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There exists a wide temperature region (GiT < T — T. < T+/Gi), where the influence of fluctuations on the
thermodynamic properties of superconductors can be taken into account in the linear (Gaussian) approximation,
while their influence on the kinetic properties is strongly nonlinear. The Maki—-Thompson cotribution to the
conductivity saturates in this region. However, the Aslamazov-Larkin contribution becomes even more singu-
lar. This enhancement is related to the fact that nonlinear effects increase the lifetime of fluctuating pairs.
Pair-breaking and energy relaxation processes can decrease the nonlinear effects.

PACS: 74.40.+k
1. INTRODUCTION

The electron scattering off the usual impurities
leads to a temperature-independent residual resistance
of the normal metal [1]. The conductivity of bulk
samples and films can be measured with a very high
accuracy. This allows one to study different mecha-
nisms leading to the temperature-dependent conduc-
tivity at low temperatures. One of these mechanisms
is related to thermal fluctuations above the supercon-
ducting transition temperature T, [2-5]. There are
two kinds of fluctuation corrections leading to the
temperature-dependent conductivity above T,.. The
first one is known as the Maki-Thompson (MT) con-
tribution and the second is the conductivity of fluc-
tuating pairs (the Aslamazov-Larkin (AL) contribu-
tion). These corrections depend differently on the spin
flip scattering time 75. The characteristic temperature
range for the contributions of both types is determined
by the Ginzburg parameter Gi that depends on dimen-
sionality; for films, to Gi = 79 = 1/32vDd = €2 /16hor,
where v = mp? /27 is the electron density of states per
spin, D = vply, /3 is the diffusion coefficient, d is the
film thickness, I is the electron mean free path, p is
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the Fermi momentum, and o is the conductance of
a square film. It has been found in [6] that nonlin-
ear fluctuation phenomena lead to a new temperature
scale T,v/Gi (see also [7-10]). In this paper, we obtain
expressions for the conductivity in the temperature re-
gion Gi < 7 < V/Gi, where the Gaussian approximation
works well and the nonlinear fluctuation effects are im-
portant.

In [6], an attempt to find the fluctuating correc-
tion to the conductivity was made. The main point
was that long-wave fluctuations with Dk? < T are
essential. These fluctuations can be considered as a
Bose condensate. The dynamics of superconductors
must be considered in the background of these fluc-
tuations. They lead to a pseudogap in the excitation
spectrum. In this paper, we show that short-wave fluc-
tuations with Dk?> > T'1 can be important. It was
found in [11] that short-wave fluctuations of the or-
der parameter A affect the electron Green’s functions
as paramagnetic impurities with the depairing factor
[ = 7,1 = (|A]?)/e. Essential values of the energy ¢
are of the order ¢ ~ A ~ T+/Gi, and therefore, T is
of the order TW/Gi. This large value of the depairing
factor leads to the saturation of the MT contribution
to conductivity in the temperature region 7 < v/Gi.

A more complicated situation occurs for the AL
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contribution. This contribution is proportional to the
density of pairs and their lifetime. For sufficiently
large values of 7, the time-dependent Ginzburg—Landau
(TDGL) equation can be used to obtain this lifetime.
Tt is proportional to i/ (T —T,), and hence, the AL con-
tribution is proportional to 7—'. If the concentration
of paramagnetic impurities is large or if the energy re-
laxation time is short, the TDGL equation can be used
for all temperatures 7T'. In this case, the AL contribu-
tion is valid in the temperature range 7 > Gi. In the
opposite limiting case, the nonlinear fluctuation effects
destroy the applicability of the TDGL equation and
increase the lifetime of fluctuating pairs. As a result,
the AL contribution to the conductivity becomes more
singular in the temperature region vGi > 7 > Gi.

2. QUALITATIVE PICTURE

In the temperature region 1 > 7 > Gi, thermo-
dynamic fluctuations of the order parameter A can be
considered to be Gaussian. The corresponding correla-
tor is given by

T 1 256 GiT?

