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CONDUCTANCE OF THE ELLIPTICALLY SHAPEDQUANTUM WIRES. N. Shev
henko *, Yu. A. Kolesni
henkoB. I. Verkin Institute for Low Temperature Physi
s and EngineeringNational A
ademy of S
ien
es of Ukraine61164, Kharkov, UkraineSubmitted 25 O
tober 2000The 
ondu
tan
e of a ballisti
 ellipti
ally shaped quantum wire is investigated theoreti
ally. It is shown thatthe e�e
t of the 
urvature results in a strongly os
illating dependen
e of the 
ondu
tan
e on the applied bias.PACS: 73.20.Dx, 73.50.-h1. INTRODUCTIONRe
ent advan
es in semi
ondu
tor physi
s and te
h-nology enabled the fabri
ation and investigation ofnanostru
ture devi
es that have some important prop-erties, su
h as small size, redu
ed dimensionality, rela-tively small density of 
harge 
arriers, and hen
e, largemean free path (whi
h means that parti
les exist in theballisti
 regime, and s
attering pro
esses 
an thereforebe negle
ted) and large Fermi wavelength �F . One ofmesos
opi
 systems of parti
ular interest is the quan-tum wire in whi
h parti
les are 
onstrained to movealong a one-dimensional 
urve due to quantization ofthe transverse modes1). One of the numerous impor-tant problems pertaining to the quantum wire is todetermine the in�uen
e of the pro
ess of redu
ing thedimensionality upon properties of the system.Jensen and Koppe [1℄ and da Costa [2℄ have empha-sized that a low dimensional system, in general, hassome knowledge of its surrounding three-dimensionalCartesian spa
e: the e�e
tive potential arises from themesos
opi
 
on�nement pro
ess, whi
h 
onstrains par-ti
les to move in a domain of a redu
ed dimensionality.Namely, it was shown that a parti
le moving in a one-or two-dimensional domain is a�e
ted by an attra
tivee�e
tive potential [2℄; this result was �rst obtained inRef. [3℄ and later in Ref. [4℄. This idea was widely stud-ied by several other authors (see Refs. [5�12℄ and, for*E-mail: sshev
henko�ilt.kharkov.ua1) We study here only the one-
hannel wire with only the low-est subband o

upied.

example, Ref. [13℄ about the experimental realizationof su
h systems).It was also shown in Ref. [14℄ that the torsion of thetwisted waveguide a�e
ts the wave propagation in thewaveguide independently of the nature of the wave. Inparti
ular, the torsion of the waveguide results in therotation of the polarization of light in a twisted op-ti
al �ber [15℄. In Ref. [16℄, the authors prove thatin a waveguide, be it quantum or ele
tromagneti
 one,bound states exist. Several papers have been devotedto the relation of the quantum waveguide theory to the
lassi
al theory of a
ousti
 and ele
tromagneti
 waveg-uides (see Ref. [6℄ and referen
es therein).The e�e
t of the 
urvature on quantum propertiesof ele
trons on a two-dimensional surfa
e, in a quantumwaveguide, or in a quantum wire 
an be observed by in-vestigating kineti
 and thermodynami
 
hara
teristi
sof quantum systems [8�12℄. In this paper, we proposeto use measurements of the 
ondu
tan
e G of a quan-tum wire for this purpose; we show that the re�e
tion ofele
trons from regions with a variable 
urvature resultsin a non-monotonous dependen
e of the 
ondu
tan
eon the applied bias.In Ref. [4℄, the S
hrödinger equation on the ellip-ti
ally shaped ring was solved numeri
ally in order toobtain the eigenvalue spe
trum of a parti
le 
on�ned tothe ring. The authors studied a quantum me
hani
alsystem 
on�ned to a narrow ring by the re
tangularwell potential. They showed that in the limit as thering width 
 tends to zero, the behavior of the systemis similar to the straight line motion with the e�e
tivepotential931 5*
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Fig. 1. Ellipti
ally shaped quantum wire

Veff = � ~28mR2 ; (1)where R is the radius of 
urvature. Later, in Ref. [9℄,the ele
tron energy spe
trum in an ellipti
al quantumring was 
onsidered in 
onne
tion with the persistent
urrent; the authors have 
on
luded that the e�e
tivepotentials Veff are di�erent for di�erent 
on�ning po-tentials even in the limit as 
 tends to zero. This
on
lusion is in 
ontradi
tion with the results of someother papers [2; 6℄. We address this problem in thepresent paper; we investigate the derivation of the one-dimensional S
hrödinger equation in order to under-stand deeper how the parti
le motion along the 
urveC is a�e
ted by the 
on�ning potential. We demon-strate the 
onsisten
y with the previous results in [2℄:the e�e
tive potential is universal for di�erent 
on�n-ing potentials and depends only on the 
urvature (seeEq. (1)).In Se
. 2, we study the derivation of the one-dimensional S
hrödinger equation starting from thetwo-dimensional S
hrödinger equation des
ribing anon-relativisti
 ele
tron that moves in a plane2) and issubje
ted to the 
on�ning potential V
 . In Se
. 3, weapply these results to theoreti
ally study the 
ondu
-tan
e of the quantum wire that 
onsists of two linearparts and one ellipti
ally shaped part between them;the wire is 
onne
ted to two 
ondu
ting reservoirs atdi�erent voltages (see Fig. 1). In Se
. 4, we dis
uss thein�uen
e of the 
urvature on the 
ondu
tan
e.2) We 
osider only �at 
urves and we refer the reader interestedin the e�e
t of the torsion to Ref. [7℄.

