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COULOMB EFFECTS IN DYNAMICS OF POLAR LATTICESL. A. Falkovsky *Landau Institute for Theoretial Physis117337, Mosow, RussiaSubmitted 16 November 2000Zone-enter phonon frequenies of polar latties are alulated for uniaxial rystals from the symmetry ar-guments. Long-range Coulomb fores and rystal anisotropy are expliitly taken into aount. Free-arrierontributions into the dieletri onstant are inluded. The angular dispersion of optial-phonon modes isompared with data for hexagonal 6H-SiC polytype.PACS: 63.20.-e, 78.30.-j1. INTRODUCTIONEletrostati dipole�dipole interations play an im-portant role in the theory of lattie vibrations. It isommon knowledge [1℄ that the degeneray of phononmodes at the Brillouin zone-enter (e.g., in the ubi3C�SiC rystal) is removed if the atomi displaementsare aompanied by the Coulomb �eld. Then the fre-queny of the longitudinal optial mode beomes largerthan the frequenies of transverse modes. For nonubirystals (e.g., for the hexagonal or rhombohedral SiCpolytypes), the long-range Coulomb �eld also gives riseto an angular dependene of the zone-enter modes: atk = 0, the optial-phonon frequenies depend on thepropagation diretion.Suh a phenomenon is rather unusual from both thephysial and mathematial standpoints: the eigenval-ues of dynamial matrix alulated for k = 0 depend onthe k-diretion. This is aused by a nonanalyti k-de-pendene of the dynamial matrix whih results froma long-range dipole�dipole interation. In polar ubirystals, the Coulomb �eld splits the three-fold degen-eray of optial modes at the Brillouin zone-enter, butthe frequeny dependene on the propagation diretionalso appears in uniaxial rystals due to the long-rangeeletrostati �eld.The eletrodynami part of the problem was formu-lated by Loudon [2℄. The Coulomb ontributions in thedynamial matrix are usually alulated be means of anEvald summation [1℄. The angular dispersion of optial*E-mail: falk�itp.a.ru

modes is learly demonstrated by the reent numeri-al alulations for the zone-enter phonons [3℄ and forthe entire Brillouin zone [4℄ in the ase of A3B5 semi-ondutors with the wurtzite struture. The Coulomb�eld is also taken into aount in the theory of phonon�plasmon oupled modes (polaritons) [5℄ when the e�etof free arriers is studied.The main purpose of this paper is i) to alulate theangular dispersion for the zone-enter phonons in uni-axial rystals using the symmetry arguments and ii) toonsider the e�et of free arriers on these modes. Forde�niteness, we onentrate on the phonon modes ofuniaxial SiC polytypes that are presently very popularin tehnial appliations.2. OPTICAL MODES AT THE ZONE-CENTEROF CUBIC CRYSTALSAmong the hexagonal and rhombohedral SiC poly-types, there is the ubi 3C-SiC one with two atomsin the unit ell. First we onsider the optial modesin this simplest ase. For the nearest viinity of theBrillouin zone-enter, k � �=d, where d is the lattieparameter, the aousti and optial modes an be di-vided using the series expansion in k of the dynamialmatrix. As the result, in the zero approximation in kwe obtain the system of three equations for the optialdisplaements ui (i = x; y; z):(� �M�!2)u = f ; (1)where M� is the redued mass of two atoms (Si and C)in the unit ell, � is the diagonal element of the fore-966



ÆÝÒÔ, òîì 119, âûï. 5, 2001 Coulomb e�ets in dynamis of polar lattiesonstant matrix (the only one diagonal element of the3� 3-matrixs exists in a ubi rystal). The value of �an be alulated in the nearest-neighbor approxima-tion, but the long-range Coulomb interation annot beonsidered in this way. The Coulomb e�et is desribedby the fore f = ZeE ating on an e�etive harge Z,where the eletri �eld E is found from Maxwell's equa-tions. Eliminating the magneti �eld from Maxwell'sequations, we an express the eletri �eld E in termsof polarization P asE = �4� �k(k �P)� !2P=2�k2 � !2=2 : (2)We are interested in the ! values of the order ofoptial mode frequenies, suh that != � 103 m�1.If the phonon is exited by light, its wave vetor hasthe value of the photon wave vetor, i.e., of the orderof 105 m�1. The ondition k � != is then satis�edand the terms involving 2 must be omitted in Eq. (2),whih then beomesE = �4�k(k �P)=k2: (3)In the long-wave limit (k � �=d), the polarizationis related to the phonon displaement and the eletri�eld by the marosopi equationP = NZeu+ �E; (4)where � is the atomi permittivity and N is the num-ber of unit ells in 1 m3. Sometimes, the loal �eld isused in equations similar to (4) instead of the maro-sopi �eld E. For ubi rystals (for whih only thesimple Lorentz relationship exists), the loal �eld anbe eliminated by renormalizing the fore onstant �.Using Eqs. (3) and (4), we an express the eletri�eld E in terms of u. Equation (1) then gives the fre-quenies of transverse and longitudinal optial modesin the ubi rystal as!2TO = �=M� and !2LO = �=M� + �; (5)where� = 4�Z2e2N=M�"1 and "1 = 1 + 4��: (6)Although relation (3) between E and P involvesthe k-diretion expliitly, the frequenies of optialmodes (5) are independent of the propagation dire-tion as it must be for a ubi rystal.3. OPTICAL MODES AT THE ZONE-CENTEROF UNIAXIAL CRYSTALSThe rystal anisotropy of the nonubi SiC poly-types is known to be small beause the nearest neigh-bors of any given atom preserve the ubi symmetry.

