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The conductance of a ballistic elliptically shaped quantum wire is investigated theoretically. It is shown that
the effect of the curvature results in a strongly oscillating dependence of the conductance on the applied bias.
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1. INTRODUCTION

Recent advances in semiconductor physics and tech-
nology enabled the fabrication and investigation of
nanostructure devices that have some important prop-
erties, such as small size, reduced dimensionality, rela-
tively small density of charge carriers, and hence, large
mean free path (which means that particles exist in the
ballistic regime, and scattering processes can therefore
be neglected) and large Fermi wavelength Ap. One of
mesoscopic systems of particular interest is the quan-
tum wire in which particles are constrained to move
along a one-dimensional curve due to quantization of
the transverse modes'). One of the numerous impor-
tant problems pertaining to the quantum wire is to
determine the influence of the process of reducing the
dimensionality upon properties of the system.

Jensen and Koppe [1] and da Costa [2] have empha-
sized that a low dimensional system, in general, has
some knowledge of its surrounding three-dimensional
Cartesian space: the effective potential arises from the
mesoscopic confinement process, which constrains par-
ticles to move in a domain of a reduced dimensionality.
Namely, it was shown that a particle moving in a one-
or two-dimensional domain is affected by an attractive
effective potential [2]; this result was first obtained in
Ref. [3] and later in Ref. [4]. This idea was widely stud-
ied by several other authors (see Refs. [5-12] and, for
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1) We study here only the one-channel wire with only the low-
est subband occupied.

example, Ref. [13] about the experimental realization
of such systems).

It was also shown in Ref. [14] that the torsion of the
twisted waveguide affects the wave propagation in the
waveguide independently of the nature of the wave. In
particular, the torsion of the waveguide results in the
rotation of the polarization of light in a twisted op-
tical fiber [15]. In Ref. [16], the authors prove that
in a waveguide, be it quantum or electromagnetic one,
bound states exist. Several papers have been devoted
to the relation of the quantum waveguide theory to the
classical theory of acoustic and electromagnetic waveg-
uides (see Ref. [6] and references therein).

The effect of the curvature on quantum properties
of electrons on a two-dimensional surface, in a quantum
waveguide, or in a quantum wire can be observed by in-
vestigating kinetic and thermodynamic characteristics
of quantum systems [8-12]. In this paper, we propose
to use measurements of the conductance GG of a quan-
tum wire for this purpose; we show that the reflection of
electrons from regions with a variable curvature results
in a non-monotonous dependence of the conductance
on the applied bias.

In Ref. [4], the Schrédinger equation on the ellip-
tically shaped ring was solved numerically in order to
obtain the eigenvalue spectrum of a particle confined to
the ring. The authors studied a quantum mechanical
system confined to a narrow ring by the rectangular
well potential. They showed that in the limit as the
ring width v tends to zero, the behavior of the system
is similar to the straight line motion with the effective
potential
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Fig. 1. Elliptically shaped quantum wire

h2

Vet = "SR

(1)

where R is the radius of curvature. Later, in Ref. [9],
the electron energy spectrum in an elliptical quantum
ring was considered in connection with the persistent
current; the authors have concluded that the effective
potentials Vg are different for different confining po-
tentials even in the limit as v tends to zero. This
conclusion is in contradiction with the results of some
other papers [2,6]. We address this problem in the
present paper; we investigate the derivation of the one-
dimensional Schrodinger equation in order to under-
stand deeper how the particle motion along the curve
C is affected by the confining potential. We demon-
strate the consistency with the previous results in [2]:
the effective potential is universal for different confin-
ing potentials and depends only on the curvature (see
Eq. (1)).

In Sec. 2, we study the derivation of the one-
dimensional Schrodinger equation starting from the
two-dimensional Schrodinger equation describing a
non-relativistic electron that moves in a plane? and is
subjected to the confining potential V. In Sec. 3, we
apply these results to theoretically study the conduc-
tance of the quantum wire that consists of two linear
parts and one elliptically shaped part between them;
the wire is connected to two conducting reservoirs at
different voltages (see Fig. 1). In Sec. 4, we discuss the
influence of the curvature on the conductance.

