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TUNNELING IN SINGLE-LAYER Bi2Sr2CuO6+Æ SINGLE CRYSTALSIN HIGH MAGNETIC FIELDS. I. Vedeneev a;b *, P. Szabó b;, A. G. M. Jansen b, I. S. Vedeneev aa P. N. Lebedev Physial Institute, Russian Aademy of Sienes117924, Mosow, Russiab High Magneti Field Laboratory,Max-Plank-Institut für Festkörperforshung/Centre National de la Reherhe Sienti�queB. P. 166, F-38042 Grenoble Cedex 9, Frane Institute of Experimental Physis, Slovak Aademy of SienesSK-04353 Ko²ie, SlovakiaSubmitted 25 Deember 2000In the tunneling experiments with high-quality single rystals of single-layer uprate superondutorBi2Sr2CuO6+Æ using the break-juntion and point-ontat tehniques at T < T, the oexistene of thesuperonduting-state gap and the normal-state gap was observed. The values of the superonduting en-ergy gap 2�p�p are in the range 13.4�15 meV (�p�p = 6:7�7.5 meV). The values of 2�p�p are similar fortwo samples with T = 4 K and for two samples with T = 9�10 K and are independent of the arrier onen-tration. The normal-state gap, with the magnitude approximately equal to 50 meV, persists at T < T and inthe magneti �eld H � H2 up to 28 T. After the transition of the sample to the normal state, the intensityof the tunneling ondutane rapidly dereases with inreasing magneti �eld and temperature. The observedlarge broadening of the tunneling spetra and large zero-bias ondutanes an be aused by a strong angulardependene of the superonduting gap. The tunneling results are in full agreement with the angle-resolvedphotoemission spetrosopy measurements.PACS: 74.72.Hs, 74.50.+r, 74.25.JbIt is known that the tunneling spetrosopy hasbeen used suessfully in studying the superondut-ing state in onventional superondutors. Howeverthis method has enountered onsiderable di�ulties inthe ase of high-temperature superondutors (HTSC)due to an extremely small oherene length � andhigh inhomogeneity of samples. At present, more re-produible results are only obtained for the bilayereduprate Bi2Sr2CaCu2O8+Æ (Bi2212). Previously [1; 2℄,we have performed an extensive tunneling study onhigh-quality Bi2212 single rystals using the break-juntion tehnique. Our experiments show that thepresently available quality of Bi2212 samples enablesfabriating good-quality tunnel juntions in the ab-plane with a low or almost zero leakage urrent anda well developed gap struture in the tunneling spe-tra. The angle-resolved photoemission spetrosopy*E-mail: vedeneev�si.lebedev.ru

(ARPES) measurements [3�6℄ have on�rmed the en-ergy gap value found but on the other hand, have givenevidene to a strong angular dependene of the gap thatis onsistent with a four-lobed dx2�y2 order parameter.In addition, many experiments (e.g. NMR [7℄, photoe-mission [5℄, and tunneling [8℄) have provided evidenethat in the normal state of the underdoped Bi2212, apseudogap exists in the eletroni exitation spetra attemperatures T � above the superonduting transitiontemperature T. In sanning tunneling measurementson Bi2212, Renner et al. [8℄ have found this pseudo-gap to be present both in underdoped and overdopedsamples, and to sale with the superonduting gap.It has been proposed that the pseudogap in the nor-mal state an be seen as a preursor for the our-rene of superondutivity where the superondutingphase-oherene is suppressed by thermal or quantum�utuations [9�11℄. In the ase of a nonsuperondut-979 8*