2. SCHRÖDINGER EQUATIONIn this se
tion, we follow the argument given in [2℄.We 
onsider the ele
tron with the e�e
tive mass mmoving in a quantum wire along a 
urve C that is 
on-stru
ted by a prior 
on�nement potential V
 . For sim-pli
ity, we start with the two-dimensional motion. Weintrodu
e the orthonormal 
oordinate system3) (s; q),where s is the ar
 length parameter and q is the 
o-ordinate along the normal n = n(s) to the referen
e
urve C. The 
urve C is then des
ribed by a ve
torvalued fun
tion r(s) of the ar
 length s. In a vi
inityof C, the position is therefore des
ribed byR(s; q) = r(s) + qn(s): (2)To obtain a meaningful result, the parti
le wavefun
tion must be �uniformly 
ompressed� into a 
urve,thereby avoiding tangential for
es [2; 4; 9℄. We thus
onsider V
 to depend only on the q 
oordinate thatdes
ribes the displa
ement from the referen
e 
urve C;this means that points with the same q 
oordinate butdi�erent s 
oordinates (whi
h des
ribe the position onC) have the same potential. This potential involvesa small parameter 
 su
h that the potential in
reasessharply for every small displa
ement in the normal di-re
tion; 
 is the 
hara
teristi
 width of the potentialwell V
 . The simplest examples of these potentials arethe re
tangular well potential and the paraboli
-troughpotential (we note that the real potential would likelybe a 
ombination of both, however). The small param-eter in the problem is therefore 
=R� 1 [5℄.The motion of the ele
tron obeys the time-independent S
hrödinger equation� ~22m�s;q + V
(q) = " ; (3)where the Lapla
ian is�s;q = 1h ��s 1h ��s + 1h ��qh ��q ; (4)with h = 1� k(s)q (5)being the Lamé 
oe�
ient (
orresponding to the lon-gitudinal 
oordinate s) that depends on the 
urvaturek = k(s) in a

ordan
e with the Frenet equation.3) The advantages of establishing the (s; q) 
oordinate sys-tem from the very beginning are that it allows the most generalanalysis and that (be
ause of the diagonal stru
ture of the met-ri
 tensor) we 
an de
ompose the dynami
al equation of motioninto two equations in the zero-order approximation in the widthof the quantum wire.932
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tan
e of the ellipti
ally shaped quantum wireTo eliminate the �rst-order derivative with respe
tto q from Eq. (3)4), we introdu
e the new wave fun
tione by e (s; q) = ph (s; q): (6)This is the wave fun
tion introdu
ed in Ref. [2℄ and itis normalized su
h thatZ ds dq ��� e (s; q)���2 = 1: (7)S
hrödinger equation (3) then be
omes� ~22m � ��s 1h2 ��s + �2�q2� e ++ Veff (s; q) e + V
(q) e = " e ; (8)whereVeff (s; q) = � ~22m �� h�2 k24 + q2h�2 d2kds2 + 5q24 h�4�dkds�2! ; (9)whi
h is in agreement with Refs. [5; 8℄.One must be 
areful with Eq. (8) in order to avoidmistakes found in the literature [7; 9℄. First, we 
an notde
ompose this equation, whi
h 
ontains terms that arefun
tions of both s and q; into two equations intro-du
ing e (s; q) = �n(q)�t(s) as in Ref. [7℄, where theauthors obtained Eq. (31) for �t(s) with 
oe�
ientsdepending on the q variable. To understand anothermistake [9℄, we 
onsider Eq. (8) within the perturba-tion theory in the small parameter 
 (whi
h is small
ompared to R) (see also Ref. [6℄). We expand h�2and Veff in series in q . 
, and expli
itly write thezeroth term as h�2 = 1 + 1Xl=1 fl(s)ql;Veff (s; q) = � ~22m  k2(s)4 + 1Xl=1 yl(s)ql! :Equation (8) 
an then be rewritten as� bH0 + bV � e = " e ; (10)4) We do this to eliminate terms of the form f(q)�=�q that were
alled �dangerous terms� in Ref. [1℄. We 
annot use f(q) = f(0)be
ause f(q)�=�q � [f(0) + qdf(0)=dq℄�=�q: although q � 
, wehave �=�q � 
�1, and the se
ond term in the bra
kets is there-fore the order 
0, and this is the order of terms in whi
h we areinterested below.

