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THE INSTABILITY POINT Hs OF THE MEISSNER STATEFOR LARGE-� SUPERCONDUCTORSYu. N. Ov
hinnikov *Centre de Re
her
hes sur les Tres Basses Temperatures, asso
ie a l'UIF, CNRS BP166,38042 Grenoble-Cedex 9, Fran
eLandau Institute for Theoreti
al Physi
s Russian A
ademy of S
ien
es117940, Mos
ow, RussiaSubmitted 8 January 2001The 
riti
al �eld Hs 
orresponding to the emergen
e of vorti
es in a super
ondu
tor without a threshold isfound near the transition temperature and in limit as T ! 0 for an arbitrary value of the depairing fa
tor �. Insuper
ondu
tors of the se
ond kind, this �eld value 
oin
ides with the absolute instability point of the Meissnerstate. In large-� super
ondu
tors, the order parameter tends to zero on the surfa
e of the super
ondu
tor if theexternal magneti
 �eld rea
hes the value Hs. We obtain that Hs = H
m (where H
m is the thermodynami

riti
al �eld) for an arbitrary value of the depairing fa
tor � in the temperature region near T
 and at T = 0.PACS: 74.40.+k 1. INTRODUCTIONIn super
ondu
tors with a large value of the Ginz-burg�Landau parameter �, the 
riti
al magneti
 �eldsH
1; H
m, and H
2 are widely separated by their �-values [1; 2℄. Here, H
1 is the magneti
 �eld value forthe transition to the Shubnikov phase (vortex state),H
m is the thermodynami
 
riti
al �eld, and H
2 is thebifur
ation point 
orresponding to the formation of avortex state in the volume of the super
ondu
tor. If� = 1, all the three magneti
 �eld values 
oin
ide. Anisolated vortex is attra
ted to the boundary of a su-per
ondu
tor if the external magneti
 �eld is weakerthan a 
ertan 
riti
al value Hs, the �eld of a barrier-less penetration of vorti
es into the super
ondu
tor [3℄.Near the transition temperature T
, the problem of en-tering a vortex into the super
ondu
tor was 
onsideredby de Gennes [3℄. He estimated that Hs is of the sameorder as the thermodynami
 
riti
al �eld H
m. Theexa
t value has not been found, be
ause this requires
onsidering small distan
es of the order of the 
orre-lation length. The value of the 
riti
al �eld Hs 
anbe found as the linear instability point of the Meissnerstate. This means that there exists a stage of the trans-*E-mail: ov
hin�labs.poly
nrs�gre.fr

formation of the linear instability to the formation of asingle vortex.From this standpoint, the problem of 
al
ulatingthe 
riti
al �eld Hs is 
losely related to the problem ofdetermining the superheating �eld Hsh. The last prob-lem was 
onsidered by Ginzburg [4℄. In what follows,we show that both problems (the 
al
ulation of the 
rit-i
al �eld Hs in the � � 1 limit and the 
al
ulation ofthe 
riti
al �eld Hsh in the �� 1 limit) 
an be solvedusing a single method near the transition temperatureT
, where the Ginzburg�Landau equations are appli
a-ble. The linear instability problem is simpler than the
al
ulation of the vortex energy and some results forthe Hs value 
an be found outside the framework ofthe Ginzburg�Landau free energy. We also �nd Hs inthe zero-temperature limit. We show that near T
, wehave Hs = H
m and Hsh = H
m=p�, with the � valuerelated to the original de�nition of �GL as �GL = �=p2.2. THE CRITICAL FIELD Hs NEAR THETRANSITION TEMPERATUREThe Ginzburg�Landau equations 
an be used nearthe transition temperature. We write them as987



