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NONLINEAR FLUCTUATION PHENOMENAIN THE TRANSPORT PROPERTIES OF SUPERCONDUCTORSA. I. Larkin a;b, Yu. N. Ov
hinnikov a*a L. D. Landau Institute for Theoreti
al Physi
s, Russian A
ademy S
ien
es117940, Mos
ow, Russiab Theoreti
al Physi
al Institute, University of Minnesota116 Chur
h Street SE, Minneapolis, Minnesota USASubmitted 28 September 2000There exists a wide temperature region (GiT < T � T
 < TpGi), where the in�uen
e of �u
tuations on thethermodynami
 properties of super
ondu
tors 
an be taken into a

ount in the linear (Gaussian) approximation,while their in�uen
e on the kineti
 properties is strongly nonlinear. The Maki�Thompson 
otribution to the
ondu
tivity saturates in this region. However, the Aslamazov�Larkin 
ontribution be
omes even more singu-lar. This enhan
ement is related to the fa
t that nonlinear e�e
ts in
rease the lifetime of �u
tuating pairs.Pair-breaking and energy relaxation pro
esses 
an de
rease the nonlinear e�e
ts.PACS: 74.40.+k 1. INTRODUCTIONThe ele
tron s
attering o� the usual impuritiesleads to a temperature-independent residual resistan
eof the normal metal [1℄. The 
ondu
tivity of bulksamples and �lms 
an be measured with a very higha

ura
y. This allows one to study di�erent me
ha-nisms leading to the temperature-dependent 
ondu
-tivity at low temperatures. One of these me
hanismsis related to thermal �u
tuations above the super
on-du
ting transition temperature T
 [2�5℄. There aretwo kinds of �u
tuation 
orre
tions leading to thetemperature-dependent 
ondu
tivity above T
. The�rst one is known as the Maki�Thompson (MT) 
on-tribution and the se
ond is the 
ondu
tivity of �u
-tuating pairs (the Aslamazov�Larkin (AL) 
ontribu-tion). These 
orre
tions depend di�erently on the spin�ip s
attering time �s. The 
hara
teristi
 temperaturerange for the 
ontributions of both types is determinedby the Ginzburg parameter Gi that depends on dimen-sionality; for �lms, to Gi = �0 = 1=32�Dd = e2=16~��,where � = mp2=2�2 is the ele
tron density of states perspin, D = vF ltr=3 is the di�usion 
oe�
ient, d is the�lm thi
kness, ltr is the ele
tron mean free path, p is*E-mail: ov
hin�labs.poly
nrs-gre.fr

the Fermi momentum, and �� is the 
ondu
tan
e ofa square �lm. It has been found in [6℄ that nonlin-ear �u
tuation phenomena lead to a new temperatures
ale T
pGi (see also [7�10℄). In this paper, we obtainexpressions for the 
ondu
tivity in the temperature re-gion Gi < � < pGi, where the Gaussian approximationworks well and the nonlinear �u
tuation e�e
ts are im-portant.In [6℄, an attempt to �nd the �u
tuating 
orre
-tion to the 
ondu
tivity was made. The main pointwas that long-wave �u
tuations with Dk2 < T� areessential. These �u
tuations 
an be 
onsidered as aBose 
ondensate. The dynami
s of super
ondu
torsmust be 
onsidered in the ba
kground of these �u
-tuations. They lead to a pseudogap in the ex
itationspe
trum. In this paper, we show that short-wave �u
-tuations with Dk2 � T� 
an be important. It wasfound in [11℄ that short-wave �u
tuations of the or-der parameter � a�e
t the ele
tron Green's fun
tionsas paramagneti
 impurities with the depairing fa
tor� = ��1s = hj�j2i=". Essential values of the energy "are of the order " � � � TpGi, and therefore, � isof the order TpGi. This large value of the depairingfa
tor leads to the saturation of the MT 
ontributionto 
ondu
tivity in the temperature region � < pGi.A more 
ompli
ated situation o

urs for the AL595 12*
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ontribution. This 
ontribution is proportional to thedensity of pairs and their lifetime. For su�
ientlylarge values of � , the time-dependent Ginzburg�Landau(TDGL) equation 
an be used to obtain this lifetime.It is proportional to ~=(T�T
), and hen
e, the AL 
on-tribution is proportional to ��1. If the 
on
entrationof paramagneti
 impurities is large or if the energy re-laxation time is short, the TDGL equation 
an be usedfor all temperatures T . In this 
ase, the AL 
ontribu-tion is valid in the temperature range � > Gi. In theopposite limiting 
ase, the nonlinear �u
tuation e�e
tsdestroy the appli
ability of the TDGL equation andin
rease the lifetime of �u
tuating pairs. As a result,the AL 
ontribution to the 
ondu
tivity be
omes moresingular in the temperature region pGi > � > Gi.2. QUALITATIVE PICTUREIn the temperature region 1 � � � Gi, thermo-dynami
 �u
tuations of the order parameter � 
an be
onsidered to be Gaussian. The 
orresponding 
orrela-tor is given byh��k�ki = T�d 1�+�Dk2=8T = 256� GiT 2k2+8T�=�D : (1)To 
al
ulate thermodynami
 quantities in the tem-perature region � > Gi, it is su�
ient to know this
orrelator only. However, a more 
ompli
ated prob-lem must be solved in order to 
al
ulate kineti
 