2) We cosider only flat curves and we refer the reader interested
in the effect of the torsion to Ref. [7].
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2. SCHRODINGER EQUATION

In this section, we follow the argument given in [2].
We consider the electron with the effective mass m
moving in a quantum wire along a curve C' that is con-
structed by a prior confinement potential V,. For sim-
plicity, we start with the two-dimensional motion. We
introduce the orthonormal coordinate system® (s, q),
where s is the arc length parameter and ¢ is the co-
ordinate along the normal n = n(s) to the reference
curve C. The curve C is then described by a vector
valued function r(s) of the arc length s. In a vicinity
of C, the position is therefore described by

R(s,q) = r(s) + qn(s). (2)

To obtain a meaningful result, the particle wave
function must be «uniformly compressed» into a curve,
thereby avoiding tangential forces [2,4,9]. We thus
consider V, to depend only on the ¢ coordinate that
describes the displacement from the reference curve C'
this means that points with the same ¢ coordinate but
different s coordinates (which describe the position on
() have the same potential. This potential involves
a small parameter v such that the potential increases
sharply for every small displacement in the normal di-
rection; « is the characteristic width of the potential
well V,,. The simplest examples of these potentials are
the rectangular well potential and the parabolic-trough
potential (we note that the real potential would likely
be a combination of both, however). The small param-
eter in the problem is therefore v/R <« 1 [5].

The motion of the electron obeys the time-
independent Schrédinger equation

h2

~ YA

3 Begth + Vo () = e,

(3)

where the Laplacian is

110 10,0
" h9shds  hdq O
with
h=1-ks) (5)

being the Lamé coefficient (corresponding to the lon-
gitudinal coordinate s) that depends on the curvature
k = k(s) in accordance with the Frenet equation.

3) The advantages of establishing the (s,q) coordinate sys-
tem from the very beginning are that it allows the most general
analysis and that (because of the diagonal structure of the met-
ric tensor) we can decompose the dynamical equation of motion
into two equations in the zero-order approximation in the width
of the quantum wire.
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To eliminate the first-order derivative with respect
to ¢ from Eq. (3)4, we introduce the new wave function

¥ by

b(s,0) = Vv (s.0). (6)
This is the wave function introduced in Ref. [2] and it
is normalized such that

/dsdq‘{pv(s,q) =1.

(7)

‘ 2

Schrodinger equation (3) then becomes

R AT
2m \ Os h?2 0s  9¢>
+ Vegr (5.0 + Vo (@) = b, (8)
where
h2
Veff(SHJ)—_%
k2 ¢, ,d%k  5¢° dk\ >
-2 4727 Y4 4,4 o
><<h 4-|-2h d52+4h <ds> . (9)

which is in agreement with Refs. [5, 8].

One must be careful with Eq. (8) in order to avoid
mistakes found in the literature [7, 9]. First, we can not
decompose this equation, which contains terms that are
functions of both s and ¢, into two equations intro-
ducing ©¥(s,q) = xn(q)xe(s) as in Ref. [7], where the
authors obtained Eq. (31) for x:(s) with coefficients
depending on the ¢ variable. To understand another
mistake [9], we consider Eq. (8) within the perturba-
tion theory in the small parameter v (which is small
compared to R) (see also Ref. [6]). We expand h™2
and Vg in series in ¢ < v, and explicitly write the
zeroth term as

h?=1+ Zf[(s)ql,
=1

( +y yz(s)ql> :
=1

Equation (8) can then be rewritten as

h2
2m

K (s)
4

Vveff(sa Q) = -

(Ho n 17) b = et (10)

4) We do this to eliminate terms of the form f(q)8d/8q that were
called «dangerous terms» in Ref. [1]. We cannot use f(g) = f(0)
because f(q)0/9q ~ [f(0) + ¢df (0)/dq]d/dq: although ¢ ~ v, we
have 8/8q ~ y~1, and the second term in the brackets is there-
fore the order 40, and this is the order of terms in which we are
interested below.
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where