Let us introdue the strain tensor eij desribing a smalldi�erene between the dynami matries for the non-ubi polytype and the ubi one. The phonon spe-trum of the nonubi polytype an then be obtained inthe following way. At the �rst step, we transform theBrillouin zone of the ubi polytype (�the large zone�)using the strain eij . Hene, we �nd the frequenies ofthe so-alled strong modes. For the zone-enter, theyan be obtained by expanding the dynami matrix inthe strain eij .At the seond step, we take into aount that non-ubi polytypes have more than two atoms in the unitell and the additional opti modes appear. Phononbranhes of the large zone are folded [6℄ into the Bril-louin zone of the nonubi polytype, thereby produ-ing additional weak modes. The weak-mode intensityin both optis and Raman sattering was alulatedin [7℄. In the present paper, we thus onsider onlystrong modes.The dynami matrix an ontain only the eij om-ponents that are invariant under the symmetry trans-formations of the rystal. There are two �rst-order in-variants, ezz and exx+ eyy, assuming that the z-axis isparallel to the -axis. We an �x the rystal volume,i.e., impose the ondition eii = 0. We then have onlyone invariant, for instane ezz, whih is involved onlyin the diagonal elements of the fore-onstant matrix inEq. (1). The oe�ients of the xx and yy elements areequal beause of the rotation invariane around the -axis. Finally, we an omit the ommon frequeny shift.Instead of Eq. (1), we thus obtain0B� �+�n2x�!2 �nxny �nxnz�nxny �+�n2y�!2 �nynz�nxnz �nynz �+�n2z�!2 1CA��0B� uxuyuz 1CA = 0; (7)where n = k=k and� = �=M�; � = �+ bezz: (8)We take the vetor k in the yz-plane and denote as �the angle between k and the -axis,nx = 0; nz = os �; ny = sin �:We then see from Eq. (7) that there are one transversemode (TO1) vibrating in the x-diretion and two modesin the yz-plane with the frequenies967



L. A. Falkovsky ÆÝÒÔ, òîì 119, âûï. 5, 2001!2TO1 = �;!2y;z(�) = 12(�+ �+ �)� (9)�12 n[�+(���) os 2�℄2+(���)2 sin2 2�o1=2 :We emphasize that Eqs. (9) give the phonon fre-quenies in the zone-enter, but these frequenes de-pend on the propagation diretion �. This depen-dene has its origin in the simultaneous e�et of theCoulomb �eld (desribed by the onstant �) and rys-tal anisotropy (� 6= �). In absene of the Coulomb�eld (� = 0), we have !2z = �, !2y = �, and there isno angular dispersion. For the isotropi ase (� = �),Eqs. (9) give the modes for the ubi rystal.If the Coulomb e�et is small ompared to the rys-tal anisotropy (� � j� � �j), we an omit the o�-diagonal terms in matrix (7). We then have one modevibrating lose to the -diretion with the frequeny!2z = � + � os2 � (with an auray to �2=(� � �)2),and the other mode near the y-diretion with the fre-queny !2y = � + � sin2 �.In the opposite limiting ase of the small rystalanisotropy, it is useful to pass to the oordinate systemwith the z0-axis along the k-vetor, subjeting Eq. (7)to the unitary transformationUij = 0B� 1 0 00 os � sin �0 � sin � os � 1CA : (10)We must then diagonalize the matrix0B� � 0 00 � os2 �+� sin2 � (���) sin � os �0 (���) sin � os � � sin2 �+� os2 �+� 1CA :(11)We see that in addition to the TO1 mode, in the asewhere j�� �j � �, there are another nearly transverseTO2 mode and nearly longitudinal LO mode with thefrequenies!2TO2(�) = � os2 � + � sin2 �;!2LO(�) = �+ � sin2 � + � os2 �; (12)whih an also be obtained by expanding Eq. (9) withan auray to (���)2=�2. The dispersion urves or-responding to Eqs. (9) and (12) are shown shemati-ally in �gure. The angular dispersions of form (12)were obtained by Loudon [2℄.
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Angular dispersion of optial-phonon modes in uniaxialrystals at the zone-enter. The angle � is the anglebetween the -axis and the wave vetor k ! 0. TheTO1 mode is polarized perpendiularly to the -k plane.The LO and TO2 modes have a nearly longitudinal andtransverse harater, respetively, if the Coulomb foree�ets dominate over the rystal anisotropyOne an see from Eq. (9) that a onservation lawexists. Namely, the sum of the squared frequenies ofthe y and z modes is independent of the propagationdiretion, e.g.,!2y(� = 0) + !2z(� = 0) == !2y(� = �=2) + !2z(� = �=2): (13)As an example, we onsider 6H-SiC polytype. The an-gular dispersion of its optial modes is known from theexperiment [5; 6℄. For � = 0 (propagation parallel tothe -axis), the TO1 and y modes are degenerate andtheir frequenies are equal to p�. The experimentalvalue is 797 m�1 (with the unertainty about 1 m�1).The orresponding value of the longitudinal mode is!LO(� = 0) = p�+ �:For � = �=2 (propagation perpendiular to the -axis),!TO2(� = �=2) = p�(the experimental value is 788 m�1) and!LO(� = �=2) =p�+ �(the experimental value is 970 m�1). It immediatelyfollows that � = 552:92 m�2, � = 7882 m�2, and� = 7972 m�2.We then �nd!LO(� = 0) = p�+ � = 962:6 m�1;968