AAYy=——— =22 T
(Aidw) =75 7+7Dk?/8T ~ n k>+8Tt/xD

(1)
To calculate thermodynamic quantities in the tem-
perature region 7 > Gi, it is sufficient to know this
correlator only. However, a more complicated prob-
lem must be solved in order to calculate kinetic coef-
ficients. One must find how the Gaussian fluctuations
change the one-particle excitation spectrum. The long-
wavelength fluctuations with k* < k2,;, = 87'7/7D can
be considered as a local condensate. They lead to the
formation of a pseudogap in the one-particle spectrum
of excitations. It follows from Eq. (1) that the pseudo-
gap is equal to
8 -
Apg = ;\/@T. (2)
At some distance from the transition (for 7 > v/Gi),
only the excitations with the energy w > Apg are sig-
nificant. The pseudogap does not play any role in these
excitations. It is therefore sufficient to consider fluctu-
ations in the linear approximation only (see [3-5]). It
is important, however, that the excitations with the
energy w < Apg become essential in the temperature
region 7 < V/Gi. In [6], the fluctuation correction to
the conductivity was considered with the pseudogap
taken into account in the same way as the gap below
the transition temperature. This approximation gives a
correct estimate for the width of the temperature region
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where the non-linear effects are important. However,
the model with a constant A considered in [6] cannot
reproduce the correct temperature dependence of the
conductivity in the temperature region 7 < v/Gi.

To describe the nonlinear effects, we consider fluc-
tuations of A in the statical approximation. This is el-
igible, because the fluctuation lifetime (T'7)~! is large
compared to the inverse pseudogap. However, the spa-
tial dispersion of the pseudogap changes the physical
picture significantly. To take the spatial variations
into account, we must calculate the conductivity as a
function of the order parameter A(r) that is an ar-
bitrary function of r and average the result over the
Gaussian fluctuations with correlator (1). We accom-
plish this program up to a numerical coefficient in the
limiting case where the energy relaxation rate is large
(1. < (TT)™'). In the other cases, we obtain a func-
tional form of the temperature dependence of the con-
ductivity with undetermined coefficients.

To consider the spatial dependence of the order pa-
rameter, we use the results obtained in [11], where
the spatial variations of A were shown to act on one-
particle excitations in the same way as the magnetic
impurities. In this case, the total pair-breaking rate I’
can be written as a sum of the pair-breaking rate due
to the magnetic impurities and the fluctuation term.
Thus, the self-consistent equation for I' becomes

@Rk (ALAY) 1
F‘/(

27 w4+ DK 24T | 7 )
It is important to mention that Eq. (3) is exact if either
w > T or 7, is very small such that the first term in
Eq. (3) is a small correction to the second one. In the
other cases, the self-consistent equation (3) can be con-
sidered as an approximation and gives the result valid
by the order of magnitude only.

In the region where w < I' and I > T't, we obtain

from Egs. (3) and (1) that
1/2
Giln —) ,

font

which coincides with the value obtained in [7,12] up to
the logarithmic term. In what follows, we repeat the
derivation from [11] and show that the pseudogap does
not change result (4) qualitatively.

We note that the pair-breaking rate I" is of the or-
der of the pseudogap Apg. Thus, a wide maximum of
the density of states appears at w ~ Apg.

As known from [5], the MT correction to the con-
ductivity saturates for Tt < T' and takes the form

5oMT  8TGi 7T
- tarr

r
r=—
m

(5)
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As can be seen from Eqs. (4) and (5), this saturation
occurs for 7 < +/Gi. Similar results have been obtained
in [7,8,10]. However, numerical coefficients are differ-
ent.

We note that the numerical coefficient in Eq. (5) de-
pends on how the summation of higher-order diagrams
is made. However, its exact value is not very important
because in the region T'r < I', the MT contribution is
less singular than the AL contribution and can be ne-
glected. The AL contribution does not saturate as T
tends to T, but becomes more and more singular.