Yu. N. Ov
hinnikov ÆÝÒÔ, òîì 119, âûï. 5, 2001(����D8T � ��r�2ieA�2+7�(3)j�j28�2T 2 )� = 0;j = �ie��D4T (��������+��);rot rot A = 4�j; (1)where � = 1� T=T
; �� = ��r � 2ieA;D is the e�e
tive di�usion 
oe�
ient, A is the ve
-tor potential, �(x) is the Riemann zeta fun
tion, and� = mp=2�2 is the density of states on the Fermi sur-fa
e. The value of D was found by Gor'kov [5℄ and isequal toD = vltr3 ���1 + 8T�tr� � (1=2)�  �12 + 14�T�tr��� ; (2)where v is the Fermi velo
ity, �tr is the transport 
olli-sion time, and  (x) is the Euler psi-fun
tion.We use the gauge whereA = (A(y); 0; 0); H = (0; 0;��A=�y): (3)In the extreme 
ase of large �, we 
an use the lo
alrelation between A and �,�2 = 8�2T 27�(3) �� � �De22T A2� : (4)As the result, we obtain only one equation for the ve
-tor potential A instead of system (1),� �2 ~A�Y 2 + 1�2 ~A �1� 12 ~A2� = 0;~H = ��� ~A�Y : (5)In Eq. (5), we use the dimensionless variablesy = �Y; A = H
m�� ~A(Y ); � =r �D16T� ;�2L = 7�(3)32�4e2�DT� ; � = �L� =r 7�(3)2�5e2�D2 ;H2
m8� = 4�2T 2��27�(3) ; H = H
m ~H: (6)
The de�nition of � in Eq. (6) di�ers from the originalde�nition of �GL by the fa
tor p2:�GL = �=p2:

With this de�nition of �, the boundary between super-
ondu
tors of the �rst and the se
ond kind is at � = 1.For � = 1, all the 
riti
al �elds H
1; H
m, and H
2 
o-in
ide. The de�nitions of � and � in Eq. (6) 
an be
ontinued in a natural way to the entire temperatureregion [6; 7℄.Equation (5) 
an be redu
ed to the �rst-order equa-tion � ~A�Y = � 1� ~Ar1� 14 ~A2: (7)The solution of (7) is~A = 4C exp(�Y=�)1 + C2 exp(�2Y=�) ;� ~A�Y �����Y=0= �4C� 1� C2(1 + C2)2 ; (8)where C is an arbitrary positive 
onstant. The fun
tion~A1 = ��C ~A = 4 exp(�Y=�)[1�C2 exp(�2Y=�)℄[1+C2 exp(�2Y=�)℄2 (9)is a solution of system (1) linearized near ~A with �given by Eqs. (4) and (8). The fun
tion ~A is the eigen-fun
tion of this system of equations with zero eigen-value if the boundary 
ondition� ~A1�Y �����Y=0= 0 (10)is satis�ed. Using Eqs. (8) and (10), we obtain the
riti
al value of the 
oe�
ient C,C2 = 3� 2p2: (11)Therefore, the Meissner state be
omes absolutely un-stable at the magneti
 �eld valueHs = H
m: (12)This linear instability leads to the formation of vor-ti
es. Hen
e, there exists some stage of the transfor-mation from the linear instability to the formation ofvorti
es. This stage 
annot be studied in the frame-work of the Ginzburg�Landau equations. The energyÆE of the vortex�antivortex pair at distan
es 2a su
hthat 2a � � de
reases very slowly with a, only as1= ln(�=2a) [8℄. This energy was found as the minimumof the Ginzburg�Landau free energy for �xed positionsof zeros of � and �xed vorti
ities (�1) [8℄. From thispoint of view, a single vortex enters the super
ondu
-tor without a threshold only if the order parameter �988



