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The critical field H; corresponding to the emergence of vortices in a superconductor without a threshold is
found near the transition temperature and in limit as T — 0 for an arbitrary value of the depairing factor I'. In
superconductors of the second kind, this field value coincides with the absolute instability point of the Meissner
state. In large-x superconductors, the order parameter tends to zero on the surface of the superconductor if the
external magnetic field reaches the value H,. We obtain that H; = H,, (where H.,, is the thermodynamic
critical field) for an arbitrary value of the depairing factor I in the temperature region near T, and at T = 0.

PACS: 74.40.+k
1. INTRODUCTION

In superconductors with a large value of the Ginz-
burg-Landau parameter k, the critical magnetic fields
H.,H.,, and H., are widely separated by their k-
values [1,2]. Here, H.; is the magnetic field value for
the transition to the Shubnikov phase (vortex state),
H,,, is the thermodynamic critical field, and H,s is the
bifurcation point corresponding to the formation of a
vortex state in the volume of the superconductor. If
k = 1, all the three magnetic field values coincide. An
isolated vortex is attracted to the boundary of a su-
perconductor if the external magnetic field is weaker
than a certan critical value H,, the field of a barrier-
less penetration of vortices into the superconductor [3].
Near the transition temperature T,, the problem of en-
tering a vortex into the superconductor was considered
by de Gennes [3]. He estimated that Hy is of the same
order as the thermodynamic critical field H.,,. The
exact value has not been found, because this requires
considering small distances of the order of the corre-
lation length. The value of the critical field Hy can
be found as the linear instability point of the Meissner
state. This means that there exists a stage of the trans-
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formation of the linear instability to the formation of a
single vortex.

From this standpoint, the problem of calculating
the critical field Hy is closely related to the problem of
determining the superheating field Hyj,. The last prob-
lem was considered by Ginzburg [4]. In what follows,
we show that both problems (the calculation of the crit-
ical field Hy in the x > 1 limit and the calculation of
the critical field Hgj, in the k < 1 limit) can be solved
using a single method near the transition temperature
T., where the Ginzburg-Landau equations are applica-
ble. The linear instability problem is simpler than the
calculation of the vortex energy and some results for
the Hg value can be found outside the framework of
the Ginzburg-Landau free energy. We also find H; in
the zero-temperature limit. We show that near 7., we
have Hy = Hep, and Hgp, = Hep /5, with the & value
related to the original definition of kG as kgr = /e/\/i

2. THE CRITICAL FIELD H; NEAR THE
TRANSITION TEMPERATURE

The Ginzburg-Landau equations can be used near
the transition temperature. We write them as
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where

T=1-T/T., 0+= % + 2ieA,

D is the effective diffusion coefficient, A is the vec-
tor potential, {(x) is the Riemann zeta function, and
v = mp/27> is the density of states on the Fermi sur-
face. The value of D was found by Gor’kov [5] and is

equal to

D= ”é“”
x {1+ 8TT” [1/)(1/2) — G + 457”)} } (2)

where v is the Fermi velocity, 73, is the transport colli-
sion time, and ¢ (z) is the Euler psi-function.
We use the gauge where

A= (A(y),0,0), H=(0,0,-04/9y). (3)

In the extreme case of large x, we can use the local
relation between A and A,
nDe?

= — A%
) { 2T }
As the result, we obtain only one equation for the vec-

tor potential A instead of system (1),
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In Eq. (5), we use the dimensionless variables

N 1]
A[1—§A}_0,

H=-k

~ mD

=€V, A= Homr€A(Y), €= 4]——,
y =¢v, KEA(Y), € 6T+
SO <G VI IO N
L™ 32n4e2uDTT ¢ 2rde2y D2’

2 272, 2
H:, Ar*T vt ’ H=m.,1.

8w 7¢(3)

The definition of k in Eq. (6) differs from the original
definition of kgz by the factor v/2:

Kar = n/\/i
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With this definition of , the boundary between super-
conductors of the first and the second kind is at k = 1.
For k = 1, all the critical fields He.1, Hem, and Hes co-
incide. The definitions of £ and k in Eq. (6) can be
continued in a natural way to the entire temperature
region [6, 7].