S. I. Vedeneev, P. Szabó, A. G. M. Jansen, I. S. Vedeneev ÆÝÒÔ, òîì 119, âûï. 5, 2001ing origin, the pseudogap an be formed in the spinpart of the exitation spetrum.The situation for the low-T single-layer uprate su-perondutor Bi2Sr2CuO6+Æ (Bi2201) is more ompli-ated. The �rst point ontat tunneling measurementsof the superonduting energy gap in imperfet Bi2201rystals were performed long ago [12℄; up to now, how-ever, it has been impossible to fabriate a high-qualitytunnel juntion using the break-juntion method. Be-ause the oherene length �ab in Bi2201 is larger thanin Bi2212 and reahes 45 Å [13℄, it is very di�ultto prepare diretly a quality tunnel barrier in a liq-uid helium. In ARPES experiments, Harris et al. [14℄have observed highly anisotropi superonduting gapsof 10�2 and 7�3 meV in the optimally doped and theunderdoped Bi2Sr2�xLaxCuO6+Æ (Bi,La2201), respe-tively. They have also found a pseudogap above T andassumed that these two energy gaps an have a om-mon origin in the pairing interation. However, on thebasis of the experimental study of the -axis resistivity� in the normal state of nondoped Bi2201 single rys-tals under ontinuous high magneti �elds, we reentlyonluded [15℄ that superondutivity is probably notat the origin of the pseudogap. The tunneling studyof high-T superondutors in the normal state underhigh magneti �elds an give important information onthe nature of the pseudogap.In this paper, we desribe the tunneling measure-ments for several high-quality Bi2Sr2CuO6+Æ singlerystals with midpoint T = 3:5�4 K (overdoped) and9�10 K (near optimaly doped) using the break-juntionand point-ontat tehniques under ontinuous mag-neti �elds H up to 28 T. A low T value for theserystals permits us to investigate the gap strutures ofa uprate superondutor in the normal state down tolow temperatures. In magneti �elds, we observed adi�erent behavior of the superonduting and normal-state gaps. The previous results of the tunneling studyusing the break juntion in lower magneti �elds werepublished in [16℄. However, here we give a seletion ofthese results beause later magnetotransport measure-ments [13℄ allow us to understand an unusual behaviorof di�erential ondutanes dI=dV in magneti �elds.The Sr-de�ient Bi(2+x)Sr2�(x+y)Cu(1+y)O6+Æ sin-gle rystals with the Bi/Sr ratio of 1.4�1.5 for sam-ples with T = 9�10 K and 1:7 for samples withT = 3:5�4 K (with the Bi exess loalized atthe Sr positions) were grown in a gaseous phase inlosed avities of the KCl-solution-melt [17℄. Be-ause of a long growing time, the single rystalshave a high ation ordering. The rystal sizes arearound (0.5�2.5) mm�(0.4�2) mm�(1.5�5) �m. The

half-widths of main re�etions in X-ray roking urvesfor single rystals do not exeed 0.1�0:3Æ, whih is theminimum value reported so far. The rystal lattieparameters are a = 5:353�5.385Å and  = 24:600�24.638Å, and the superlattie periodiity is ~a = 4:75a.The superonduting transition width de�ned by 10%and 90% of the superonduting transition pointsranges from 0:5 to 1:5 K. The onset temperatures in thesuperonduting transition for the d-resistane anda-suseptibility are lose, and the transition widthsare almost the same. The in-plane resistivity �ab ofthe rystals shows a linear temperature dependene athigh temperatures and saturates to the residual resis-tivity below 20�40 K. The in-plane resistivities slope��ab=�T = 0:5�1.5 �
�m/K was obtained at hightemperatures. The residual resistivity �ab(0) is between80 and 180 �
�m. By measuring the normal-stateHall oe�ient in our rystals in the temperature re-gion of 4.2�50 K, we have found that the onentra-tion of the arriers equals n = (4:8�6:3) � 1021 m�3.The arrier density in low-T samples was larger thanin the samples with T = 9�10 K. It is believed [18℄that single rystals of pure Bi-exess Bi2201 phaseare always overdoped beause Bi gives some intrin-si doping. This is reasonable if one onsiders theoptimally La-doped Bi2201 polyrystal samples withthe maximum for Bi2201 value T � 25 K and thearrier density n � 3 � 1021 m�3 [18℄. Our sin-gle rystals with T = 3:5�4 K must therefore beassigned to heavily overdoped ones. On the otherhand [19℄, the arrier onentrations in the under-doped Bi,La2201 single rystals with T = 13 K aresimilar. Beause the magnitude of T in nondopedBi2201 single rystals approximately equals 13 K,the samples with T = 9�10 K studied here aremost likely to be slightly underdoped or nearly