ÆÝÒÔ, òîì 119, âûï. 5, 2001 The instability point Hs of the Meissner state : : :is equal to zero at the boundary. Using Eqs. (4), (8),and (11), it is easy to prove that the 
ondition�jy=0 = 0is satis�ed in the 
ase under 
onsideration. Our 
on-je
ture is that this 
ondition is the boundary 
onditionfor the problem of 
al
ulating the 
riti
al �eld Hs for�� 1. It is satis�ed in all the 
ases 
onsidered in whatfollows. We note that the 
riti
al �eld Hs is separatedfrom the 
riti
al �elds H
1 and H
2 by the large param-eter �. The 
riti
al �eld H
2 was introdu
ed in [1℄ asH
2 = 4�eD (T
 � T ): (13)Therefore, H
2Hs = H
2H
m = �: (14)The 
riti
al �eld H
1 was found in [2℄ asH
1H
m = ln�+ 0:146� : (15)3. THE SUPERHEATING FIELD Hsh FOR�� 1The superheating �eld Hsh was found byGinzburg [4℄. In the range � � 1, this problem
an be solved analyti
ally. In the super
ondu
tor witha small value of �, the magneti
 �eld is s
reened nearthe surfa
e at the distan
es mu
h smaller than the
orrelation length �. In the leading approximation, wethen obtainA(y) = A0 exp �r4�2e2�DT �2(0) y! ; (16)where �(0) is the order parameter on the surfa
e ofthe super
ondu
tor. With the help of Eq. (16), we re-du
e the system of equations (1) to one equation forthe order parameter � and to the e�e
tive boundary
ondition for this equation,��1� 2 �2� ~Y 2 + ~�2� ~� = 0;~�2 � ~��Y �����Y=0= ~H2�8 ; (17)where � = �8�2T 2�7�(3) �1=2 ~�

and the quantities �; �; Y , and ~H are de�ned in Eqs.(6). Equation (17) has the solution~� = C expY � 11 + C expY ; � ~��Y �����Y=0= 2C(1 + C)2 ; (18)where C > 1 is an arbitrary parameter related to theexternal magneti
 �eld by Eq. (17). The fun
tion~�1 = � ~��C = 2 expY(1 + C expY )2 (19)is the solution of system (1) linearized near the fun
tion~� given by Eq. (18).This fun
tion be
omes the eigenfun
tion of this sys-tem of equations with zero eigenvalue if the boundary
ondition  � ~�1�Y + 2 ~�1~� � ~��Y !�����Y=0= 0 (20)is satis�ed. With the help of Eqs. (18), (19), and (20),we obtain the 
riti
al value of the 
oe�
ient C asC = 3 + 2p2: (21)The superheating �eld Hsh is therefore related to the�eld H
m by the simple equationHshH
m = 1p� = 2�1=4p�GL : (22)4. CRITICAL FIELD Hs: THE GENERALANALYSISThe general strategy of 
al
ulating Hs is as follows.First, the expression for the 
urrent density j must befound as a fun
tion of the ve
tor potential A and theorder parameter �, j = Q(A;�)A: (23)Equation (23) is formal and the relation 
an be non-lo
al. In Eq. (23), the order parameter � must be
onsidered as a fun
tional of the ve
tor potential A.Next, we solve the Maxwell equation for A,�2A�y2 + 4�Q(A;�)A = 0;� �A�y = H; H(0) = Hext; (24)where Hext is the external magneti
 �eld. Solutionsof Eq. (24) form a one-parameter family. The value989
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hinnikov ÆÝÒÔ, òîì 119, âûï. 5, 2001of A(y) at the point y = 0 
an be 
onsidered as thisparameter, and hen
e, the fun
tionA1 = �A�A(0) (25)is a solution of linearized equation (24). It is an eigen-fun
tion of this equation if the boundary 
ondition�A1�y �����y=0= �2A�A(0)�y �����y=0= 0 (26)is satis�ed. Equation (26) determines the 
riti
al �eldHs (if � > 1). We apply this strategy in the extreme
ase where �� 1 and in the 
ase where the super
on-du
tor 
an be 
onsidered as a �dirty� material. Thesystem of equations for the Green's fun
tions � and �
an then be taken in the form [9℄��� �! + D2 ���2�� � � �2��r2 � = ���;� = 2�T j�jX!>0�(!); �2 + j�j2 = 1;j = �ie�D2�TX!>0(����� � ��+��): (27)For � � 1, the relation of the ve
tor potential tothe order parameter � is lo
al in the leading approxi-mation and � and � 
an be taken as real fun
tions. Inthis 
ase, the system of equations (27) 
an be essen-tially simpli�ed to�tg'� ! = sin'(� + 2e2DA2);� = 2�T j�jX!>0 
os';j = �e2�D8�T X!>0A 
os2 '; ��2A�y2 = 4�j;� = sin'; � = 
os'; (28)where � = ��1s , with �s being the ele
tron spin �ips
attering time.In what follows, we restri
t ourselves to the zero-temperature limit. There are two regions� > � + 2e2DA;� < � + 2e2DA: (29)In the �rst region, we haveA =r 2�e2D �� ln��T 0