To estimate the AL contribution due to the appear-
ance of fluctuating Cooper pairs, we use the simple
Drude formula

neQ

(50’AL —m Tfl,

= (6)
where n, m, and 7y, are the concentration, the mass,
and the lifetime of the fluctuating Cooper pairs. The
ratio n/m can be estimated from Eq. (1), while the
lifetime follows from the TDGL equations,

(

where ( is the Langevin noise. In the two-dimensional
case, we have

9,
“ot

<DW—F§TT>Ak@)=(@L (7)

no_ T
m . 2rdh?
and

7h

=T —Tha

At a sufficient distance from the transition (77 > Apg)
or for a very large energy relaxation rate, we can set
a = 1, because the quasiparticles are at the thermal
equilibrium. Thus, we have

doar _ Gi

T

(8)

a

In the presence of the pseudogap, there is no equi-
librium and the coefficient a becomes greater than one.
We recall that below the transition temperature, the
coefficient a in the TDGL equations for |A| changes
similarly (see, e.g., [13-17]). The growth of @ and, con-
sequently, the growth of the fluctuation lifetime occur
because the quasiparticles require more time to attain
the thermal equilibrium (we let 7. denote the corre-
sponding time). A rough estimate gives a ~ ApgTe.
For a weak energy relaxation, 7. must be determined
from the diffusion equation with the pseudogap taken
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into account (see [18-20]). We note that in this com-
plicated case, the coefficient a becomes a nonlocal op-
erator. Rough estimates give the thermal equilibrium
transition time 7. ~ (Dk2,,)" ' ~ (T'r)"!. Taking

Eq. (2) into account, we obtain

o /oy = Gi*/? /72 9)

We see that paraconductivity can exceed the normal
conductivity og in the region Gi** > 7 > Gi. We
emphasize that corrections to all the thermodynamic
coefficients are small in this region and are adequately
described by the linear theory.

We now discuss the role of the energy relaxation
processes characterized by the quasiparticle lifetime 7.
In the two-dimensional case, the nonelastic electron—
electron scattering in dirty metals leads to the electron—
electron collision time

'~ Tdlp® ~ GiT.

Such a large collision time does not change nonlinear
effects. However, the nonelastic electron scattering off
phonons and other possible collective excitations can
decrease 7. significantly. These processes together with
additional pair-breaking processes (due to magnetic im-
purities or a magnetic field) decrease the nonlinear ef-
fects. The energy relaxation reduces the thermal equi-
librium transition time 7. If these processes are very
strong (for example, if the temperature is relatively
high), the transport equation for the distribution func-
tion becomes local and in the limit 77 ~ Dk < 771,
we can write 7. = 7.. Thus, in the temperature region
under consideration, we have

bo _ Gi*/’Tr.

- (10)

g0
The elastic scattering off magnetic impurities and the
magnetic field also tend to diminish the nonlinear
fluctuation effects in conductivity, but in a different
way. These scattering processes (as well as scatter-
ings off the static fluctuations of the order parame-
ter) do not affect the quasiparticle motion and hence,
7.. However, if the pair-breaking rate is sufficiently
large (I' > Apg), these processes lead to the re-
duced pseudogap Apg ~ (|A]*)/T (we recall that

\ (| A]) ~ TGi'/? without the pair breaking).
Thus, the fluctuation correction can be written as

Apg ~

60 /oo = Gi*T/7°T. (11)

In the presence of both a strong pair breaking and
a large energy relaxation, exact expressions for the co-
efficient a in the TDGL equation, which is local in this
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case, and for paraconductivity can be derived with a
logarithmic accuracy. The main contribution to a then
comes from the fluctuations with Tr < DE* < 77!,
The first inequality allows us to consider only the lead-
ing terms in the expansion of a with respect to A, and
the second one implies a local approximation in the
transport equation. The result is

7. (A?%)
= 12
o= 00 (12)
do  32Gi’T?r. T
— = . 1
oo m2Tr " 8T7.T (13)

We note that Eqs. (9)—(13) are valid only if the parame-
ters I and 7. are such that the contribution to the con-
ductivity do is larger than the usual Aslamazov-Larkin
contribution in Eq. (8). If I' > T and T7. < v/Gi or
if T?7. /T < Gi, the nonlinear effects are negligible and
the usual result (8) is valid for all 7 > Gi. We note
that the MT contribution saturates at the tempera-

tures such that Tt ~ max |T', 1/7., TVGi]|.