op-timally doped. The tunneling juntions were madein situ at 1:5 K by the break-juntion superon-dutor/insulator/superondutor (SIS type) [2℄ or thetunnel point ontat superondutor/insulator/normalmetal (SIN type) [12℄, using Cu needle as a ountereletrode. The urrent�voltage (I�V ) harateristisand derivatives dV=dI were measured by the usualphase-sensitive detetion tehnique. The tunneling inthe break-juntion geometry used in our experimentsis supposed to probe the superonduting state in theab plane [2℄.The typial di�erential ondutanes dI=dV asfuntions of V for four break-juntions at T = 2:6and 1:6 K for two single rystals (Nos. 1 and 2) withT = 3:5 and 4 K are shown in Fig. 1. Althoughthe measurements were arried out at low (� 0:2 k
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Fig. 1. Di�erential ondutanes dI=dV as funtions of V for four break-juntions at (a) T = 2:6 K and (b) T = 1:6 Kfor Bi2201 single rystals (a) No. 1 and (b) No. 2 with T = 3:5 and 4 K, respetively. For larity, the urves are shiftedvertially with respet to the lower urves. The inset shows the geometry of the break juntionFig. 1a) and moderately high (� 0:5 k
, Fig. 1b) resis-tanes of the tunnel barrier, the spetra reveal a verylarge zero-bias ondutane (80�90% of the ondu-tane), the gap struture is strongly smeared and theondutane of the low-resistane juntions (Fig. 1a)has the V-shaped bakground. We have not observedanything similar in the tunneling experiments withBi2212 single rystals [1; 2℄. Reently, Mallet et al. [20℄analyzed in detail the in�uene of di�erent hannels ofa urrent leakage on the tunneling spetra of HTSC andsuggested some orretion proedure in order to extratthe real tunneling density of states. However, in thegiven ase, the zero-bias ondutane is too large to beompletely asribed to the leakage urrent. In spite ofnumerous attempts, we ould not obtain the urves ofdI=dV versus V with the same lear gap struture andsmall zero-bias ondutane as for Bi2212. Taking thisirumstane into aount, it seems that the large zero-bias ondutane and strongly smeared gap struturein the tunneling spetra in Fig. 1 are more probably re-lated to a high anisotropy of the superonduting gapin Bi2201 observed reently in ARPES experiments byHarris et al. [14℄. In the underdoped Bi,La2201 singlerystals, they observed not sharp, but a reproduiblegap of 7� 3 meV along the (�,0) symmetry line of thek-spae and a zero gap at 45Æ. For the SIS juntionsstudied here, the peak-to-peak distane between twomain maxima on the dI=dV urves must orrespondto 4�p�p: As an be seen in Fig. 1, the value of thesuperonduting energy gap 2�p�p is in the range of13.4�15 meV (with �p�p = 6:7�7.5 meV). The break-juntion method is a tehnique probing the tunnelingdensity of states integrated over the polar angle in thekab-spae. The strong angular dependene of the en-

ergy gap with zero value in some diretions must resultin a high density of states inside the gap [20℄ (largezero-bias ondutane in tunneling spetra) and to astrongly smeared gap struture orresponding to theupper limit of �p�p. This is in full agreement with theARPES measurements [14℄. Both our tunneling spe-tra and ARPES spetra have a broad gap struturethat is di�ult to desribe within a simple BCS model.We have only used the phenomenologial parameter �to take the pair breaking e�ets into aount [21℄ andobtained the energy gap of 3.5�4 meV that is very loseto that measured by us in the point-ontat tunnelingexperiments on Bi2201 [12℄.To prove a relation between the energy gap and T,we have measured the tunneling ondutanes dI=dVat di�erent temperatures shown in Fig. 2. It anbe seen that the gap struture (marked by arrows)broadens and diminishes as the temperature inreaseswith a small derease in the feature position. BeauseT = 4K for the given sample and the gap struture dis-appears at T near T, we an assume that the observedenergy gap is de�nitely the