� �� ��4 �1=2 ;��y �� ln��T 0

� �� ��4 �1=2 = ��(�); (30)

where 
 is the Euler 
onstant, ln 
 = 0:577216 : : : , andT 0
 is the transition temperature for the super
ondu
torwithout paramagneti
 impurities,�(�) = (4�2e2�D)1=2 ��(�12  �1 � ��2 !+�2 ln �T 0

� !� 12!�� 83� ���� ln��T 0

� �� ��4 �++ 2� �� ln��T 0

� �� ��� �2#)1=2; (31)where �1 is the value of the order parameter asy !1.We de�ne the quantity Y as the point where�(Y ) = � + 2e2DA2(Y ): (32)At this point, we have�(Y ) = �T 0

 exp���4�: (33)In the region y > Y , the order parameter � is thesolution of the equation�Z�(Y ) d�� ln �T 0

� � ��4 �1=2�(�) = �(y � Y ): (34)We now 
onsider the region y < Y . In this region,the system of equations (30) for the order parameter �and the ve
tor potential A is more 
ompli
ated,� ln �T 0

���+2e2DA2�+���+2e2DA2�2��2�1=2�== �+ 2e2DA22 (ar
sin ��+ 2e2DA2!�� ��+ 2e2DA2 1� ��+ 2e2DA2!2!1=2);��2A�y2 +16�e2�DA(�ar
sin ��+2e2DA2!��(�+2e2DA2)"23�  1� ��+2e2DA2!2!1=2�� 13 1� ��+ 2e2DA2!2!3=2!#) = 0: (35)990



ÆÝÒÔ, òîì 119, âûï. 5, 2001 The instability point Hs of the Meissner state : : :For y > Y , we have obtained the �rst integral of theequation for A (Eq. (34)). We now show how to obtainthe �rst integral in the region y < Y . To simplify the
al
ulations, we set � = 0 in what follows. We thenobtain H2
m8� = ��212 ; �1 = �T 0

 ;��2L = 8�2e2�D�1: (36)Equations (36) allow us to pass to the dimensionlessvariables� = �1 ~�; y = �L~y; Y = �L ~Y ;H = H
m ~H; A = H
m�L ~A: (37)Equations (35) and (37) then implyln �~A2 + ( ~A4 � �2 ~�2)1=2! = ~A22� ~� ��8<:ar
sin � ~�~A2 !� � ~�~A2  1� � ~�~A2 !2!1=29=; ;� �2 ~A�~y2 + 2� ~A ~�(ar
sin � ~�~A2 !�� ~A2� ~�"23 �  1� � ~�~A2 !2!1=2 �� 13 1� � ~�~A2 !2!3=2!#) = 0:
(38)

The problem of 
al
ulating the 
riti
al �eld Hs isthus redu
ed to solving system (38) on the intervalf0; ~Y g with the boundary 
onditions~�( ~Y ) = exp(��=4); ~A( ~Y ) = p� exp(��=8);� ~A�~y �����~y=~Y= ��1 + ��2 � 53� exp���2��1=2 : (39)We must �nd the point ~Y
r su
h that�2 ~A� ~Y �~y �����~y=0; ~Y=~Y
r= 0: (40)The value of the derivative � ~A=�~y at the point ~y = 0gives the �eld Hs viaHsH
m = �� ~A�~y �����~y=0; ~Y=~Y
r : (41)