Equation (5) can be reduced to the first-order equa-
tion

1

A 1-
ey | 1-3

oy
The solution of (7) is

A2,

(7)

K

4C exp(—Y/k)

A= 14 C?exp(—2Y/k)’
. (8)
0d| _ a0 1-c
oY k (1+C?)?’
Y =0

where C' is an arbitrary positive constant. The function

i 3, i 4exp(—Y/k)[1-C? exp(—2Y/k)]

“ac” T [1+C? exp(—2Y/k)]?

(9)

is a solution of system (1) linearized near A with A
given by Eqs. (4) and (8). The function A is the eigen-
function of this system of equations with zero eigen-
value if the boundary condition

04,

ov| =0
Y=0

(10)

is satisfied. Using Eqs. (8) and (10), we obtain the
critical value of the coefficient C,

C? =3-2V2. (11)

Therefore, the Meissner state becomes absolutely un-
stable at the magnetic field value

Hy = Hep. (12)

This linear instability leads to the formation of vor-
tices. Hence, there exists some stage of the transfor-
mation from the linear instability to the formation of
vortices. This stage cannot be studied in the frame-
work of the Ginzburg-Landau equations. The energy
0F of the vortex—antivortex pair at distances 2a such
that 2a <« ¢ decreases very slowly with a, only as
1/1n(&/2a) [8]. This energy was found as the minimum
of the Ginzburg-Landau free energy for fixed positions
of zeros of A and fixed vorticities (£1) [8]. From this
point of view, a single vortex enters the superconduc-
tor without a threshold only if the order parameter A
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is equal to zero at the boundary. Using Eqs. (4), (8),
and (11), it is easy to prove that the condition

Aly=0=0

is satisfied in the case under consideration. Our con-
jecture is that this condition is the boundary condition
for the problem of calculating the critical field H, for
k> 1. It is satisfied in all the cases considered in what
follows. We note that the critical field Hy is separated
from the critical fields H.; and H.» by the large param-
eter k. The critical field H.o was introduced in [1] as

4
H., = T.-T). 1
»=—=(T.-T) (13)
Therefore,
H02 _ Hc2 _
T -H. K. (14)

The critical field H.; was found in [2] as

H.; _ Ink + 0.146

15
T - (15)

3. THE SUPERHEATING FIELD H,; FOR
kL1

The superheating field Hg, was found by
Ginzburg [4]. In the range x < 1, this problem
can be solved analytically. In the superconductor with
a small value of k, the magnetic field is screened near
the surface at the distances much smaller than the
correlation length £. In the leading approximation, we
then obtain

4n2e2yD

N y> . )

A(y) = Agexp (—

where A(0) is the order parameter on the surface of
the superconductor. With the help of Eq. (16), we re-
duce the system of equations (1) to one equation for
the order parameter A and to the effective boundary
condition for this equation,

2% )\«
(-1—2f+A2>A=0,
Y2

) -, (17)
<5 OA Hk
A= =
oY 8
Y=0
where "
22
A= &meT=T A
7¢(3)

and the quantities ¢, k.Y, and H are defined in Eqgs.
(6). Equation (17) has the solution

CexpY —1 9A 20

A ircmy o~ awop Y

(1+C)%

where C' > 1 is an arbitrary parameter related to the
external magnetic field by Eq. (17). The function

2expY
AN=—F=7r—"FTFT""7"F3 19
T OC T 1+ CexpY)? (19)
is the solution of system (1) linearized near the function
A given by Eq. (18).
This function becomes the eigenfunction of this sys-
tem of equations with zero eigenvalue if the boundary

condition
oA,
— 4+ 2
<8Y +

is satisfied. With the help of Eqs. (18), (19), and (20)

3 3

we obtain the critical value of the coefficient C as

=0 (20)
Y=0

A 04
A 0Y

C=3+2V2. (21)

The superheating field Hgy is therefore related to the
field H.,, by the simple equation

H, 1 2-1/4
b= . (22)
Hep, \/E RGL

4. CRITICAL FIELD H,: THE GENERAL
ANALYSIS

The general strategy of calculating Hy is as follows.
First, the expression for the current density j must be
found as a function of the vector potential A and the
order parameter A,