superonduting state gapof Bi2201. Beause the gap struture is smeared outand the zero-bias ondutane is high, it is impossi-ble to investigate the temperature dependene of thesuperonduting gap in detail.The tunneling spetrum of the superondutor out-side the gap for high-Ohmi juntions with a good tun-neling barrier is known to be �at [22℄ beause this isexpeted for a Fermi liquid. The V-shaped form ofthe ondutane for the low-resistane juntions omesfrom the bias voltage-indued barrier dereasing. How-ever, the results in Fig. 2 show that the form of thebakground hanges from �at to V-shaped with an in-981
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Fig. 2. Tunneling ondutanes dI=dV versus V at dif-ferent temperatures for sample No. 2. The urves areshifted with respet to the upper one. The gap stru-ture is marked by arrowsreasing temperature. Moreover, the V-shaped bak-ground ondutane inreases remarkably with an in-reasing temperature. One of the reasons for the ob-served hange an be a temperature-indued barrierdamping or the temperature dependene of the oher-ene length �. Near T, � is large and the measuredtunneling density of states is determined not only bythe CuO2 planes but also by the nonmetalli Bi�Olayers. To exlude the in�uene of the temperature-indued barrier transpareny hange, we have mea-sured the tunneling spetra of the break-juntion inmagneti �elds above the upper ritial �eld H2 at agiven temperature in the geometry when H is parallelto the -axis.The e�et of the magneti �eld on the tunnelingondutane dI=dV at T = 1:4 K is shown in Fig. 3.As an be seen, the behavior of the Bi2201 break-juntion in magneti �eld sharply di�ers from thatfor Bi2212 [1; 2℄. First, the magnitude of the tunnel-juntion ondutane dereases with inreasing mag-neti �eld and the urves of dI=dV versus V signif-iantly shift down, thereby dereasing the zero-biasondutane. Seond, in the magnetotransport exper-iments [13℄ arried out after the tunneling measure-ments [16℄, we have found that the ab-plane H2 in ourlow-T Bi2201 single rystals equals 10 T at T = 1:4 Kbut the gap struture in Fig. 3 pratially disappearsalready at 5 T. As was mentioned above, the tunnelurrent probes a region of the order of the oherenelength. For the break-juntion in the mixed state, the
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Fig. 3. The e�et of the magneti �eld on tunnelingondutanes dI=dV as funtions of V at T = 1:4 K(H is parallel to the -axis), sample No. 2ondutane dI=dV orresponds to the tunneling den-sity of states for an isolated vortex with a normal oreand the superonduting density of states near the vor-tex is broadened by the pair-breaking e�et of the loalmagneti �eld. Thus, the superonduting gap stru-ture an be already smeared at H � H2. We notethat the barrier transpareny at onstant temperatureremains unhanged and the general form of tunnelingondutanes is preserved. In the tunneling measure-ments of the onventional superondutors in magneti�elds H > H2, the di�erential ondutane dI=dV isonstant at eV from zero to �. In the present ase,a large dip around V = 0, seen in Fig. 3, indiatesthe existene of an energy gap in high magneti �eldsup to 23 T. Although the spetra are so broad thatit is di�ult to de�ne the gap value exatly, we ansay that this gap persists even in the normal state atH � H2. At the same time, we found that the V -dependenes of the di�erential resistane dV=dI at twopoints with V = 0 and 40 mV extrated from Fig. 3are quadrati in the magneti �eld in a wide range of�elds without the saturation ourring for the lassialmagnetoresistivity of a normal metal in the transverseon�guration. The data in Fig. 3 point out that, dueto a large anisotropy of the resistane of Bi2201 sin-gle rystals (�=�ab � 103�104 [13℄), the measurementurrent in the break-juntion geometry �ows in a verythin layer of the sample. In high magneti �elds, theresistane of this near-barrier region an be of the or-982