To solve this problem, we setZ = � ~�~A2 : (42)The system of equations (38) then implies~A2 = �1 +p1� Z2 �� exp �� 12Z �ar
sinZ � Zp1� Z2�� ;� ~A�~y == �"1 + �2 � 53! exp ��2!+�1(Z)#1=2; (43)
where �1(Z) = 2 1ZZ dZR(Z); (44)R(Z) = Z(1 +p1� Z2)2 �� exp"� 1Z�ar
sinZ � Zp1� Z2�#�� " Z1 +p1� Z2 � 12Z2 �ar
sinZ � Zp1� Z2 �#��(ar
sinZ� 1Z "23���1�Z2�1=2�13�1�Z2�3=2�#):The se
ond equation in (43) is in fa
t an equation for Z,�Z�~y = 2p� (1 +p1� Z2)1=2 �� exp � 14Z (ar
sinZ � Zp1� Z2)��� "1 + �2 � 53! exp ��2!+�1(Z)#1=2 ��( Z1+p1�Z2�� 12Z2 �ar
sinZ�Zp1�Z2 �)�1: (45)Condition (40) implies that�Z� ~Y �����~y=0= 0 or ��1�Z �����~y=0= 0: (46)991
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hinnikov ÆÝÒÔ, òîì 119, âûï. 5, 2001The fun
tion Z is a monotoni
 fun
tion of ~y, andhen
e, the �rst equation in (46) 
annot be satis�ed. Itfollows from Eq. (44) and the se
ond equation in (46)that Z = 0 (47)at the 
riti
al point, and therefore,HsH
m == (1 + �2 � 53! exp ��2!+�1(0))1=2 = 1: (48)We note that at T = 0, the order parameter behaves as�(y) / y1=2 (49)for small values of y.5. THE CRITICAL FIELD Hs IN ASUPERCONDUCTOR WITH MAGNETICIMPURITIESThe system of equations (35) 
an be solved for anarbitrary value of the spin �ip s
attering time � = ��1s .To do this, we putZ = ��+ 2e2DA2 : (50)From the �rst equation in (35), we then obtain� + 2e2DA2 = �T 0

 11 +p1� Z2 �� exp �� 12Z �ar
sinZ � Zp1� Z2 �� : (51)With the help of Eq. (51), we obtain the �rst inte-gral of the se
ond equation in (35),�A�y = ��B + ~�1(Z)�1=2; (52)where ~�1(Z) = 8�� ��T 0

 �2 bZZ dZR(Z); (53)B == 8>>>>>><>>>>>>: 8��(�1��12 ���4 �+��T 0

 �2����4�56� exp���2�+�23 ) if �1 > �;0 if �1 < �:

The upper integration limit in Eq. (53) is de�ned asb = ( 1 if �1 > �;�1� if �1 < �: (54)In Eqs. (53) and (54), the quantity �1 is the valueof the order parameter in the Meissner state at largedistan
es from the surfa
e. The value of �1 
an befound from Eqs. (30) and (35) as�1 ln� �T 0

�1� = ��4 if �1 > �;�1 ln� �T 0

(�+p�2 ��21)� == �2�ar
sin��1� ����1� s1���1� �2� if �1 < �: (55)
The quantity B was found with the help of Eqs.(30), whi
h were used to obtain the boundary 
ondi-tions for the ve
tor potential A at the point y su
hthat Z = 1. It is easy to obtain that� + 2e2DA2���Z=1= �T 0

 exp���4�;����Z=1= �T 0

 exp���4�;�A�y ���Z=1= �p8��(�1 �12 � ��4 !++ �T 0

 !2 �4 � 56! exp ��2!+ �23 )1=2: (56)
Using boundary 
ondition (26) in Eq. (52), we im-mediately obtain the 
riti
al �eld Hs asHs = �B + ~�1(0)�1=2 : (57)At the 
riti
al point Hs, the 
ondition ����y=0= 0is satis�ed for all values of �. Equation (57) 
an be
he
ked in the simplest 
ase where �� �1. We thenhaveA =  �T 0
48e2D
!1=2  �1� !2 � Z2!1=2;~�1(Z) = ��12 �T 0

 !2  �1� !4 � Z4!: (58)992



ÆÝÒÔ, òîì 119, âûï. 5, 2001 The instability point Hs of the Meissner state : : :The solution of Eq. (52) is given byA = �1�  �T 0
6e2D
!1=2 C exp(y=~�)C2 + exp(2y=~�) ; (59)where 0 < C < 1 is an arbitrary 
onstant and thepenetration depth ~� is given by~��1 = (8��e2D)1=2 �T 0

