represented in the form of a surface in-
tegral, as in Eq. (109). One cannot solve this problem
in a contour form because it is not uniquely expressible
through the metric. If that were possible, one would
be able to write a parallel transporter along an open
contour in terms of the metric as well, but that is not
so for half-integer spins.

6) Equation (109) solves another long-standing
problem in the Yang—Mills theory. It was recently
shown [12-14] that the SU(2) Yang-Mills partition
function in three dimensions can be exactly rewritten
in terms of gauge-invariant quantities given by the six
components of the dual space metric tensor. The usual
argument why this rewriting is not very useful is that
external sources couple to the Yang—Mills potential and
not to gauge-invariant quantities. However, we now
have demonstrated that a typical source—the Yang-
Mills Wilson loop—can be expressed not only through
the potential but also through the metric tensor, which
is gauge-invariant. Thus, not only the partition func-
tion, but also the Wilson loops in the d = 3 Yang—Mills
theory can be expressed through local gauge-invariant
quantities.

9. THE NON-ABELIAN STOKES THEOREM IN
d = 4 GRAVITY

The aim of this section is to express the holonomy
W((J;th) in the representation (.J;, Jo) in a curved d = 4
space through the metric tensor and its derivatives.
Equation (68) presents the holonomy in terms of the
(anti)self-dual parts of the spin connection. The lat-
ter is not uniquely determined by the metric, which is
not satisfactory. In addition, we would like to elimi-
nate the path ordering in the Yang-Mills Wilson loops
W™ entering Eq. (68). Both goals are achieved via
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the non-Abelian Stokes theorem similar to that of the
previous section, which we now derive.

We start by applying representation (14) to the
Yang-Mills Wilson loop W™,

W7 = /Dné(nQ—l)exp <i%/d$‘“’ [—Fﬁ,,(ﬂ)n“-l-
+ €ene (D, (m)n)" (D,,(ﬁ)n)c] > . (114)

where

Dy (m)
is the covariant derivative with respect to the self-dual
part of the spin connection and F},(7) is the appro-
priate field strength (53); it is related to the Riemann
tensor via Eq. (55). We next introduce the antisym-
metric tensor

— au 5ab + 6acb ¢

(115)

The first term in Eq. (114) can be written as
—Ryxuwym™. The tensor m** has actually only two
independent components. To see this, we introduce
two covariant projector operators

1 wAB aCD A oCeD —
PIj—)\uV = 477“ a €, e, =
1
= Z(gnug/\u — 9rkvrp T+ \/gen)\uu)a (116)
1
P[;)\uy — 4ﬁaABnaC’DeAe/\ eg’ E —
= Z(gnug/\u — 9kv9rp — \/gen)\uu)a (117)
satisfying the projector conditions
PE,, 9" 9" P:EV po = P o (118)
pPE Ay gttt g”” P;FV po =0, (119)
P35, 9™ =3. (120)
P,fAW are (covariantly) orthogonal projectors, each

having three zero and three nonzero eigenvalues. They
project a general antisymmetric tensor into (covari-
antly) self-dual and anti-self-dual parts, respectively.

It is easy to verify that the tensor m"* introduced
in Eq. (115) is self-dual,
_ KA _
Pn)\w/ =0, (121)
and satisfies the normalization condition
mmey = B, mmt =1, (122)
which follows from the normalization n?> = 1. There-

fore, m** indeed has only two independent degrees of

freedom in a given metric. We change the integration
variables in Eq. (114) from n to m"*,

/Dnén—l /Dm’“‘ g X

X 0(P, Y §(m A mgy — 1) ...

NAuu

(123)

We now compute the covariant derivative of m**

1
A A A A AB
m" = Oum”* + Fﬁ,,m" + Tuum’“’ = 577“
x [0un® ereBA + n® (9 e + FZ,,eA”)eBA +
+n“eA”(8ueB’\ + Fz,,eB")] =

1
aAB [auna eAneB)\_

= 217
_ naw;?C’eC’neB)\ _ naeAnwECeC’/\] , (124)

where in the last equation, we have used fundamental
relation (33). We now insert the decomposition of the
spin connection w;‘B into the self-dual and anti-self-
dual parts, Eq. (51). Using the relations for the 7,

symbols,

naABnbAC — 6ab5BC + eabcncBC’

125

ﬁaABﬁbAC’ — 6ab530 + EabCﬁCBC, ( )
naABﬁbAC — naAOﬁbAB-, (126)

AB

it is easy to see that only the self-dual piece of wy
survives in Eq. (124), giving

mn};u — %naABeAneBA (au 5ab + 6acbﬂ,;) nb —
1 a
= EnaABeAHeB* (D, (m)n)*. (127)

In other words, the gravitational covariant derivative
of m"* is expressed through the Yang-Mills covari-
ant derivative of the n field entering the second term
in Eq. (114).