oef-�
ients. One must �nd how the Gaussian �u
tuations
hange the one-parti
le ex
itation spe
trum. The long-wavelength �u
tuations with k2 < k2min = 8T�=�D 
anbe 
onsidered as a lo
al 
ondensate. They lead to theformation of a pseudogap in the one-parti
le spe
trumof ex
itations. It follows from Eq. (1) that the pseudo-gap is equal to �PG = 8�pGiT: (2)At some distan
e from the transition (for � > pGi),only the ex
itations with the energy ! > �PG are sig-ni�
ant. The pseudogap does not play any role in theseex
itations. It is therefore su�
ient to 
onsider �u
tu-ations in the linear approximation only (see [3�5℄). Itis important, however, that the ex
itations with theenergy ! < �PG be
ome essential in the temperatureregion � < pGi. In [6℄, the �u
tuation 
orre
tion tothe 
ondu
tivity was 
onsidered with the pseudogaptaken into a

ount in the same way as the gap belowthe transition temperature. This approximation gives a
orre
t estimate for the width of the temperature region

where the non-linear e�e
ts are important. However,the model with a 
onstant � 
onsidered in [6℄ 
annotreprodu
e the 
orre
t temperature dependen
e of the
ondu
tivity in the temperature region � < pGi.To des
ribe the nonlinear e�e
ts, we 
onsider �u
-tuations of � in the stati
al approximation. This is el-igible, be
ause the �u
tuation lifetime (T�)�1 is large
ompared to the inverse pseudogap. However, the spa-tial dispersion of the pseudogap 
hanges the physi
alpi
ture signi�
antly. To take the spatial variationsinto a

ount, we must 
al
ulate the 
ondu
tivity as afun
tion of the order parameter �(r) that is an ar-bitrary fun
tion of r and average the result over theGaussian �u
tuations with 
orrelator (1). We a

om-plish this program up to a numeri
al 
oe�
ient in thelimiting 
ase where the energy relaxation rate is large(�" � (T�)�1). In the other 
ases, we obtain a fun
-tional form of the temperature dependen
e of the 
on-du
tivity with undetermined 
oe�
ients.To 
onsider the spatial dependen
e of the order pa-rameter, we use the results obtained in [11℄, wherethe spatial variations of � were shown to a
t on one-parti
le ex
itations in the same way as the magneti
impurities. In this 
ase, the total pair-breaking rate �
an be written as a sum of the pair-breaking rate dueto the magneti
 impurities and the �u
tuation term.Thus, the self-
onsistent equation for � be
omes� = Z d2k(2�)2 h��k�ki! +Dk2=2 + � + 1�s : (3)It is important to mention that Eq. (3) is exa
t if either! � � or �s is very small su
h that the �rst term inEq. (3) is a small 
orre
tion to the se
ond one. In theother 
ases, the self-
onsistent equation (3) 
an be 
on-sidered as an approximation and gives the result validby the order of magnitude only.In the region where ! < � and � � T� , we obtainfrom Eqs. (3) and (1) that� = 8T� �Gi ln �T� �1=2 ; (4)whi
h 
oin
ides with the value obtained in [7; 12℄ up tothe logarithmi
 term. In what follows, we repeat thederivation from [11℄ and show that the pseudogap doesnot 
hange result (4) qualitatively.We note that the pair-breaking rate � is of the or-der of the pseudogap �PG. Thus, a wide maximum ofthe density of states appears at ! � �PG.As known from [5℄, the MT 
orre
tion to the 
on-du
tivity saturates for T� < � and takes the formÆ�MT�0 = 8TGi�� ln ��4T� : (5)596
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tuation phenomena : : :As 
an be seen from Eqs. (4) and (5), this saturationo