 !1=2�1� : (60)Using Eq. (59), we �nd the magneti
 �eld value at thepoint y = 0 asH(0) = C(1� C2)(1 + C2)2 �1�~�  �T 0
6e2D
!1=2: (61)The 
ondition �H(0)=�C = 0 determines the value ofthe 
riti
al �eld Hs. With the help of Eq. (61), weobtain C2 = 3� 2p2;H2s =  �14�~�!2 �T 0
6e2D
 = ��3 �41�2 : (62)This value of Hs 
orresponds to the point Z = 0 and
oin
ides with the value given by Eqs. (57) and (58).To 
omplete the 
al
ulation, we give the equation forthe thermodynami
 �eld H
m [10℄,�ÆF = � T 0
Z2
�=� dT
T
 j�j2 = H2
m8� ; (63)where � = �1 
an be found from Eq. (55) with therepla
ement T 0
 ! T
.In the extreme 
ase where � � �1, we �nd fromEqs. (55) and (63) thatdT
T
 = 112d��� �2; ÆF = � �24 �21�2 : (64)As before, we obtainHsH
m = 1; �� �1: (65)We now prove that for an arbitrary value of the depair-ing fu
tor �, we have the relationHs = H
m: (66)Using Eqs. (55), (57), and (63), we verify that in bothregions �1 > � and �1 < �, the derivatives of H2sand H2
m with respe
t to T 0
 
oin
ide,�H2s�T 0
 = �H2
m�T 0
 : (67)

This proves Eq. (66). Equation (57) allows us to takethe integral over T
 in expression (63) for the free en-ergy and to obtain the 
riti
al �eld H
m in the expli
itformH2
m4�� = �21 � ��1�2 + 2�23 if �1 > �; (68a)andH2
m4�� = "�21� ��T 0

 �2R(Z)� Z1+p1�Z2�� 12Z2 �ar
sinZ�Zp1�Z2 ���1#Z=�1=�if �1 < �; (68b)where �1 and T 0
 are related by Eq. (55).6. CONCLUSIONWe have found the general method of 
al
ulatingthe 
riti
al �eld Hs in the entire range of � values andgiven the results for Hs in the temperature region nearT
 and T = 0. For an arbitrary value of the depair-ing fa
tor �, the quantities Hs and H
m are equal inboth temperature regions. The initial de�nition of Hsis the value of the external magneti
 �eld at whi
h vor-ti
es 
an penetrate into the super
ondu
tor withouta threshold. In super
ondu
tors of the se
ond kind,the value of this �eld 
oin
ides with the 
riti
al �eldvalue of the absolute instability of the Meissner state.In a super
ondu
tor of the �rst kind, the �eld of theabsolute instability of the Meissner state is the over-heating �eld. If the order parameter � is nonzero atthe boundary of the super
ondu
tor, the energy of avortex�antivortex pair (at least in the �� 1 limit) de-
reases very slowly with the distan
e 2a between themin the range 2a� � [8℄. As the result, the order param-eter � is zero on the boundary of the super
ondu
torat the point Hs. The point Hs is an essentially singularpoint be
ause an in�nite number of states with di�er-ent numbers of vorti
es in the sample go out of thispoint (the number of states is of the order SHs=�0,where S is the area of the sample and �0 = �=e is the�ux quantum). The free energy of the Shubnikov phaseis the envelope 
urve for all these states.By the Shubnikov phase, we mean the state withthe minimum value of the free energy in a given exter-nal magneti
 �eld. The disappearan
e of the thresholdin the Meissner state at the point Hs does not meanthat vorti
es 
an freely enter the super
ondu
tor inthe Shubnikov phase as the external magneti
 �eld9 ÆÝÒÔ, âûï. 5 993
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Energy of the Subnikov phase (solid line); energy ofthe Meissner (thin line); energy of states with di�erentvalues of the vortex density (dashed lines)
hanges. In the �gure, we present the free energy as afun
tion of the magneti
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