Using consecutively Eqs. (125) and (127), we finally
rewrite Eq. (114) in terms of the metric:

Wy = /Dm"’\\/gd(P;\W mH) S (m P myey — 1) x
X exp (z— /dS“” Ryxuw m"—

L A ”jVD . (128)

A
= 5 V9 Erpor v M m m
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Similarly, W7 is obtained by integrating over the anti-
self-dual covariantly unit tensors:

Wh, = [ D 58PS, m) S ~ 1) x
. Ja e A
X exp Z? ds - RHAW/ m* T+

1 )
+ H o ] )

As derived in Sec. 4.2, the gravitational holonomy in
the representation (Ji,Js) is the product of the two
components,

W((jhh) =Wjws. (130)

Equations (128), (129), and (130) constitute the «non-
Abelian Stokes theorem» for the holonomy in a curved
d = 4 space. It expresses the holonomy via surface
integrals over spanning surfaces for the contour, and
presents the holonomy in terms of the metric tensor and
its derivatives only, without refering to the spin connec-
tion, even for half-integer representations (Ji, J3).

10. CONCLUSIONS

The main results of this paper are the non-Abelian
Stokes theorems for holonomies: the Yang—Mills Wil-
son loop (Eq. (14)) and the traces of parallel trans-
porters in curved d = 3 (Eq. (109)) and d = 4
(Egs. (128) and (129)) spaces. In all these cases, the
path-ordered exponentials of the connections are re-
placed by ordinary exponentials of surface integrals,
which, however, do not actually depend on the way
the surface is spanned on the contour. The price to
pay for the removal of path ordering is high: we ob-
tain functional integrals instead. In the simplest case
of the SU(2) Yang—Mills theory, this is an integral over
a unit 3-vector n «living» on the surface; for the d = 3
Riemannian manifold, this is an integral over a covari-
antly unit 3-vector m, and for d = 4, one integrates
over (anti)self-dual covariantly unit tensors.

In spite of the occurrence of functional integration,
we believe that our formulas are aesthetically appeal-
ing. Compared to path-ordered exponentials, they are
better suited to averaging over quantum ensembles of
Yang-Mills fields or over various metrics. We hope that
elegant formulas can also be used in more general set-
tings.

In addition to the general non-Abelian Stokes for-
mulas, we have presented holonomy as a surface inte-
gral for a specific background, namely for a constant-
curvature d = 3 space with the cylinder topology

S? x R. The «gravitational Wilson loop» is given by a
formula for the character whose argument is the wind-
ing number of external coordinates, see Sec. 8.

Parallel transporters of integer spins have a dual
description: such a transporter can be defined either
as a path-ordered exponential of Christoffel symbols or
as a path-ordered exponential of the spin connection
in the appropriate representation. In Sec. 4, we have
shown that these representations are equivalent. Even
though the spin connection is not uniquely determined
by the metric tensor, this equivalence implies that the
holonomy written in terms of the spin connection can
in fact be expressed through the metric only.

For half-integer spins, the situation is far less trivial
because the only way to define the holonomy is via the
spin connection, and it is not at all clear beforehand
that the holonomy can be uniquely written through
the metric tensor and its derivatives. The non-Abelian
Stokes theorem proved in this paper demonstrates that
this rewriting can be achieved, but only with the holon-
omy presented in the surface form. Although the sur-
face integral does not depend on the way one draws
the surface and can actually be written as an integral
along the contour, the contour form is not uniquely de-
fined by the surface one, which reflects the ambiguity
in determining the spin connection from the metric.