urs for � < pGi. Similar results have been obtainedin [7; 8; 10℄. However, numeri
al 
oe�
ients are di�er-ent.We note that the numeri
al 
oe�
ient in Eq. (5) de-pends on how the summation of higher-order diagramsis made. However, its exa
t value is not very importantbe
ause in the region T� < �, the MT 
ontribution isless singular than the AL 
ontribution and 
an be ne-gle
ted. The AL 
ontribution does not saturate as Ttends to T
 but be
omes more and more singular.To estimate the AL 
ontribution due to the appear-an
e of �u
tuating Cooper pairs, we use the simpleDrude formula Æ�AL = ne2m �fl; (6)where n, m, and �fl are the 
on
entration, the mass,and the lifetime of the �u
tuating Cooper pairs. Theratio n=m 
an be estimated from Eq. (1), while thelifetime follows from the TDGL equations,�a ��t +Dk2 + 8�T���k(t) = �(t); (7)where � is the Langevin noise. In the two-dimensional
ase, we have nm � T2�d~2and �fl = �~8(T � T
)a:At a su�
ient distan
e from the transition (T� > �PG)or for a very large energy relaxation rate, we 
an seta = 1, be
ause the quasiparti
les are at the thermalequilibrium. Thus, we haveÆ�AL� = Gi� : (8)In the presen
e of the pseudogap, there is no equi-librium and the 
oe�
ient a be
omes greater than one.We re
all that below the transition temperature, the
oe�
ient a in the TDGL equations for j�j 
hangessimilarly (see, e.g., [13�17℄). The growth of a and, 
on-sequently, the growth of the �u
tuation lifetime o

urbe
ause the quasiparti
les require more time to attainthe thermal equilibrium (we let �e denote the 
orre-sponding time). A rough estimate gives a � �PG�e.For a weak energy relaxation, �e must be determinedfrom the di�usion equation with the pseudogap taken

into a

ount (see [18�20℄). We note that in this 
om-pli
ated 
ase, the 
oe�
ient a be
omes a nonlo
al op-erator. Rough estimates give the thermal equilibriumtransition time �e � (Dk2min)�1 � (T�)�1. TakingEq. (2) into a

ount, we obtainÆ�=�0 = Gi3=2=�2: (9)We see that para
ondu
tivity 
an ex
eed the normal
ondu
tivity �0 in the region Gi3=4 > � > Gi. Weemphasize that 
orre
tions to all the thermodynami

oe�
ients are small in this region and are adequatelydes
ribed by the linear theory.We now dis
uss the role of the energy relaxationpro
esses 
hara
terized by the quasiparti
le lifetime �".In the two-dimensional 
ase, the nonelasti
 ele
tron�ele
tron s
attering in dirty metals leads to the ele
tron�ele
tron 
ollision time��1" � Td l p2 � GiT:Su
h a large 
ollision time does not 
hange nonlineare�e
ts. However, the nonelasti
 ele
tron s
attering o�phonons and other possible 
olle
tive ex
itations 
ande
rease �" signi�
antly. These pro
esses together withadditional pair-breaking pro
esses (due to magneti
 im-purities or a magneti
 �eld) de
rease the nonlinear ef-fe
ts. The energy relaxation redu
es the thermal equi-librium transition time �e. If these pro
esses are verystrong (for example, if the temperature is relativelyhigh), the transport equation for the distribution fun
-tion be
omes lo
al and in the limit T� � Dk2 � ��1" ,we 
an write �e = �". Thus, in the temperature regionunder 
onsideration, we haveÆ��0 = Gi3=2T�"� : (10)The elasti
 s
attering o� magneti
 impurities and themagneti
 �eld also tend to diminish the nonlinear�u
tuation e�e
ts in 
ondu
tivity, but in a di�erentway. These s
attering pro
esses (as well as s
atter-ings o� the stati
 �u
tuations of the order parame-ter) do not a�e
t the quasiparti
le motion and hen
e,�". However, if the pair-breaking rate is su�
ientlylarge (� > �PG), these pro
esses lead to the re-du
ed pseudogap �PG � hj�j2i=� (we re
all that�PG �qhj�j2i � TGi1=2 without the pair breaking).Thus, the �u
tuation 
orre
tion 
an be written asÆ�=�0 = Gi2T=�2�: (11)In the presen
e of both a strong pair breaking anda large energy relaxation, exa
t expressions for the 
o-e�
ient a in the TDGL equation, whi
h is lo
al in this597
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ase, and for para
ondu
tivity 
an be derived with alogarithmi
 a