wherebH0 = � ~22m � �2�s2 + �2�q2�� ~22m k2(s)4 + V
(q); (11)bV = ~22m 1Xl=1 ql�� ��sfl(s) ��s + yl(s)� : (12)We note that bV is a se
ond order di�erential operatorin s. The solution of Eq. (10) ise = e (0) + 1Xl=1 e (l);where e (l) � 
l and e (0) 
orresponds to the zeroth-order problem, bH0 e (0) = " e (0). This equation 
anbe de
omposed by separating the wave fun
tion ase (s; q) = �(q)�(s),� ~22m d2dq2 � + V
(q)� = Et� (13)and � ~22m d2ds2�+ Veff (s)� = El�; (14)where Veff (s) is given by Eq. (1), " = Et + El, andR = k(s)�1 is the 
urvature radius (in the next se
-tion, we omit the subs
ript �l�, identifying the en-ergy E with its longitudinal 
omponent El). Equa-tion (13) des
ribes the 
on�nement of the ele
tron to a
-neighborhood of the 
urve C and Eq. (14) des
ribesthe motion along the s 
oordinate (along C). In fa
t,Eq. (14) is a 
onventional one-dimensional S
hrödingerequation for the ele
tron moving in the s-dependentpotential Veff (s); the latter relates the geometry andthe dynami
al equation. The origin of this potential isin the wavelike properties of the parti
les; Veff is es-sential for the values of R=�F that are not large. Weemphasize that the e�e
tive potential in Eq. (1) in thezeroth-order approximation in 
=R is independent ofthe �one-dimensionalization� method, i.e. of the 
hoi
eof V
(q) (
ompare this 
on
lusion with the one derivedin Ref. [9℄).We also note that if we started from the three-dimensional equation of motion, we would obtain anadditional e�e
tive potential that vanishes in the pla-nar situation [2℄.3. CONDUCTANCEThe 
ondu
tan
e G of quantum 
onta
ts 
an berelated to the transmission probability T (E) by Lan-933



S. N. Shev
henko, Yu. A. Kolesni
henko ÆÝÒÔ, òîì 119, âûï. 5, 2001dauer's formula [17℄. At zero temperature and �nitevoltages V , it takes the formG = G02 �T �EF + eV2 �+ T �EF � eV2 �� ; (15)where G0 = 2e2=h and EF is the Fermi energy. Thetwo terms in this equation 
orrespond to two ele
troni
beams moving in the opposite dire
tions with di�erentbias energies. We are interested in the transmissionprobability T (E) for the ele
tron energy E.In this se
tion, we 
onsider the 
urve C to 
on-sist of three ideally 
onne
ted parts (see Fig. 1): (i)linear (s < 0), (ii) ellipti
al (0 < s < l, where lis half of the ellipse perimeter), and (iii) one morelinear domain (s > l). We 
onsider wave fun
tionsin regions (i) and (iii) to be the respe
tive planewaves  1 = eik1s + re�ik1s and  3 = teik1s, wherek1 =p2mE=~2 is the wave ve
tor and t and r are thetransmission and re�e
tion 
oe�
ients; the transmis-sion probability is given by T = jtj2. We have  2 � �,where � is the solution of Eq. (14) with the e�e
tive po-tential given by Eq. (1). The 
urvature 
an be writtenmost simply in the ellipti
al 
oordinate v [18℄ de�nedby its Lamé 
oe�
ientH = dsdv = ap1� e2 
os2 v; (16)where e is the e

entri
ity of the ellipse and a is thelength of its major semiaxis; we use v(s = 0) = 0. Thee�e
tive (geometri
al) potential in Eq. (1) 
an then bewritten asVeff (s) = � ~28ma2 1� e2(1� e2 
os2 v)3 ; (17)whi
h is in agreement with Ref. [4℄.We introdu
e the new wave fun
tion�(v(s)) = �(s)=pH; (18)for whi
h the equation takes the form (see Eqs. (14)and (16)�(18))d2dv2 � + �2ma2~2 Eg(v) + U(v)� � = 0; (19)U(v) = 54 1� e2g2 � 1� e2=2g � e416 sin2 2vg2 ; (20)where g = H2=a2 = 1� e2 
os2 v: Equation (19) is theHill equation with �-periodi
 
oe�
ients; the funda-mental system of its solutions is [19℄�� = e�i�vy(�v); (21)