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Fig. 4. Di�erential ondutanes dI=dV versus V forBi2201�Cu tunnel point ontats fabriated on singlerystals No. 24 (urve 1 ) and No. 44 (urve 2 ) withT = 9 and 10 K, respetively (T = 1:6 K, H = 0,Rt = 0:6 k
). The inset shematially shows the ge-ometry of the point ontatder of or larger than the resistane Rt of the tunnelingbarrier. In this ase, the break juntion is not quitea four-probe juntion, and the applied voltage dropspartially aross the bulk of the rystal and not onlyaross the tunneling barrier, espeially at low tempera-tures, where the nonmetalli resistane along the -axisbeomes very large.To partially exlude the in�uene of the rystal re-sistane on the measured tunneling spetra, we havestudied the point-ontat tunnel juntions in whih thefour-probe ontat method an be better realized. Thetip of a opper wire needle was pressed perpendiularlyto the rystal surfae (parallel to the -axis). The mag-neti �eld was also oriented parallel to the -axis. Thepoint-ontat tunnel juntions use the natural oxidelayer on the ontat-forming eletrodes as a tunnelingbarrier. In our experiments, the point ontats revealeda high resistane after the �rst touh in liquid helium at1.5 K; the bakground ondutane was only inreasingwith inreasing bias voltage. After a further inreaseof the pressure applied to the tip, a gap-like strutureappeared in the I�V harateristis of the ontats.The di�erential ondutanes dI=dV of Bi2201�Cutunnel point ontats fabriated on two single rystals,Nos. 24 and 44, with T = 9 and 10 K, respetively, areshown in Fig. 4. The tunneling barrier resistane Rt forthese ontats at T = 1:6 K is equal to about 0:6 k
.The gap struture on the harateristis of the SIN-
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arb.unitsFig. 5. Di�erential ondutanes dI=dV as funtionsof V for Bi2201�Cu tunnel point ontats at di�erenttemperatures (sample No. 24, H = 0). Inset a showsthe I�V harateristis of the tunnel break juntionwith a very low resistane (< 0:1
) fabriated fromthe same single rystal where the superonduting en-ergy gap is well seen at 6 K. In inset b, we have plottedthe temperature dependene of the di�erential resis-tane dV=dI at V = 0 extrated from the experimentaldata in ombination with the ab-plane superondutingtransition urve of the given single rystaltype tunnel juntions is always smeared larger than inthe ase of SIS-type juntions. Nevertheless, the zero-bias ondutane for our point-ontat tunnel juntionswas less than for the break juntions. Two pairs of sym-metri features on the urves plotted in Fig. 4 an beeasily seen, and we believe to have observed two energygaps. The peak-to-peak distanes between the symmet-ri maxima on the urves of dI=dV versus V lie in therange of 15�18 and 45�50 mV. The magnitude of the�rst gap is in lose agreement with data in Fig. 1 al-though the T value of the given rystal is nearly twieas that of rystal No. 2 in Fig. 1. The seond pair ofgap features in the SIS break juntions in ase of a truegap must be loated near 100 mV (4�p�p), whih wedid not study for break juntions.In Fig. 5, we have plotted the di�erential ondu-tanes dI=dV for the Bi2201�Cu tunnel point ontatat di�erent temperatures. It an be seen that the gapstruture again broadens and rapidly vanishes with in-reasing temperature. At low temperatures away fromT, the tunneling barrier transpareny does not hangebeause the ondutane spetra shapes are preserved.However, starting from T � 5 K, the V-shaped bak-983
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H, TFig. 6. Di�erential ondutanes dI=dV as funtionsof V for the Bi2201�Cu tunnel point ontats atT = 1:6 K and for di�erent values of the �eld orientedalong the -axis of the rystal (No. 44). The urves areshifted vertially by the same value with respet to theH = 0 urve. The inset shows the ab-plane resistaneof the same Bi2201 rystalground ondutane slightly enhanes with inreasingtemperature, the di�erential ondutanes at zero biasV = 0 hange, and the urves shift down. SineT = 9 K for the given sample (No. 24), the gap stru-ture is believed to vanish at T < T, but this is notthe ase. Inset a in Fig. 5 shows I�V harateristisof the low-resistane (< 0:1 