3. DEPAIRING FACTOR INDUCED BY
FLUCTUATIONS

A nonzero fluctuating order parameter A and the
Gor’kov Green’s function § [6] exist above the transi-
tion temperature. In the temperature region 7 > Gi,
the main contribution to the order parameter A arises
from zero «frequency». The momentum space can be
split into two parts, 7Dk? /8T < 7 and wDk? /8T > .
The fluctuations with 7 Dk?/8T > 7 can be considered
as «fast» variables created in the background of slow
fluctuations with 7Dk?/8T < 7. The «fast» fluctua-
tions induce the intrinsic depairing factor T' even if the
external depairing factor related to paramagnetic im-
purities is missing (75 — o00). A similar phenomenon
was studied in [11]. Using the method developed in that
paper, we obtain expressions for the statical Green’s
functions a and 8 and the depairing factor I'. We start
from the Usadel equation for the Green’s functions «
and (3 in the dirty limit (see [6,21]),

D 2 2
Aa —wf + 5} (aV B — BV a) = afT. (14)

Following [11], we present the Green’s functions «
and (3 in the field of «fasty fluctuations of the order
parameter A(k) as
B=(B)+b.

a = {a) + ay, (15)

598

The deviations of the Green’s functions from their
mean values can be found in the perturbation theory.
We have [11]

A(k) () (B)
w(a) + (AY{B) + Dk2/2°

' (k)

(16)

The «mean» Green’s functions (a) and (3) are so-
lutions of the system of equations

(@) +(8)? =1, (a)(A) —w(B) = (a)(B)T.

The value of the parameter I' is determined by
Eq. (16) and is equal to

r=/

where (A) = (|A[?)!/2. The quantity (A) in Eqs. (16)
and (17) must be understood as the integral over k of
expression (18) over the range mDk*/8T < 7; it then
becomes

}1/2

(8 = |-
Ld/( 64@}1/2. "

(17)

&k (AXAL)
27)2 {a)w + (A)(B) + Dk?/2’

(18)

d*k 1
2m)2 7+ nDk? /8T

%T{ 5

™

From Egs. (1) and (18), we obtain

1
(/4T 7)(w(e) + (A)(B)) — 1
< In (W(w<a> + <A><B>)> (20

AT T

As can be seen from Eq. (20), I'(w) is a function of
the energy w. In the range 7 < v/Gi, essential values of
w are of the order I'. Thus, T itself is of the order (A)
(see (19)). This order of T is related to fluctuations
of the order parameter modulus. This value is much
larger than the one due to the phase fluctuations of the
order parameter (see [6]).

_ 16TGi
N T

r

X

4. EQUATIONS FOR THE TIME-DEPENDENT
ORDER PARAMETER

The static Ginzburg-Landau equations are valid in
the wide temperature region

Gi< |[1-T/T. < 1. (21)

The TDGL equations are valid if the energy relax-
ation time 7. or the pair-breaking time 7, = -t is
sufficiently short [13-16]. For large 7., the dynamics
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of normal excitations becomes essential. As a result,

the dynamical term in the equation for the order pa-
rameter becomes more complicated. We now derive the
corresponding equation.

The order parameters Ay 5(¢) can be written as

TA

Ara(t) = 5L FS (1,1), (22)

with the Green’s function G presented in the form [18]

R GR, GI\’

where G:A-K are the retarded, advanced, and Keldysh
Green’s functions. Each of these is a Gor’kov—Nambu

matrix
R,AK
QRAK _ g1 Fy
- g0 7

(24)

where Ay (w) = A (—w).
In the dirty limit, we have the system of equations
for G4 (see [19])

R,A RAagR’A
—D6¢ < RAE);F Fl,é 7>+2iA1,29R’A—

A
ZgmARSt = 1l (25)