LR P\ R E(s)

Ho=—5— <@ 8_q2>_% 1 +V4(q), (11)
VoS (-t bu). 02

We note that V is a second order differential operator
in s. The solution of Eq. (10) is

F= 3O+ 350,
=1

where JU) ~ A and 1;(0) corresponds to the zeroth-
order problem, Hoy)(®9) = £¢(®. This equation can
be decomposed by separating the wave function as

D(s.q) = 1(a)x(s),

n @2
o d—qQU + Vy(g)n = Em (13)
and
2 2
~5 g X+ Verr (s)x = Eix, (14)

where Vir(s) is given by Eq. (1), ¢ = E; + E;, and
R = k(s)™! is the curvature radius (in the next sec-
tion, we omit the subscript «I», identifying the en-
ergy E with its longitudinal component E;). Equa-
tion (13) describes the confinement of the electron to a
~-neighborhood of the curve C' and Eq. (14) describes
the motion along the s coordinate (along C'). In fact,
Eq. (14) is a conventional one-dimensional Schrédinger
equation for the electron moving in the s-dependent
potential Vs (s); the latter relates the geometry and
the dynamical equation. The origin of this potential is
in the wavelike properties of the particles; Vipr is es-
sential for the values of R/Ap that are not large. We
emphasize that the effective potential in Eq. (1) in the
zeroth-order approximation in /R is independent of
the «one-dimensionalization» method, i.e. of the choice
of V,,(¢) (compare this conclusion with the one derived
in Ref. [9]).

We also note that if we started from the three-
dimensional equation of motion, we would obtain an
additional effective potential that vanishes in the pla-
nar situation [2].

3. CONDUCTANCE

The conductance G of quantum contacts can be
related to the transmission probability T'(E) by Lan-
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dauer’s formula [17]. At zero temperature and finite
voltages V, it takes the form

6= fr (e L) er (- L),

where Gy = 2¢?/h and Ef is the Fermi energy. The
two terms in this equation correspond to two electronic
beams moving in the opposite directions with different
bias energies. We are interested in the transmission
probability T'(E) for the electron energy E.

In this section, we consider the curve C' to con-
sist of three ideally connected parts (see Fig. 1): (i)
linear (s < 0), (ii) elliptical (0 < s < [, where [
is half of the ellipse perimeter), and (iii) one more
linear domain (s > 1). We consider wave functions
in regions (i) and (iii) to be the respective plane
waves U1 = e*15 4 re”%#15 and o3 = te?*1?, where
k1 = /2mE/R? is the wave vector and ¢ and r are the
transmission and reflection coefficients; the transmis-
sion probability is given by T' = [t|*. We have ¢ = Y,
where x is the solution of Eq. (14) with the effective po-
tential given by Eq. (1). The curvature can be written
most simply in the elliptical coordinate v [18] defined
by its Lamé coefficient

d
H=2 = ayv/'1—e?cos? v, (16)

dv

where e is the eccentricity of the ellipse and a is the
length of its major semiaxis; we use v(s = 0) = 0. The
effective (geometrical) potential in Eq. (1) can then be
written as

n? 1—e?
8ma? (1 —e2cos?v)3’

Verr (s) = (17)
which is in agreement with Ref. [4].
We introduce the new wave function

£(v(s)) = x(s)/VH, (18)

for which the equation takes the form (see Eqs. (14)
and (16)—(18))

d? 2ma?

Wf + TEQ(U) +U(v)| £ =0, (19)

_51-e 1—62/2_§sin22v7 (20)

U =g 92 g 16 g2

where g = H?/a? = 1 — €? cos® v. Equation (19) is the
Hill equation with w-periodic coefficients; the funda-
mental system of its solutions is [19]

e = ey (o), (21)

where y(v) is a m-periodic function and pu is the char-
acteristic exponent. We then have (see Eqs. (18)
and (21))

X = O1€i””27(?)) + 0267”“)?7(_7))7 (22)

where 7(v) = VHy(v).