This finding has an interesting implication for the
Yang—Mills theory in three dimensions, which can be
identically reformulated as a quantum gravity theory
with the partition function written as a functional
integral over the metric tensor of the dual space
[12-14]. This metric tensor is local and gauge invariant
(in the Yang-Mills sense). However, one might wish
to calculate the average of the Wilson loop, which is
originally defined by the Yang—Mills potential, but
not by the metric tensor. In the «quantum gravity»
formulation, the Yang—Mills Wilson loop becomes a
parallel transporter in the gravitational sense. It is
therefore very important that the Yang—Mills Wilson
loop in any representation can be expressed through
the gauge-invariant metric tensor. Thus, not only the
partition function but also the Wilson loop can be pre-
sented in terms of local and gauge-invariant quantities.
This subject is described in more detail elsewhere [15].

One of us (V. P.) thanks NORDITA for kind hospi-
tality and the Russian Foundation for Basic Research
for partial support (grant Ne97-27-15L).
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APPENDIX

Proof that Eq. (109) does not depend on the
surface

The path-integral representation for the «gravita-
tional Wilson loop» in Eq. (109) must not depend on
the choice of the spanning surface for a given contour,
but only on the contour itself. To prove that this is so,
we verify Eq. (112),

(Vi) Vi =0, (131)
where
VE = (RE —2RE) mP +
+ e"j’“epq,mp(vim)q(vjm)r, (132)

m'm’g;; = 1.

To simplify the notation, we denote covariant
derivatives by «;» (see [20]). Explicitly, the covari-
ant derivatives of a scalar, a vector, and a tensor are
given by

S;k = 8k Sa

;izakvi+F2lvl7 ‘/i;k:8k‘/i_rék‘/la
T =0 TV + T}, TY + T4, T",
Tz’j;k = 8k Tl'j - Fék Tl]' — Fé’k Til-, etc.

(133)

The ordinary derivative of a convolution of two tensors
can be written as the sum of covariant derivatives,

o0 (104 ) = 1 1% 4
(134)

We apply the covariant derivative to the first term
of the vector V¥,

Vi [(RSE —2R;) m”] =

= (RS, — 2Ry) , m” + (RS, — 2Ry) mf. (135)

The covariant derivative of the Einstein tensor is known
to be zero [20, Eq. (92.10)]. Therefore, only the second
term survives in Eq. (135).

We next apply the covariant derivative to the sec-
ond term of V¥ as

Vi, [€7% €pgr mP(V;m)*(V;m)"] =
= e epgr (Vi m)P(Vim)?(V;m)" +
+ 269 ep mP (V;m)? (Vi V; m)". (136)

The first term here vanishes, for the following reasons.
Differentiating the condition that m? is a covariantly
unit vector, we obtain

0= 6k (mimjgij) = 29,']‘ (Vk m)l mj =
=2(Vem) m;, (137)
because the covariant derivative of the metric tensor is
zero. This implies that the three vectors (Vi 2.3 m)" are
not linearly independent, because three linearly inde-
pendent vectors cannot be orthogonal to a given vector
(in this case, m;) in three dimensions. The first term
in Eq. (136) is the antisymmetrized product of these
three linearly dependent vectors and is therefore zero.
The second term in Eq. (136) contains the commu-
tator of covariant derivatives, equal to

> 1 ..
el]k (Vij m)r = iemk [Vkvj‘]: m’ =

1 ..
ijk rt s
= €77 9" Ryspjm

5 (138)

where Ry  is the Riemann tensor. Therefore, the sec-
ond (and the only nonzero) term in Eq. (136) can be
written as

€% €pr " Rigry mPm® (Vym)?.

(139)

We next use Eq. (70) to express the Riemann tensor
through the Ricci and metric tensors and write the
product of two epsilon symbols as a determinant made
of Kronecker deltas. Performing all convolutions, we
obtain that Eq. (139) can be identically rewritten as

(945 (RO, — 2R}) — gps (RO — 2Ry)] x
x mPm® (V;m)?. (140)

Here, the first term is zero because of Eq. (137) and in
the second term, we use

gpsmPm?® = 1.
This gives
— (R&}, —2R!) (Vim)?, (141)

which cancels exactly with Eq.
(Vi)y VE=0, q.e.d.

(135).  Thus,
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