ura
y. The main 
ontribution to a then
omes from the �u
tuations with T� < Dk2 < ��1" .The �rst inequality allows us to 
onsider only the lead-ing terms in the expansion of a with respe
t to �, andthe se
ond one implies a lo
al approximation in thetransport equation. The result isa = �"h�2i2� ; (12)Æ��0 = 32Gi2T 2�"�2�� ln �8T�"� : (13)We note that Eqs. (9)�(13) are valid only if the parame-ters � and �" are su
h that the 
ontribution to the 
on-du
tivity Æ� is larger than the usual Aslamazov�Larkin
ontribution in Eq. (8). If � > T and T�" < pGi orif T 2�"=� < Gi, the nonlinear e�e
ts are negligible andthe usual result (8) is valid for all � > Gi. We notethat the MT 
ontribution saturates at the tempera-tures su
h that T� � max h�; 1=�"; TpGii.3. DEPAIRING FACTOR INDUCED BYFLUCTUATIONSA nonzero �u
tuating order parameter � and theGor'kov Green's fun
tion � [6℄ exist above the transi-tion temperature. In the temperature region � > Gi,the main 
ontribution to the order parameter � arisesfrom zero �frequen
y�. The momentum spa
e 
an besplit into two parts, �Dk2=8T < � and �Dk2=8T > � .The �u
tuations with �Dk2=8T > � 
an be 
onsideredas �fast� variables 
reated in the ba
kground of slow�u
tuations with �Dk2=8T < � . The �fast� �u
tua-tions indu
e the intrinsi
 depairing fa
tor � even if theexternal depairing fa
tor related to paramagneti
 im-purities is missing (�s ! 1). A similar phenomenonwas studied in [11℄. Using the method developed in thatpaper, we obtain expressions for the stati
al Green'sfun
tions � and � and the depairing fa
tor �. We startfrom the Usadel equation for the Green's fun
tions �and � in the dirty limit (see [6; 21℄),��� !� + D2 ��r2� � �r2�� = ���: (14)Following [11℄, we present the Green's fun
tions �and � in the �eld of �fast� �u
tuations of the orderparameter �(k) as� = h�i + �1; � = h�i+ �1: (15)

The deviations of the Green's fun
tions from theirmean values 
an be found in the perturbation theory.We have [11℄�1(k) = � �(k)h�ih�i!h�i+ h�ih�i +Dk2=2 : (16)The �mean� Green's fun
tions h�i and h�i are so-lutions of the system of equationsh�i2 + h�i2 = 1; h�ih�i � !h�i = h�ih�i�: (17)The value of the parameter � is determined byEq. (16) and is equal to� = Z d2k(2�)2 h��k�kih�i! + h�ih�i +Dk2=2 ; (18)where h�i = hj�j2i1=2. The quantity h�i in Eqs. (16)and (17) must be understood as the integral over k ofexpression (18) over the range �Dk2=8T � � ; it thenbe
omesh�i = � T�d Z d2k(2�)2 1� + �Dk2=8T �1=2 �� T �64Gi�2 �1=2 : (19)From Eqs. (1) and (18), we obtain� = 16TGi�� 1(�=4T�)(!h�i + h�ih�i) � 1 �� ln��(!h�i+ h�ih�i)4T� � : (20)As 
an be seen from Eq. (20), �(!) is a fun
tion ofthe energy !. In the range � � pGi, essential values of! are of the order �. Thus, � itself is of the order h�i(see (19)). This order of � is related to �u
tuationsof the order parameter modulus. This value is mu
hlarger than the one due to the phase �u
tuations of theorder parameter (see [6℄).4. EQUATIONS FOR THE TIME-DEPENDENTORDER PARAMETERThe stati
 Ginzburg�Landau equations are valid inthe wide temperature regionGi� j1� T=T
j � 1: (21)The TDGL equations are valid if the energy relax-ation time �" or the pair-breaking time �s = ��1 issu�
iently short [13�16℄. For large �", the dynami
s598



ÆÝÒÔ, òîì 119, âûï. 3, 2001 Nonlinear �u
tuation phenomena : : :of normal ex
itations be
omes essential. As a result,the dynami
al term in the equation for the order pa-rameter be
omes more 
ompli
ated. We now derive the
orresponding equation.The order parameters �1;2(t) 
an be written as�1;2(t) = ��eff2 FK1;2(t; t); (22)with the Green's fun
tion Ĝ presented in the form [18℄Ĝ =  GR; GK0; GA ! ; (23)where GR;A;K are the retarded, advan
ed, and KeldyshGreen's fun
tions. Ea
h of these is a Gor'kov�Nambumatrix GR;A;K =  g1 F1�F2 g2 !R;A;K ;~� =  0 �1��2 0 ! ; (24)where �2(!) = ��1(�!).In the dirty limit, we have the system of equationsfor GR;A (see [19℄)�D���gR;A��FR;A1;2 � FR;A1;2 �gR;A�r �+2i�1;2gR;A�� 2i"FR;A1;2 + 2�s gR;AFR;A1;2 = �IPh(R;A)1;2 ; (25)where IPh(R;A)1;2 is the ele
tron�phonon 
ollision inte-gral; in the vi
inity of the transition temperature T
for small energy values j"j � T , it is equal toIPh(R;A)1;2 = � 1�"FR;A1;2 : (26)The Keldysh Green's fun
tion GK 
an be writtenas [20℄ G = Z dt1(GRf̂ � f̂GA); (27)where the distribution fun
tion f̂ is given by [20℄f̂ = f + �zf1: (28)