S

— 2ieF%A +

where Ilp g (R-4) i5 the electron—phonon collision inte-

gral; in the vicinity of the transition temperature T,
for small energy values |e| < T, it is equal to

Ph(R,A 1 _ra
11,2( )= _Ffé : (26)

&€

The Keldysh Green’s function G* can be written
as [20]

G = / at (GRf - fG), (27)

where the distribution function f is given by [20]

f=f+mhfi (28)

Equations for the distribution functions f; » have
been derived in [20] and are given by

of
Dar{a (1 GRGA)}

af af

D2 (1) +

+ 25 Spa + S X
X eDaA —2Sp %5 +41P"(f) =0,
ot ot
8f1 R A 8f . (29)
D@rs{ﬁ (1-7,G"1,G™) ayg—}—
0 . A
+25 (f1Spa) —4ifi Sp(vA) +
+ 28_f _a — %7— 1 @ @
de ot at =2 012 0e
+41"(f1) =0,
where
je = Sp - (GRAGE — GAaGH),
o (30)
d= i 1eAT.,
2a = GRr,—7.G", 20=GE-G*, 2v=GE+G*.

In the important limiting case where ¢ ~ T' > A,
Egs. (25) and (29) can be simplified and we obtain

-1
R,A ‘ . D&
Fl :—Z<F:FZS—5w A./

Do\ oy
RA _ . . "
F2 —_Z<F:F’LE—Ew> A7
»*f DO af 10f
or a2 4 or (]sfl) +Za_
0A 0A
X{ 8t1 (Fff—Fy )+8—2(F1 Ff‘)}"‘hph(f) =0,

@h _D.ofi Oh
a2~ 4o T ot

) 15}
+ 3f1 (AR + F') + A*(FF + FY) + a—ﬁ X
0 1 0A 0A
x{ 8;0"' < (B F+ 2 (FHFy ))}
+Igph(f1):
where
OFR OFR
_ _pRrRY RO
=Rt
OF
A 2
+F or 2 or (32)
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The general expression for the collision integrals
I} is given in [20, 22]. For small energy values |e| < T,
these integrals can be taken in the simple form

17M) = = (~th (o) + 7).

- (33)
MR = —h.

Te

TE_l = 7((3)71'1/5/2T3/2(3]9)27

where s is the sound velocity in the metal and ¢ is the
electron—-phonon coupling constant.

In the limiting case of strong energy relaxation with
7.A < 1, the distribution function f can be taken as
the equilibrium one,

f=th(e/2T), fi =0. (34)

In this case, Egs. (22), (31), and (34) allow us to obtain
the time-dependent Ginzburg-Landau equation in the
standard form

7¢(3)
8272

_ _ > D\
<1 T/T. A >A+8T8_A

T (0
5T (a

If the condition 7. A <« 1 is not satisfied, the devia-
tion of the distribution function f from its equilibrium
value can change the last term in Eq. (35).

In the range T > A, the crossing term in Eq. (31)
has the smallness (A/T)2. In the leading approxima-
tion, system (31) is therefore diagonal.

With the aid of Eqs. (27), (28), and (31), we can
rewrite Eq. (22) as

+ 2iecp> A=0. (35)

T . 92 T T de
[”s—T(‘Wl‘DwﬂAlﬁ Py
X [5f(F1R_F1A)—f1(F1R+F1A)] =0,
~ (36)
b . 9? b de
|:T+8_T<_'Lw1_Dw>:|A2—§ %
X [5f(F2R - FY) - fi(Ff + FQA)] =0,
where we set
f=th(e/2T) +4f. (37)

In (36), the contributions of the second terms are of
the order (A/T')2. This result is due to the cancellation
of the terms coming from §f and f;. But in the next
orders of the perturbation theory, the quantity f; be-
comes small and the main contribution arises from the
distribution function § f beyond perturbation theory.
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5. THE CONDUCTIVITY OF FLUCTUATING
PAIRS (THE ASLAMAZOV-LARKIN
CONTRIBUTION)