J=Q(A A)A. (23)

Equation (23) is formal and the relation can be non-
local. In Eq. (23), the order parameter A must be
considered as a functional of the vector potential A.
Next, we solve the Maxwell equation for A,

2
A QA A)A =0,
Oy?
94 (24)
- =H H = H, )
ay 9 (0) t

where H.,; is the external magnetic field. Solutions
of Eq. (24) form a one-parameter family. The value
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of A(y) at the point y = 0 can be considered as this
parameter, and hence, the function
0A

A=

9A(0) (25)

is a solution of linearized equation (24). It is an eigen-
function of this equation if the boundary condition

0A,
dy

%A

= Jamay

(26)

y=0

is satisfied. Equation (26) determines the critical field
H, (if k > 1). We apply this strategy in the extreme
case where k > 1 and in the case where the supercon-
ductor can be considered as a «dirtyy material. The
system of equations for the Green’s functions o and /3
can then be taken in the form [9]

D 5 o\
alA — Bw + 5 <a8,6’ — 5W> = afl,

A=2rTIA Y Bw), o+ |7 =1,

w>0

ievD2rT Y " (B*0_B — B0 f*).

w>0

(27)

J

For k > 1, the relation of the vector potential to
the order parameter A is local in the leading approxi-
mation and « and 3 can be taken as real functions. In

this case, the system of equations (27) can be essen-
tially simplified to

Atgp —w =sinp(T + 22D A?),
A = 27T\ Z COS ¢,

w>0

j = —e*vD8rT Z Acos’yp, -
w>0

a =siny, [ =cosy,

where T = 7!, with 75 being the electron spin flip
scattering time.

In what follows, we restrict ourselves to the zero-
temperature limit. There are two regions

A>T +2¢’DA,
) (29)
A <T +2e"DA.
In the first region, we have
2 nT? AT\ /2
A= ne?D <A o < YA > a T) ' (30)
0 xT? 7T\ 2
— (Al <) - — =—-d(A
s (an(55) 1) =
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where v is the Euler constant, Iny = 0.577216. .., and
T? is the transition temperature for the superconductor
Ao ( nl TP

without paramagnetic impurities,
A Am__> +A2<1H<WA> ) -

2 2
8 T? ) 7TF>
— -+

ﬂ{r(m(yA i
wr>2 }1/27 1)

B(A) = (4x%e*vD)/? x
1

2

2
+ —
™
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~yA A
where A, is the value of the order parameter as
Y — 00.
We define the quantity Y as the point where

A(Y) =T +2e?DA?(Y). (32)
At this point, we have
7T? ™
AY) == exp(—z). (33)

In the region y > Y, the order parameter A is the
solution of the equation

0 1/2
A <A In ”ZC - %)
/ o =—-Y).  (34)
A(Y)

We now consider the region y < Y. In this region,
the system of equations (30) for the order parameter A
and the vector potential A is more complicated,

0
T,

7((T+2e2D42) 4 (T+2e2D42) - 22)' %)

eom)-
(o))
mmzym{mmgi{ﬁ»
(0

réoe))
R
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A
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n I' +2e2D A2

2

A
I +2e2D A2
!
oy?

a8
T+ 262D A

A

2
—(T42¢2D A2 =
(T+2e ) [ +2e2D A2

.

1
3

A
I' +2e2D A2

(35)
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For y > Y, we have obtained the first integral of the
equation for A (Eq. (34)). We now show how to obtain
the first integral in the region y < Y. To simplify the
calculations, we set I' = 0 in what follows. We then
obtain

vAZ 7T?

Hzm = > Ay = s
8w 2 vy

)\22 =872’V DA .

(36)

Equations (36) allow us to pass to the dimensionless
variables

(37)

1 ™ A2
n _ _ _
A2 + (A4 - 7T2A2)1/2 2w A
- o\ 2y 1/2
x Larcsin| — | —— (| 1— | —
A? A? A?