Equations for the distribution fun
tions f1;2 havebeen derived in [20℄ and are given by�D ��r(�f�r (1�GRGA))�D ��r (f1j") ++ 2�f�t Sp�+ �f�" ��(eD�A�t j" � 2 Sp ��̂�t Æ)+ 4IPh1 (f) = 0;�D ��r Sp(�f1�r (1��zGR�zGA))�D�f�r j"++ 2 ��t(f1 Sp�)� 4if1 Sp(
�̂) ++ 2�f�" Sp(e�'�t �� ��̂�t �z
 + i2 �2�̂�t2 �Æ�")++ 4IPh2 (f1) = 0;
(29)

where j" = Sp �z(GR�GR �GA�GA);� = ��r � ieA�z; (30)2� = GR�z��zGA; 2Æ = GR�GA; 2
 = GR+GA:In the important limiting 
ase where " � � � �,Eqs. (25) and (29) 
an be simpli�ed and we obtainFR;A1 = �i �� i"� D2 �2�r2!�1�;FR;A2 = �i �� i"� D2 �2�r2!�1��; (31)�D�2f�r2 � D4 ��r (j"f1) + �f�t + 14 �f�" ��(��1�t (FR2 �FA2 )+��2�t (FR1 �FA1 ))+IPh1 (f) = 0;�D�2f1�r2 � D4 j" �f1�r + �f1�t ++ i2f1 ��(FR2 + FA2 ) + ��(FR1 + FA1 )�+ �f�" ��(e�'�t +14 ����1�t (FR2 +FA2 )+��2�t (FR1 +FA1 )�)++ IPh2 (f1) = 0;wherej" = �FR1 �FR2�r + FR2 �FR1�r ++ FA1 �FA2�r � FA2 �FA1�r : (32)599
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ollision integralsIPh1;2 is given in [20; 22℄. For small energy values j"j � T ,these integrals 
an be taken in the simple formIPh1 (f) = 1�" ��th� "2T �+ f� ; (33)IPh2 (f1) = 1�" f1;��1" = 7�(3)��g2T 3=2(sp)2;where s is the sound velo
ity in the metal and g is theele
tron�phonon 
oupling 
onstant.In the limiting 
ase of strong energy relaxation with�"� � 1, the distribution fun
tion f̂ 
an be taken asthe equilibrium one,f = th("=2T ); f1 = 0: (34)In this 
ase, Eqs. (22), (31), and (34) allow us to obtainthe time-dependent Ginzburg�Landau equation in thestandard form�1� T=T
 � 7�(3)8�2T 2 j�j2��+ �D8T �2���� �8T � ��t + 2ie'�� = 0: (35)If the 
ondition �"�� 1 is not satis�ed, the devia-tion of the distribution fun
tion f̂ from its equilibriumvalue 
an 
hange the last term in Eq. (35).In the range � � �, the 
rossing term in Eq. (31)has the smallness (�=�)2. In the leading approxima-tion, system (31) is therefore diagonal.With the aid of Eqs. (27), (28), and (31), we 
anrewrite Eq. (22) as�� + �8T ��i!1 �D �2�r2���1 � �2 1Z�1 d"2� �� �Æf(FR1 � FA1 )� f1(FR1 + FA1 )� = 0;�� + �8T ��i!1 �D �2�r2���2 � �2 1Z�1 d"2� �� �Æf(FR2 � FA2 )� f1(FR2 + FA2 )� = 0; (36)
where we set f = th("=2T ) + Æf: (37)In (36), the 
ontributions of the se
ond terms are ofthe order (�=�)2. This result is due to the 
an
ellationof the terms 
oming from Æf and f1. But in the nextorders of the perturbation theory, the quantity f1 be-
omes small and the main 
ontribution arises from thedistribution fun
tion Æf beyond perturbation theory.