where y(v) is a �-periodi
 fun
tion and � is the 
har-a
teristi
 exponent. We then have (see Eqs. (18)and (21)) � = C1ei�vey(v) + C2e�i�vey(�v); (22)where ey(v) � pHy(v).With the known wave fun
tions, we are now inter-ested in T = jtj2, whi
h des
ribes the transmission overthe potential well (see Eq. (17)). We use the 
ontinu-ity 
onditions for the wave fun
tion and its derivative,whi
h gives a system of four equations that is similarto the one given in Ref. [20℄; the result isT = "1 + 14 ��� 1��2 sin2 ��#�1 ; (23)where we denoted� = � iak1p1� e2 ��0+�+�v=0 : (24)(To obtain Eq. (23), we used that � and � are real,whi
h is straightforward to proof.)4. RESULTS AND DISCUSSIONTo understand how the 
ondu
tivity G depends onthe bias eV and the geometry, we must �nd the solu-tion of Hill equation (19). We did this numeri
ally andalso within the perturbation theory for an ellipse thatis 
lose to the 
ir
le (i.e., e2 � 1); we found that thetwo solutions are in good agreement for e < 1=2. Inthe zeroth-order approximation in e2 (i.e., for e = 0,the 
ase of a 
ir
ular ar
), we have �0 = ak2 and�0 = k2=k1; where k2 = p2mE=~2 + 1=4a2 (see alsoRef. [12℄). This implies that os
illations in the G(V )dependen
e 
an be observed if a & �F and the ampli-tude of these os
illations is su�
iently small.The �rst-order approximation of the perturbationtheory (for a > �F ) yields� � �0 + e2�1; � � �0 + e2�1; (25)where �1 = �ak214k2 � � �04�0 ; (26)�1 = k14k2((ak2)2 � 1) : (27)We next solve Hill equation (19) numeri
ally. The
hara
teristi
 exponent � is de�ned via the solution934
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Fig. 2. Condu
tan
e as a fun
tion of the biasG = G(eV ) at e = 0:99, a = 10�F (at the samevalue of a but with e = 0, the amplitude �G=G0 is ofthe order 10�5)
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a=�F2 4 6 8 10Fig. 3. Condu
tan
e as a fun
tion of the length of themajor semiaxis G = G(a) at e = 0:99, V = 0of Eq. (19) with the initial 
onditions �1(0) = 1 and�01(0) = 0, and � is then the solution of the equation�1(�) = 
os�� (see Ref. [19℄). It is more di�
ult to�nd �+ (see Eq. (21)), whi
h 
an be formulated as theboundary value problem for Eq. (19) with the bound-ary 
onditions �2(0) = 0 and �2(�) = sin�� (where�2(v) = Im �+(v)). Introdu
ing �3(v) = �2(v)=�02(0),we have the initial 
ondition problem for �3(v) (with�3(0) = 0 and �03(0) = 1), whose solution allows us tode�ne �, ��0+=�+�v=0 = �02(0) = sin��=�3(�). The re-sults of the des
ribed pro
edure are numeri
ally plottedin Figs. 2 and 3 for a su�
iently elongated ellipse withe = 0:99 (with a=b = 7; where a and b are the respe
-tive lengths of its major and minor semiaxes). We noteabout Fig. 3 that under the restri
tion R� 
, we mustnot let a go to 0, namely, we may suppose R � 
 fora=�F � 10 but may not for a=�F . 1 (for e 
lose to 1).We also note that Eq. (15) is, stri
tly speaking, 
orre
tfor eV small 
ompared with EF and des
ribes G(V )

dependen
e for eV � EF qualitatively. We 
on
ludethat e 
lose to 1 in
reases signi�
antly os
illations in
omparison with e = 0 
ase; the amplitude of os
illa-tions in G = G(V ) dependen
e is de�ned by the valueof a=�F .In summary, we have rederived the quantum-me
hani
al e�e
tive potential indu
ed by the 
urvatureof the one-dimensional quantum wire. We have shownthat for any 
on�ning potential V
 depending only onthe displa
ement q from the referen
e 
urve C, thise�e
tive potential is universal: it does not depend onthe 
hoi
e of V
 and is given by Eq. (1). We havestudied the e�e
t of the 
urvature on the 
ondu
tan
eof an ideal ellipti
ally shaped quantum wire in thezeroth-order approximation in the width of the wire.It has been shown, in parti
ular, that due to the e�e
tof the 
urvature, the dependen
e of the 
ondu
tan
eG(V ) on the applied bias 
hanges drasti
ally. Thus,the e�e
t of the 
urvature 
an be observed by mea-suring the 
ondu
tan
e of the quantum wire. On theother hand, one 
an 
hange the 
hara
teristi
s of thequantum wire, su
h as the 
ondu
tan
e, setting itssize, shape, or applied bias.One of the authors (S. N. S.) would like to thankProf. I. D. Vagner for his warm hospitality duringthe stay at Grenoble High Magneti
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