The conductivity of fluctuating pairs is given by the
diagrams in Fig. a. In what follows, we assume that
the order parameters Ay » can be written as the sums
of two terms. One of them is related to the statical
thermodynamic fluctuations A and A*. In the range
7 > Gi, these fluctuations are Gaussian with the cor-
relator given by Eq. (1). The wavy line in Fig. a gives
the dynamical fluctuations Al,g of the order parameter.
The correlators of these fluctuations K;; must be found
in the background of thermodynamic fluctuations,

Kij(wi) = v(A7Aj)u, - (38)

The contribution to the conductivity can be ex-
pressed through the correlators K in the same way as
for weak fluctuations [3].

We must first find the conductivity as a function of
the Matzubara frequency wg and then perform the ana-
lytical continuation in wg. The correction to the current
was found in [6] with the aid of the equations for the

Green’s function in the dirty limit in high-frequency
fields,

N1 faf
i2,= g5 [ T S0 LR+ ) »
w1

x L8 K (wi,r1,7) A8

wo?

(39)

where A,,is the vector potential of the external field
and the matrix L is given by

meD O

i?l(r) =TT o

Lo = L% =0,
12 21 ) (40)

Ta _ 7o
L22 - _Lll'

After the analytical continuation with respect to wg

a b
The Aslamov—Larkin contribution to the conductivi-

ty (a); the Maki—-Thompson contributions to the con-
ductivity (b)



HKITD, Tom 119, BeIm. 3, 2001

Nonlinear fluctuation phenomena ...

in Eq. (39), we obtain

4 1 T T
]S:_ﬁ/d%“l% / dw

—1i00

1 1
w1 —iw—0 wi+0

x Sp (ﬁ?ﬁ’(wl —iw+0,r, 1) X

XL K (wi = 6,r1,m)) A5, (41)

It was found in [6] that the fluctuations are weak in
the range 7 > Gi'/?. In this region, we have

Kll(w1+5) = }-(22((.4)1 + 6) =

1
T T+ (n/8T) (w1 + Dk2) (42)

From Eqs. (40)—(42), we obtain the well-known result
for the paraconductivity [3],

o /oq = Gi/T. (43)

To obtain the conductivity in the temperature re-

gion 7 < Gi'/?, we must find the correlation functions

K in the field of thermodynamic fluctuations A. We

must then average the expression for conductivity over

A. The correlation functions K can be found from
Eq. (36),

T 0?
T+ S_T <w1 - Dw> — Cll —012
K= . (44)
—Ca T+8T <w1—D8 2>—C22
where the operators C;; are given by
™ T de [
Cu=g [ o |(F = F)of — 1V (FF + Y|
T T de [
Co=g [ o |(F = F{)of® — 17 (FF + FY) |
[V (45)
de
Cn=g5 [ 5| (B = F)or® + (B + F) 6f1(1)] :
™ T de [
Cn =3 / o |(Bf = EYof® + (B + B 6f1(2)].
In Eqs. (45), the operators 6 f(?) and f1(1’2) are such that
5f =0fMAL +6fPA,, (46)

fi= VA + YA,

with 6f and f; being the respective solutions of system (31) in the field of A; and A,. System (31) cannot be
solved analytically for an arbitrary function A(r). Nevertheless, in the range 7 < Gil/z, the expression for the
correlation functions K can be found with the logarithmic accuracy if the value of the external depairing factor T’
is larger than A. In this case, simple expressions for the Green’s functions Ff?éA can be used,

—iA

R,A _
[ Fic’

1

(47)

2 =
If Dk? > |AJ?/T, the contribution of § f(1:?) is cancelled out in the expressions for Cj; and Cyy. We note that

DE? < |AJ*/T implies f1(1’2) < 6f12). Thus, this region gives the dominant contribution to C;;. Equations (44)
and (45) can then be reduced to
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e I (LA B!
+ier (et - 0fe) (am) =0 »
- - b * : - b
(o= g0 [ B et ) (ar) 4

i (et -0l () <o

T (o =D 2) () = ),

This system can be solved with the logarithmic ac-
curacy for strong energy relaxation 7.1 > T'r. In this
region, it follows from Eq. (1) that

(a*(w+rt-pg2) a)

64Gi 0
= 7T2 T2TE 1n< T

TTe

> . (49)

Equations (1), (48), and (49) now imply the relations

A 1n( >_

for the correlators K,

{

4GiTTSw1
nl

™

D ,
THerkt 8Trt.