5. THE CONDUCTIVITY OF FLUCTUATINGPAIRS (THE ASLAMAZOV�LARKINCONTRIBUTION)The 
ondu
tivity of �u
tuating pairs is given by thediagrams in Fig. a. In what follows, we assume thatthe order parameters �1;2 
an be written as the sumsof two terms. One of them is related to the stati
althermodynami
 �u
tuations � and ��. In the range� > Gi, these �u
tuations are Gaussian with the 
or-relator given by Eq. (1). The wavy line in Fig. a givesthe dynami
al �u
tuations ~�1;2 of the order parameter.The 
orrelators of these �u
tuations K̂ij must be foundin the ba
kground of thermodynami
 �u
tuations,K̂ij(!1) = �h��i�ji!1 : (38)The 
ontribution to the 
ondu
tivity 
an be ex-pressed through the 
orrelators K̂ in the same way asfor weak �u
tuations [3℄.We must �rst �nd the 
ondu
tivity as a fun
tion ofthe Matzubara frequen
y !0 and then perform the ana-lyti
al 
ontinuation in !0. The 
orre
tion to the 
urrentwas found in [6℄ with the aid of the equations for theGreen's fun
tion in the dirty limit in high-frequen
y�elds,j�!0 = 12d Z d2r1TX!1 Sp L̂�r K̂(!1 + !0; r; r1)�� L̂�r1K̂(!1; r1; r)A�!0 ; (39)where A!0 is the ve
tor potential of the external �eldand the matrix L̂ is given byL̂�12 = L�21 = 0; L̂�11(r) = ��eD2T ��r� ;L̂�22 = �L̂�11: (40)After the analyti
al 
ontinuation with respe
t to !0
a bThe Aslamov�Larkin 
ontribution to the 
ondu
tivi-ty (a); the Maki�Thompson 
ontributions to the 
on-du
tivity (b)600
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tuation phenomena : : :in Eq. (39), we obtainj�! = � 12d Z d2r1 iT2� i1Z�i1 d!1" 1!1�i!�Æ� 1!1+Æ#�� Sp�L̂�r K̂(!1 � i! + Æ; r; r1) ��L̂�r1K̂(!1 � Æ; r1; r)�A�!: (41)It was found in [6℄ that the �u
tuations are weak inthe range � > Gi1=2. In this region, we haveK11(!1+Æ) = K22(!1 + Æ) =
= 1�+(�=8T )(!1 +Dk2) : (42)From Eqs. (40)�(42), we obtain the well-known resultfor the para
ondu
tivity [3℄,�(a)=�0 = Gi=�: (43)To obtain the 
ondu
tivity in the temperature re-gion � < Gi1=2, we must �nd the 
orrelation fun
tionsK̂ in the �eld of thermodynami
 �u
tuations �. Wemust then average the expression for 
ondu
tivity over�. The 
orrelation fun
tions K̂ 
an be found fromEq. (36),

K̂�1 = 0BBB� � + �8T �!1 �D �2�r2�� C11 �C12�C21 � + �8T �!1 �D �2�r2�� C22 1CCCA ; (44)where the operators Cij are given byC11 = �2 1Z�1 d"2�"�FR1 � FA1 � Æf (1) � f (1)1 �FR1 + FA1 �#;C12 = �2 1Z�1 d"2�"�FR1 � FA1 � Æf (2) � f (2)1 �FR1 + FA1 �#;C21 = �2 1Z�1 d"2�"�FR2 � FA2 � Æf (1) + �FR2 + FA2 � Æf (1)1 #;C22 = �2 1Z�1 d"2�"�FR2 � FA2 � Æf (2) + �FR2 + FA2 � Æf (2)1 #: (45)
In Eqs. (45), the operators Æf (1;2) and f (1;2)1 are su
h thatÆf = Æf (1) ~�1 + Æf (2) ~�2; (46)f1 = f (1)1 ~�1 + f (2)1 ~�2;with Æf and f1 being the respe
tive solutions of system (31) in the �eld of ~�1 and ~�2. System (31) 
annot besolved analyti
ally for an arbitrary fun
tion �(r). Nevertheless, in the range � < Gi1=2, the expression for the
orrelation fun
tions K̂ 
an be found with the logarithmi
 a

ura
y if the value of the external depairing fa
tor �is larger than �. In this 
ase, simple expressions for the Green's fun
tions FR;A1;2 
an be used,FR;A1 = �i��� i" ; FR;A2 = �i���� i" : (47)If Dk2 � j�j2=�, the 
ontribution of Æf (1;2) is 
an
elled out in the expressions for C11 and C22. We note thatDk2 � j�j2=� implies f (1;2)1 � Æf (1;2). Thus, this region gives the dominant 
ontribution to Cij . Equations (44)and (45) 
an then be redu
ed to 601
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hinnikov ÆÝÒÔ, òîì 119, âûï. 3, 2001"� + �8T �!1 �D �2�r2 �#K11 + �!1�16T��!1 + ��1" �D �2�r2��1���K11�++ �!1�16T� �!1 + ��1" �D �2�r2 ��1��K21� = Æ(r � r1);"� + �8T �!1 �D �2�r2 �#K12 + �!1�16T��!1 + ��1" �D �2�r2��1���K12�++ �!1�16T� �!1 + ��1" �D �2�r2 ��1��K22� = 0;"� + �8T �!1 �D �2�r2 �#K21 + �!1��16T� �!1 + ��1" �D �2�r2��1��K21�++ �!1��16T� �!1 + ��1" �D �2�r2��1���K11� = 0;"� + �8T �!1 �D �2�r2 �#K22 + �!1��16T� �!1 + ��1" �D �2�r2��1��K22�++ �!1��16T� �!1 + ��1" �D �2�r2��1���K12� = Æ(r � r1):
(48)