With the known wave functions, we are now inter-
ested in T = [#]*, which describes the transmission over
the potential well (see Eq. (17)). We use the continu-
ity conditions for the wave function and its derivative,
which gives a system of four equations that is similar
to the one given in Ref. [20]; the result is

-1

1+1 P 2sin2 (23)
1 - T

where we denoted

T =

i (&
TRV e <s+>v_o‘ 24

(To obtain Eq. (23), we used that pu and x are real,
which is straightforward to proof.)

4. RESULTS AND DISCUSSION

To understand how the conductivity G depends on
the bias eV and the geometry, we must find the solu-
tion of Hill equation (19). We did this numerically and
also within the perturbation theory for an ellipse that
is close to the circle (i.e., €2 < 1); we found that the
two solutions are in good agreement for e < 1/2. In
the zeroth-order approximation in e? (i.e., for e = 0,
the case of a circular arc), we have py = aks and
ko = ka/k1, where ks = \/2mE/h? + 1/4a® (see also
Ref. [12]). This implies that oscillations in the G(V)
dependence can be observed if a 2 Ap and the ampli-
tude of these oscillations is sufficiently small.

The first-order approximation of the perturbation
theory (for a > Ap) yields

R g + et kA Ko+ ek, (25)
where
ak; Ho
M1 4k2 4:‘4307 ( )
k
K1 ! (27)

= ks ((aks)2 — 1)

We next solve Hill equation (19) numerically. The
characteristic exponent p is defined via the solution
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G/Go dependence for eV ~ Ep qualitatively. We conclude
1.0 that e close to 1 increases significantly oscillations in
0.9 comparison with e = 0 case; the amplitude of oscilla-
tions in G = G(V') dependence is defined by the value
0.8 of a/)\p.
In summary, we have rederived the quantum-
0.7 mechanical effective potential induced by the curvature
0.6 of the one-dimensional quantum wire. We have shown
that for any confining potential V,, depending only on
0.5 : : : : the displacement ¢ from the reference curve C, this
0 0.2 0.4 0.6 0.8 1.0 . c g . .
eV/Er effective potential is universal: it does not depend on
the choice of V, and is given by Eq. (1). We have
Fig.2. Conductance as a function of the bias studied the effect of the curvature on the conductance

G = G(eV) at e = 0.99, a = 10\r (at the same
value of a but with e = 0, the amplitude AG/Gy is of
the order 1077)

G/Go
1.0

0.8

0.6

04

0.2

10
a/AF

Fig.3. Conductance as a function of the length of the
major semiaxis G = G(a) at e =0.99, V =0

of Eq. (19) with the initial conditions & (0) = 1 and
£1(0) = 0, and p is then the solution of the equation
& (m) = cosmu (see Ref. [19]). It is more difficult to
find & (see Eq. (21)), which can be formulated as the
boundary value problem for Eq. (19) with the bound-
ary conditions &(0) = 0 and & (w) = sinwu (where
§(v) = Im&;(v). Introducing &5(v) = &(v)/&(0),
we have the initial condition problem for &3(v) (with
&(0) = 0 and &(0) = 1), whose solution allows us to
define x, (&, /&4),_, = €(0) = sinmp/E(x). The re-
sults of the described procedure are numerically plotted
in Figs. 2 and 3 for a sufficiently elongated ellipse with
e =0.99 (with a/b = 7, where a and b are the respec-
tive lengths of its major and minor semiaxes). We note
about Fig. 3 that under the restriction R > v, we must
not let a go to 0, namely, we may suppose R > v for
a/Ar ~ 10 but may not for a/Ar < 1 (for e close to 1).
We also note that Eq. (15) is, strictly speaking, correct
for eV small compared with Er and describes G(V)
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of an ideal elliptically shaped quantum wire in the
zeroth-order approximation in the width of the wire.
It has been shown, in particular, that due to the effect
of the curvature, the dependence of the conductance
G(V) on the applied bias changes drastically. Thus,
the effect of the curvature can be observed by mea-
suring the conductance of the quantum wire. On the
other hand, one can change the characteristics of the
quantum wire, such as the conductance, setting its
size, shape, or applied bias.
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