) tunnel break juntionfabriated from the same single rystal where the su-peronduting energy gap is well seen at 6 K. In inset bin Fig. 5, we have plotted the temperature dependeneof the di�erential resistane dV=dI at V = 0 extratedfrom the experimental data in ombination with theab-plane superonduting transition urve of the givensingle rystal. It is easy to verify that the rystal resis-tane rise and the shift of the dI=dV urves in Fig. 5with an inreasing temperature are aused by the su-peronduting transition of the Bi2201 rystal regionnear the tunneling barrier as before even if Rt � 0:6 k
.The tunneling ondutane behavior at temperaturesnear and above T for the point ontats (Fig. 5) isidential to that for break juntions (Fig. 2).The e�et of the magneti �eld on the gap strutureat T = 1:6 K is illustrated in Fig. 6, where we showthe di�erential ondutanes dI=dV for the Bi2201�Cutunnel point ontat at di�erent �elds oriented alongthe rystal -axis (Rt � 0:6 k
). In moderate mag-neti �elds (up to 6 T), the dI=dV urves did not shiftwith respet to eah other; for larity, the urves inFig. 6 have been shifted vertially by the same value

with respet to the H = 0 urve. As earlier, the gapfeatures broaden and pratially diminish already at4 T, although the respetive values of T and ab-planeH2 at 1:6 K are equal to 10 K and 22 T for rystalNo. 44. In the point juntion region of the rystal, ad-ditional pinning enters are produed by the pressurebetween the ontat-forming eletrodes. In this ase,the tunneling ondutane dI=dV mainly onforms tothe density of states in the normal vortex ores nearthe ontat already at H > H1. As is illustrated bythe inset in Fig. 6, the ab-plane resistane of the sameBi2201 rystal in magneti �eld 4 T still equals zero,but the gap struture is hardly visible.A steady value and the general shape of the on-dutane spetra in the magneti �eld up to 6 Tmade it possible to normalize the last dI=dV urvesat H = 0�5 T by the ondutane at H = 6 T, wherethe gap struture is no longer visible, in order tosee the magneti �eld in�uene on the gap featuresmore learly. In the normalized ondutanes, thegap struture broadens and diminishes gradually at in-reasing �elds with a derease in peak positions. Thepeak-to-peak distane between the two main maximaof the dI=dV urve at H = 0 is equal to 14:8 mV(�p�p = 7:4 meV). As noted above, this value is oin-ident with that measured by the break-juntion teh-nique. It is surprising that the magnitude of 2�p�p issimilar for two samples with T = 4 K and two sampleswith T = 9�10 K and is independent of the arrieronentration. So far as our normalization is not quiteorret, it is di�ult to give a quantitative analysis ofthe magneti �eld e�et on the gap value. However, theshift in the position of the features in the normalizedondutane in Fig. 6 re�ets the redution of the orderparameter in the point-ontat region in the magneti�eld. It is reasonable to expet that there are addi-tional pinning enters in the point juntion region ofthe rystal, and hene, the number of �xed vortiesrapidly inreases with the magneti �eld. This leads toa fast suppression of the order parameter and the los-ing of the superonduting energy gap in the magneti�eld H � H2.The seond pair of maxima in the upper part ofthe dI=dV urves in Figs. 4�6 is related to the largedip around zero voltage, the main shape of whih doesnot vary with the magneti �eld and temperature. Thepeak-to-peak distane between the seond maxima inzero �eld is approximately equal to 52mV. As the mainmaxima, these maxima broaden with inreasing mag-neti �eld, but the shift in the position of peaks in thenormalized ondutanes is only slight. This gap doesnot lose above T and H2, as indiated by Figs. 3984