. N
- % zﬁA{arcsin(E) - (38)
s A2

The problem of calculating the critical field H; is
thus reduced to solving system (38) on the interval
{0,Y} with the boundary conditions

A(Y) = exp(-n/4), A(Y) = Vrexp(-/9),
i - A (39)
R IR R

We must find the point )N/;,, such that

-
oA —0. (40)
oY 0y _

§=0,Y=Y.,

The value of the derivative dA4 /97 at the point § = 0
gives the field H; via

H, 04

= —— 41
Tom ~ 35 (41)

§=0,Y=Y.r

To solve this problem, we set

The system of equations (38) then implies

..,2 T

= x
1+vV1-22
X exp {—%(arcsinZ —Z\1- Z2)} ,
9A (43)
oy
s 1/2
™ ™
SR I R L I N
where
1
®,(2) =2/dZR(Z), (44)
z
A
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=i vis ey
X exp —%(arcsinZ—Z\/l—Z2) x
X #—L(arcsinZ—Z\/l—Z2) X
1+vV1-22 2277

1
] —_—
X {arcsm Z

2 12 1 3/2
g_((1_22) ~(1-2?) )] }
The second equation in (43) is in fact an equation for Z,
= = (14 V1-22)1/?
55 = val Tt Jrx
1
X exp {E(arcsinZ - ZV1- Z2)} X

5 1/2
™ ™
1+ (E - g) eXp<—§> +®1(2)

Z
* {1+\/1—Z2_
(arcsinZ—Z\/l—Z2)}_. (45)

0z 2

X

1
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Condition (40) implies that

az
oY

0P,

=0 or 8—Z

§=0

—0. (46)

§=0

991



Yu. N. Ovchinnikov

MKITD, Tom 119, BeIm. 5, 2001

The function Z is a monotonic function of ¢, and
hence, the first equation in (46) cannot be satisfied. Tt
follows from Eq. (44) and the second equation in (46)
that

Z =0 (47)
at the critical point, and therefore,
H,
Hcm
. 1/2
m

We note that at 7' = 0, the order parameter behaves as
Afy) o y'”? (49)

for small values of y.

5. THE CRITICAL FIELD H, IN A
SUPERCONDUCTOR WITH MAGNETIC
IMPURITIES

The system of equations (35) can be solved for an

arbitrary value of the spin flip scattering time I' = 7, 1.

To do this, we put
A
7=
'+ 2e2D A2

From the first equation in (35), we then obtain

(50)

0 1
[42e2pA2="2c  ~
v 1+VI= 22
X exp [—ﬁ (arcsinZ —Z\/1- 72 )} . (51)

With the help of Eq. (51), we obtain the first inte-
gral of the second equation in (35),

-+ i2)" 52)
where
$,(2) = 8w <”?>2de3(2)7 (53)
B =
SFV{AK,(ATOO—%)-F >2><
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The upper integration limit in Eq. (53) is defined as

1
{A_oo
iy

In Egs. (53) and (54), the quantity A is the value
of the order parameter in the Meissner state at large
distances from the surface. The value of A, can be

found from Eqs. (30) and (35) as
Yy

Becln <7Aoo )
xT?

Ay In
(FFveo
D esin( B2
arcsin T
2
Ao A°°> } if An <T.

T2
T 1o (==
r < r
The quantity B was found with the help of Egs.
(30), which were used to obtain the boundary condi-
tions for the vector potential A at the point y such
that Z = 1. It is easy to obtain that

if Ay >T,

(54)
if Ay <T.

7TTCO 7

if Ay >T,

>:

(55)

0

. T T
T42 ZDAQ‘ =T _r
+ee Z=1 exp( 4)’
70 m
‘2:1_ v eXp(_Z)’
A A, aT (56)

- - _ A | =2
Oy lz=1 87”/{ o < 2
2 1/2
n 3 ™ /
5 .
Using boundary condition (26) in Eq. (52), we im-
mediately obtain the critical field H as

0
T,

gl

™

4

= (B+ <i>1(0))1/2 . (57)

At the critical point Hg, the condition A‘ =0
y=0

is satisfied for all values of I'. Equation (57) can be
checked in the simplest case where I' > A,.. We then

have
L 270 1/2 A 2 L 1/2
| 48e2Dy r ’
N . (58)
- v [ ©T, A 4
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The solution of Eq. (52) is given by