This system 
an be solved with the logarithmi
 a
-
ura
y for strong energy relaxation ��1" > T� . In thisregion, it follows from Eq. (1) that����!1 + ��1" �D �2�r2��1�� == 64Gi�2 T 2�" ln �8T��"!: (49)Equations (1), (48), and (49) now imply the relationsfor the 
orrelators K̂,(� + �D8T k2 + 4GiT�"!1�� ln �8T��"!�� 2�  4GiT�"!1�� !2I)K11 = 1; K22 = K11; (50)whereI = 1Z0 dx dy(x+1)(y+1)p(x�y)2+2(x+y)a+a2 ;a = 1 + 4!1T�"Gi��� ln �8T��"!: (51)The nondiagonal elements in K̂ give a logarithmi-
ally small 
ontribution to the 
ondu
tivity. As a re-sult, we obtain�a�0 = 32Gi2T 2�"�2�� ln �8T��"!: (52)

The situation be
omes more 
ompli
ated if the en-ergy relaxation time �" is large. From (48), we thenobtain the equation for the 
orrelator K11"� + �8T �!1 �D �2�r2 �#K11 ++ �!1�16T��!1 + ��1" �D �2�r2��1���K11��� �!116T�!2� !1 + ��1" �D �2�r2!�1 ���"� + �8T  !1 �D �2�r2!++ �!116T����!1 + ��1" �D �2�r2��1�#�1 �����!1 + ��1" �D �2�r2!�1���K11� == Æ(r � r1): (53)We next �nd the mean value*���!1 �D �2�r2��1 ��exp(ikr)�+ ==64T 2Gi�2 1Dk2+8T�=� ln �(Dk2+8T�=�)28T�!1 !: (54)This implies that the 
oe�
ient at !1 in the equationfor K11 is logarithmi
ally large. Contrary to the previ-602
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tuation phenomena : : :ous 
ase (��1" � T�), the last term in the right-handside of Eq. (53) is essential; together with o�-diagonalelements in K̂, it leads to the 
an
ellation of large terms in the 
ondu
tivity. To verify this, we must �nd themean value of the produ
t of four � in the last term inEq. (53). We haveI1 =  �16T�!2*��!1 �D �2�r2��1�"� + �8T �!1 �D �2�r2�+ �!116T� �� ���!1 �D �2�r2��1�#�1���!1 �D �2�r2��1�� exp(ikr)+ = exp(ikr) �16T��d!2 Z d2k1(2�)2 Z d2k2(2�)2 �� ��� + �D8T k21��� + �D8T k22���1 h(!1 +D(k � k2)2)(!1 +D(k � k1)2) �� + �8T Dk23 + !1�k3�i�1 ; (55)where k3 = k � k1 � k2;�k = 4TGi�� 1Dk2 + 8T�=� ln � �Dk2 + 8T�=��28T�!1 !: (56)The ln2 term 
an be easily separated in expression (55). As the result, we obtainI1 = 1� + (�D=8T )k2 + !1�k ��(�2k � 4��kGi� Z d2k1(2�)2 (�D=8T )(k21 � k2) + !1(�k1 � �k)(� + (�D=8T )k21) (k1 � k)2 (� + (�D=8T )(k1 � k)2 + !1�k1�k)): (57)In Eq. (55), we omitted the �diagonal� term with the denominator of the type [!1 + D(k + k1)2℄2. This termleads to a small 
orre
tion to the 
oe�
ient at !1 in (53).With the same a

ura
y, we now present the expression for the nondiagonal elements K12 and K21 asK21 = � �!116T� Z d2k1d2k2(2�)4 ��k1��k2K11(k)(!1 +D(k � k1)2) [� + (�D=8T )(k � k1 � k2)2 + !1�k�k1�k2 ℄ ;K12 = � �!116T� Z d2k3d2k4(2�)4 �k3�k4K22(k)(!1 +D(k + k3)2) [� + (�D=8T )(k + k3 + k4)2 + !1�k+k3+k4 ℄ : (58)Using Eqs. (57) and (58), we obtain the 
orre
tionto the 
ondu
tivity as�a�0 � 4TGi2���2 : (59)This expression is valid up to a numeri
al fa
tor of theorder unity.If the external depairing fa
tor � is zero (a super-
ondu
tor without paramagneti
 impurities), the quan-tity � in Eqs. (51) and (59) must be repla
ed by itsintrinsi
 value � � TGi1=2 (60)(see Eq. (18)). In the temperature region Gi < � << Gi1=2, we then obtain�a=�0 � 4Gi3=2=��2: (61)