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Fig. 7. Di�erential resistanes dV=dI as funtions of Vfor Bi2201�Cu ontats at 1:6 K in di�erent magneti�elds (sample No. 44, Rt = 4:5 k
, T = 1:6 K), H isparallel to the -axis. A variation of the half-width ofthe gap versus magneti �eld is shown in the insetand 5, and an be identi�ed with the normal-state gapof Bi2201 observed in ARPES experiments by Harrieset al. [14℄. Beause this gap ourring in the tunnelingspetra is so broad and the zero-bias ondutane isso large, there is a non-zero state density at the Fermienergy, i.e., the true gap does not exist [5℄. Our point-ontat tunneling spetra at low temperatures and zeromagneti �eld an be presumably desribed by a repre-sentative bakground, two broad peaks near the en-ergies �25 meV, and sharper peaks at the energies�7:4 meV, as was done in ARPES experiments withBi2212 [6℄.Next, we studied the magneti �eld dependeneof the normal-state gap in more detail using a su�-iently high-Ohmi point-ontat tunnel juntion withRt = 4:5 k
. Suh large resistane makes the obser-vation of the superonduting gap di�ult but ensuresonly a negligible e�et of the rystal magnetoresistaneon the main shape of the tunneling spetra. Figure 7shows the series of the di�erential resistanes dV=dI asfuntions of V for this Bi2201�Cu ontat at 1:6 K indi�erent magneti �elds. It an be seen that the shapeof the tunneling spetra does not vary with the mag-neti �eld and the data provide lear evidene that thenormal-state gap still exists up to 28 T. A variation ofthe half-width of the gap versus magneti �eld is shownin the inset in Fig. 7. In Fig. 8, we have plotted themagneti �eld dependenes of the zero-bias di�erentialresistanes dV=dI at T = 1:6, 4:2, and 10 K normali-zed to the orresponding maximum values. Here, we
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Fig. 8. The magneti �eld dependenes of the zero-biasdi�erential resistanes dV=dI at temperatures 1:6 K (fullsquares), 4:2 K (irles), and 10 K (open squares) nor-malized to the respetive maximum values. The solidline shows the ab-plane superonduting transition of thesame rystal in the magneti �eld at 4:2 Kalso show the ab-plane superonduting transition ofthe same rystal in the magneti �eld at 4:2 K (solidline). From Fig. 8 and the inset in Fig. 7, it is lear thatthe transition of the sample to the normal state is re-sponsible for a small inrease in the gap half-width andthe enhanement of the di�erential resistane at V = 0.However, after the transition of the sample to the nor-mal state, the intensity of the dV=dI urves (the dipamplitude in tunneling ondutane) starts to dereaserapidly with the magneti �eld. Furthermore, we notethat the intensity of the tunneling spetra at V = 0also undergoes a rapid deline at T > T. This is inontrast with heavily underdoped Bi2212 samples withT = 10 K [5℄, where the large normal-state gap doesnot lose even at 301 K. Our last result agrees well withthe data of ARPES measurements of optimally dopedBi2212 [6℄.It is probable that the normal-state gap observed intunneling experiments is the pseudogap that has beenwidely disussed reently. It is worth mentioning thatmany tunneling ondutanes with a similar shape anda large dip in the viinity of the zero-bias voltage havebeen observed in the metal/insulator/semiondutortunnel juntions [23℄. In partiular, the ondutanepeaks and a large dip on the tunneling spetra of theBi-alloy juntion [24℄ were attributed to the energy gapand to the band bending near the surfae due to the ap-plied voltage, respetively. It is interesting that with aninreasing magneti �eld, the ondutane peaks tendto be washed away whereas the dip due to the energygap is deepened. Therefore, it is quite possible that a985
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