8T

2
2 (4AGiITT.w . . ,
—;< — 1) I}A’n:l, Ky =Ky, (50)
where
oo
I—/ dx dy
S (1) (y+1) /2=y +2(a+y)ata®’ 1)
4 T7.Gi T
=1 1 .
“ + 't n(STTn)

The nondiagonal elements in K give a logarithmi-
cally small contribution to the conductivity. As a re-

sult, we obtain
In ( ) .

o 32GI’T’r.

0o m2Ir

T
8T 717:

(52)

The situation becomes more complicated if the en-
ergy relaxation time 7. is large. From (48), we then
obtain the equation for the correlator K74

T 9?
T+ 8—T(UJ1 — Dw) 1(11 +
Twi A _ PN/,
TRy (wl t e _DW) (A I‘“) -
2 -1
[ o
<16TF> A<W1+Ts D8r2> ’
T 92
XA T+8_T<wl_DW> +
-1
+ e} A*(w + 7t —D—Q)ilA X
167T e or2
02\
* —1 * T _
x A (w1+TE —Dw> (A A11) =
=4(r—mr1). (53)

We next find the mean value

<A* <w1 - Daa—;> - (Aexp(ikr))>

64T2Gi 1 ( >
= ln .

2 DE2+8T7/7
This implies that the coefficient at w; in the equation
for Ky is logarithmically large. Contrary to the previ-

n(Dk*+8T7/m)?
8TTLL)1

(54)
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ous case (721 > T'1), the last term in the right-hand
side of Eq. (53) is essential; together with off-diagonal
elements in K, it leads to the cancellation of large terms

in the conductivity. To verify this, we must find the
mean value of the product of four A in the last term in

Eq. (53). We have
|

() e
xA( ) A
(37

where

T+8—T<

ks =k — ki — k2,
AT Gi 1

-0 Z)+
s (o022 st = ) [ 28 f £

)( +—k2>r [(wl+D(k—k2)2)(w1+D(l~c—k1)2) ( 8Tch +w104k3)]717 (55)

TW1

X
16TT

d?ksy

(56)

ap =

T Dk2 +8T7/m

1 <7T (DE? + 8T7’/7r)2>

8TTOJ1

The In? term can be easily separated in expression (55). As the result, we obtain

1

I, =
Ty (rD/8T)k? + wyay X

(7D /8T)(k? —

k) 4 wi(ag, — o)

o 47rakGi/ d?ky
k r (2m)2

(1 + (7D /8T)E?) (k1 — k)2 (1 + (7D /8T) (k1 — k) + wi g, —) } 57

In Eq. (55), we omitted the «diagonal» term with the denominator of the type [wi + D(k + k1)?]%. This term
leads to a small correction to the coefficient at wy in (53).
With the same accuracy, we now present, the expression for the nondiagonal elements K5 and Ko; as

A* A* 1{11( )

Koy = — TW1 /d2k1d2k2 ,
16TT 2m)t (w1 + D(k—k1)?) [T+ (7TD/8T (k= k1 — k2)? + w1Qk—ky ko]
1(12 __ W1 /d2k3d2k4 AkgAk4I£22(k) .
16T/ ~(27)% (w1 + D(k + k3)) 7 + (xD/ST)(k + k3 + k1) + @10ks ko100

Using Eqs. (57) and (58), we obtain the correction
to the conductivity as

a :2
ot ATGE (59)

00 n'72
This expression is valid up to a numerical factor of the

order unity.