Equation (61) implies that the AL 
ontribution tothe 
ondu
tivity is strongly enhan
ed in the tempera-ture region Gi < � < Gi1=2.6. THE MAKI�THOMPSON CONTRIBUTIONTO CONDUCTIVITY IN THE NONLINEARFLUCTUATION REGIONThe general expression for the MT 
ontribution tothe 
ondu
tivity (�b) was given in [6℄. Equation (28)in [6℄ 
an be 
onsidered as the interpolation of the MT
ontribution that is valid in the entire temperature re-603
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hinnikov ÆÝÒÔ, òîì 119, âûï. 3, 2001gion � > Gi. The depairing fa
tor � in Eq. (28) in [6℄must be 
hanged to a sum of two terms: the externaldepairing fa
tor ��1s related to the spin �ip s
atteringon magneti
 impurities and the intrinsi
 depairing fa
-tor given by Eq. (20). As a result, we obtain�b�0 = �8d� Z d2k(2�)2 1� +Dk2=2 1� + (�D=8T )k2 == 2Gi� 1��=4T� � 1 ln ��4T�!: (62)In the range Gi < � < Gi1=2, the MT 
ontribu-tion rea
hes its saturation value and e�e
tively be
omestemperature independent,�b�0 = Gi1=2 ln Gi1=2� !: (63)The 
orre
tion remains small in the entire regionGi < � < Gi1=2 where nonlinear e�e
ts are important.We note that real super
ondu
tors are always in-homogeneous. The �nite value of the transition widthleads to the appearan
e of an e�e
tive depairing fa
-tor [11℄. The value of this depairing fa
tor 
an be su�-
iently large in the units of TGi. In this 
ase, the MT
ontribution to the 
ondu
tivity is small 
ompared tothe AL 
ontribution in the entire temperature region.7. CONCLUSIONSWe have seen that nonlinear �u
tuation e�e
ts aremu
h stronger in kineti
s phenomena than in ther-modynami
s. If the external depairing fa
tor is ab-sent, the nonlinear e�e
ts lead to a saturation of theMT 
ontribution to the 
ondu
tivity in the temper-ature region � � Gi1=2. In this temperature re-gion, the AL 
ontribution be
omes even stronger andgrows as �a=�0 � Gi3=2=�2. In a super
ondu
-tor with a su�
iently large external depairing fa
tor� = ��1s > TGi1=2 or a short energy relaxation time��1" > TGi1=2, the MT 
ontribution saturates in thetemperature region T� � � or T� � ��1" . It is not verysensitive to nonlinear e�e
ts. Magneti
 impurities andthe energy relaxation a
t on the AL 
ontribution in dif-ferent ways. Energy relaxation leads to the appearan
eof a 
ollision integral in the kineti
 equation for the dis-tribution fun
tions of normal ex
itations. This 
ollisionintegral diminishes the nonequilibrium 
ontributions tothe distribution fun
tions. Magneti
 impurities and themagneti
 �eld a
t only on the super
ondu
tivity and donot lead to the relaxation of the distribution fun
tions.

However, the TDGL equation essentially depends onthe ele
tron distribution fun
tion. If ��1" > TGi1=2, thenonlinear �u
tuation e�e
ts are not essential and theAL 
ontribution remains the same, �a=�0 = Gi=� , inthe entire temperature region � > Gi. If the inequality��1" < TGi1=2 is satis�ed, the law �a=�0 � Gi3=2=�2applies in the temperature region T� > ��1" . In theregion (T�")�1 > � > Gi, the 
orre
tion to the 
ondu
-tivity is given by �a=�0 � Gi3=2T�"=� (see Eq. (52)).Magneti
 impurities (or a 
urrent) suppress nonlin-ear �u
tuation e�e
ts in �a, but the e�e
t is not asstrong as for the energy relaxation. In the rangeTGi=� > � > Gi, the 
orre
tion to the 
ondu
tivity�a is given by Eq. (59), �a=�0 � TGi2=(��2). In thetemperature region � > TGi=�, the 
orre
tion �a isgiven by (43) in the linear approximation.It is essential that the 
ondu
tivity of �u
tuatingpairs 
an be larger than the 
ondu
tivity of normalele
trons in the temperature region where the 
orre
-tion to the thermodynami
 quantities is still small (seeEq. (61)).A. I. Larkin thanks M. Yu. Reizer and V. M. Ga-litski for dis
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