ÆÝÒÔ, òîì 119, âûï. 5, 2001 Coulomb e�ets in dynamis of polar lattieswhih should be ompared with the experimental value964 m�1. The small di�erene between these two val-ues an be attributed to the anisotropy in the atomipermittivity, whih is onsidered in the next setion.4. EFFECTS OF THE PERMITTIVITYANISOTROPY AND FREE CARRIERSIn the previous setion, we assumed that the uniax-ial anisotropy a�ets only the short-range ontributionto the fore-onstant matrix. But in uniaxial rystals,the atomi permittivity � is a tensor with two inde-pendent omponents, �k and �?, orresponding to therystal axes. This e�et is small beause eah atomhas nearly ubi surroundings, but it must be inludedfor a areful omparison with experiments. In a similarway, free arriers ontribute to the angular dispersionof the longitudinal optial mode.Taking into aount both the anisotropy of atomipermittivity and the ondutivity of free arriers �, wereplae Eq. (4) withPk = NZeuk + ��k + i�k! �Ek;P? = NZeu? + ��? + i�?! �E?: (14)Using Eqs. (3) and (14), we obtain the equation ofmotion in form (7) and phonon frequenies (9), but theonservation law (13) does not apply now beause �beomes a funtion of �,�(�) = 4�Z2e2NÆM�h�"1k + 4�i�k! � os2 �++ �"1? + 4�i�?! � sin2 �i ; (15)where "1k = 1 + 4��k and "1? = 1 + 4��?. We notethat the vibration modes aquire some damping due toondutivity. In addition, the optial phonon has a nat-ural width � given by its probability to deay into lowerenergy phonons, and the term i�=2 must be added to! in Eq. (7).We an then use transformation (10) and obtainmatrix (11) with the funtion �(�) instead of on-stant �. We see that in the limiting ase of theweak anisotropy, j� � �j � �(�), the Coulomb �eld(and therefore the arriers) a�ets only the longitudi-nal mode. Its frequeny is determined by the equationR(!) � �(�)+� sin2 �+� os2 ��i!��!2 = 0; (16)

where �(�) given by Eq. (15) depends on ! expliitlyand through the ondutivity �.Equation (16) gives the frequeny of the LO-pho-non�plasmon oupled mode in uniaxial semiondu-tors. Notie that in the isotropi ase, Eq. (16) oin-ides with the ondition "(!) = 0, where the dieletrifuntion "(!) is given by the well-known expression"(!) = "1 "1 + !2LO � !2TO!2TO � !2 � i!� � !2p!(! + i)# ;and the plasmon frequeny is!2p = 4�ne2"1m :In this ase, Eqs. (5), (6), and (8) give!2TO = � = �; !2LO = !2TO + 4�Z2e2NM�"1 ;and the Drude formula for the ondutivity reads� = ne2m(�i! + ) :The funtion R(!) in Eq. (16) is measured in Ra-man experiments. Namely, the Raman intensity on-sidered as a funtion of frequeny transfer ! isI(!; �) � Im 1R(!) (17)for the LO mode exitation with the propagation di-retion �. If the inident or sattered light has a �niteaperture, Eq. (17) must be integrated over the allowedrange of �.Equation (17) an be used in experimental study-ing the e�et of arriers on the Raman satteringin uniaxial semiondutors. The ondutivity tensorin Eq. (15) is given by the Drude-like formula withthe diagonal omponents mk;? and k;?, for instane,�k = ne2=mk(�i! + k).Let us summarize the main result of the paper: thee�ets of rystal anisotropy (� 6= �) and Coulomb �eld�(�) on the phonon dispersion are expliitly separatedas one an see in Eqs. (9) and (16).This study was initiated by disussions with J. Ca-massel and P. Viente (GES, Montpellier, Frane), andthe author would like to thank them. The authoraknowledges the kind hospitality of the Max-Plank-Institut für Physik komplexer Systeme (Dresden, Ger-many) where this work was ompleted. The work wassupported by the Russian Foundation for Basi Re-searh (projet 01-02-16211).969
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