If the external depairing factor T' is zero (a super-
conductor without paramagnetic impurities), the quan-
tity I in Eqs. (51) and (59) must be replaced by its

intrinsic value
[~ TGi'/? (60)

(see Eq. (18)). In the temperature region Gi < 7 <
< Gi1/2, we then obtain

o%/oy ~ 4G 2 172, (61)

Equation (61) implies that the AL contribution to
the conductivity is strongly enhanced in the tempera-
ture region Gi < 7 < Gi'/?

6. THE MAKI-THOMPSON CONTRIBUTION
TO CONDUCTIVITY IN THE NONLINEAR
FLUCTUATION REGION

The general expression for the MT contribution to
the conductivity (o?) was given in [6]. Equation (28)
in [6] can be considered as the interpolation of the MT
contribution that is valid in the entire temperature re-
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gion 7 > Gi. The depairing factor I' in Eq. (28) in [6]
must be changed to a sum of two terms: the external
depairing factor 7, related to the spin flip scattering
on magnetic impurities and the intrinsic depairing fac-

tor given by Eq. (20). As a result, we obtain

7 _ L/ LI ! _
oo 8dv ) (2m)2 T+ Dk2/2 7+ (nD/8T)k%
2Gi 1 T
T s AT/ATr—1 ln(ﬁ)' (62)

In the range Gi < 7 < Gi'/?, the MT contribu-
tion reaches its saturation value and effectively becomes
temperature independent,

b :1/2
T =il 1n<G1 ) (63)

ago T

The correction remains small in the entire region
Gi < 7 < Gi'/? where nonlinear effects are important.

We note that real superconductors are always in-
homogeneous. The finite value of the transition width
leads to the appearance of an effective depairing fac-
tor [11]. The value of this depairing factor can be suffi-
ciently large in the units of TGi. In this case, the MT
contribution to the conductivity is small compared to
the AL contribution in the entire temperature region.

7. CONCLUSIONS

We have seen that nonlinear fluctuation effects are
much stronger in kinetics phenomena than in ther-
modynamics. If the external depairing factor is ab-
sent, the nonlinear effects lead to a saturation of the
MT contribution to the conductivity in the temper-
ature region 7 < Gi'/2. In this temperature re-
gion, the AL contribution becomes even stronger and
grows as 0%/og ~ Gi*?/r2. In a superconduc-
tor with a sufficiently large external depairing factor
I = 77! > TGi'/? or a short energy relaxation time
!> TGi'/?, the MT contribution saturates in the
temperature region 77 < ' or T'7 < 7= 1. It is not very
sensitive to nonlinear effects. Magnetic impurities and
the energy relaxation act on the AL contribution in dif-
ferent ways. Energy relaxation leads to the appearance
of a collision integral in the kinetic equation for the dis-
tribution functions of normal excitations. This collision
integral diminishes the nonequilibrium contributions to
the distribution functions. Magnetic impurities and the
magnetic field act only on the superconductivity and do
not lead to the relaxation of the distribution functions.

However, the TDGL equation essentially depends on
the electron distribution function. If 71 > T'Gi'/?, the
nonlinear fluctuation effects are not essential and the
AL contribution remains the same, 0% /0y = Gi/7, in
the entire temperature region 7 > Gi. If the inequality
=1 < TGi'/? is satisfied, the law 0%/0y ~ Gi3/2/7r2
applies in the temperature region 77 > 7-!. In the
region (T'7.) "% > 7 > Gi, the correction to the conduc-
tivity is given by 0®/ag ~ Gi*/?Tr. /7 (see Eq. (52)).
Magnetic impurities (or a current) suppress nonlin-
ear fluctuation effects in ¢®, but the effect is not as
strong as for the energy relaxation. In the range
TGi/T > 7 > Gi, the correction to the conductivity
0% is given by Eq. (59), 0%/oq ~ TGi?/(I't?). In the
temperature region 7 > TGi/T', the correction o® is
given by (43) in the linear approximation.

It is essential that the conductivity of fluctuating
pairs can be larger than the conductivity of normal
electrons in the temperature region where the correc-
tion to the thermodynamic quantities is still small (see
Eq. (61)).
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