1/2
A= Ay [ #T?
T \6e2Dy
where 0 < ' < 1 is an arbitrary constant and the
penetration depth A is given by

1/2
TP / Ay
v r-

Cexp(y/N)
C? + exp(2y/A)

(59)

A= (871'1/62D)1/2< (60)

Using Eq. (59), we find the magnetic field value at the
point y =0 as

1/2
01— Ay [ #T?
H(0) = (1+C2)2 1) <6e2D7> -6y

The condition 9H (0)/0C = 0 determines the value of
the critical field Hs;. With the help of Eq. (61), we
obtain

C? =3-2V2,

2
72 Ao 7T T AL (62)
- \4r)/) 6e2Dy 3 T2

This value of Hy corresponds to the point Z = 0 and
coincides with the value given by Eqs. (57) and (58).
To complete the calculation, we give the equation for
the thermodynamic field H,,, [10],

0

c

dr, H?
—O0F = CIAIZ = —em
sF=v [ GEAP=T (o

29T /m

where A = A, can be found from Eq. (55) with the
replacement T2 — T..

In the extreme case where I' > A, we find from
Eqgs. (55) and (63) that

dT, 1 A\ v AZ
= —d|= =—-— = 4
T, 12d<F) » OF 24 T2 (64)
As before, we obtain
H
Hcin =1, > A. (65)

We now prove that for an arbitrary value of the depair-
ing fuctor I', we have the relation

Hy,=H,,. (66)

Using Eqgs. (55), (57), and (63), we verify that in both
regions Ay, > T and Ay, < T, the derivatives of H2
and H2, with respect to T? coincide,

oH2? QH2,
9T0 = a0 (67)
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This proves Eq. (66). Equation (57) allows us to take
the integral over T, in expression (63) for the free en-
ergy and to obtain the critical field H,,, in the explicit
form

H? ,  mwALD 2T
Try D0 T 5 +T if Ape > T, (68&)
and
H? 70\ 2 VA
em Ago_ <7r C) R(Z) <7_
4y v 1+v/1-22
1 —1
- 57 (arcsinZ—Z\/l—Z2)> ]
Z=A /T
if Ao <T, (68b)

where A, and TV are related by Eq. (55).

6. CONCLUSION

We have found the general method of calculating
the critical field H in the entire range of x values and
given the results for Hy in the temperature region near
T. and T = 0. For an arbitrary value of the depair-
ing factor ', the quantities Hs; and H,,, are equal in
both temperature regions. The initial definition of Hy
is the value of the external magnetic field at which vor-
tices can penetrate into the superconductor without
a threshold. In superconductors of the second kind,
the value of this field coincides with the critical field
value of the absolute instability of the Meissner state.
In a superconductor of the first kind, the field of the
absolute instability of the Meissner state is the over-
heating field. If the order parameter A is nonzero at
the boundary of the superconductor, the energy of a
vortex—antivortex pair (at least in the £ > 1 limit) de-
creases very slowly with the distance 2a between them
in the range 2a < & [8]. As the result, the order param-
eter A is zero on the boundary of the superconductor
at the point H,. The point H, is an essentially singular
point because an infinite number of states with differ-
ent numbers of vortices in the sample go out of this
point (the number of states is of the order SH;/®,
where S is the area of the sample and ®; = 7/e is the
flux quantum). The free energy of the Shubnikov phase
is the envelope curve for all these states.

By the Shubnikov phase, we mean the state with
the minimum value of the free energy in a given exter-
nal magnetic field. The disappearance of the threshold
in the Meissner state at the point H,; does not mean
that vortices can freely enter the superconductor in
the Shubnikov phase as the external magnetic field
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Energy of the Subnikov phase (solid line); energy of
the Meissner (thin line); energy of states with different
values of the vortex density (dashed lines)

changes. In the figure, we present the free energy as a
function of the magnetic field for the Shubnikov phase
(solid line), the Meissner state energy (thin line), and

the energy of states with different densities of vortices
in the superconductor (dashed line).
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