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The standard ohmic measurements by means of two extra leads contain an additional thermal correction to resis-
tance. The current results in heating (cooling) at the first (second) sample contact because of the Peltier effect.
The contact temperatures are different. The measured voltage is the sum of the ohmic voltage swing and the
Peltier-effect-induced thermoelectromotive force that is linear in the current. As a result, the thermal correction
to the resistance measured exists as I — 0. The correction could be comparable with the ohmic resistance.
Above some critical frequency depending on thermal inertial effects, the thermal correction disappears.

PACS: 72.20.Pa

It is well known that ohmic measurements (see
Fig. 1) are carryied out at low current density in or-
der to prevent heating. Usually, only the Joule heat is
considered to be important. In contrast to the Joule
heat, the Peltier and Thomson effects are linear in the
current. The crucial point of the present paper is that
the Peltier effect which is linear in current influences
the ohmic measurements and results in a correction to
the resistance measured. Under current carrying con-
ditions, one of the sample contacts is heated and the
other is cooled because of Peltier effect. The tempera-
ture gradient established is proportional to the current.
The Thomson heat is then proportional to square of the
current and can therefore be neglected. Finally, the
voltage swing across the circuit includes the thermo-
electromotive force induced by the Peltier effect, which
is linear in current. Accordingly, there exists a thermal
correction to the ohmic resistance of the sample.

First we consider an isotropic (or of cubic sym-
metry) conductor that can be in the thermodynamic
nonequilibrium with respect to conducting electrons.
In general, the current density j and the energy flux
density q of the inhomogeneous conductor are given

by [1]

j = o(B—aVT), 1)
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q = (¢p+aT)j — »VT, (2)
where o is the conductivity, a is the thermopower, and
2 is the thermal conductivity. For an inhomogeneous
conductor, the potential ¢ = ¢ + u/e is the sum of the
electric potential ¢ and the chemical potential y of con-
ducting electrons. For a homogeneous conductor, the
above definition of the potential differs from ¢ by a con-
stant, and the average microscopic electric field —V
therefore coincides with E = — V¢. The first term in
Eq. (1) corresponds to the conventional Ohm’s law and
the second term describes thermoelectric phenomena.
For the steady state,

divj =0, (3)

Q = —divq = div(>VT) + j°/o — jTVa =0, (4)
where () is the total amount of heat evolved per unit
time and unit volume of the conductor. The current
flow is accompanied by both the Joule and Thom-
son heats that are proportional to the second and first
power of the current, respectively. Using Eqs. (1)—(4),
one can find the potential ¢(r) and the temperature
T(r) for the conductor under given boundary condi-
tions.

Now we consider the thermal effects in connection
with ohmic measurements of the conductor resistance
(Fig. 1). The conductor is connected by means of two
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Fig.1. The circuit for standart ohmic measurements.
The dashed square represents the sample chamber

identical extra leads to the current source (not shown).
Both contacts assumed to be ohmic; «, o, s, the length
[, and the conductor cross-section S are different for the
leads and the sample. The voltage is measured between
the open ends ¢ and d that are kept at the tempera-
ture Ty of the external thermal reservoir. In general,
the contacts a and b could be at different respective
temperatures T, and T5.

It is well known that Peltier heat is generated by the
current crossing the contact of two different conductors.
At the contact (for example, a in Fig. 1), the temper-
ature T,, the electrochemical potential ¢, the normal
components of the current I = j5, and the total energy
flux ¢S are continuous. There exists the difference of
thermopowers Aa = a; — as. For Aa > 0, the charge
intersecting contact a gains the energy eAaT,. Conse-
quently, Q, = IAaT, is the amount of the Peltier heat
evolved per unit time in contact a. We emphasize that
@, can be calculated directly through the Thomson
term in Eq. (4):

Q. E/—ITVadx,

where the integration is taken over the contact length.
In fact, the Peltier effect is equivalent to the Thomson
effect established at the contact.

For Aa > 0 and the current direction shown in
Fig. 1, contact a is heated and contact b is cooled.
Thus, the contacts are at different temperatures and
T, — T, = AT > 0. Now we show that the standard
ohmic measurements always result in a thermal correc-
tion to the resistance measured. Using Eq. (1), we find
the voltage swing U between ends ¢ and d as

d
Uz/(%-l—onT) dz = RI + e, (5)
where
Ay
=2 =
R=2R + Ry = 5t o=
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is the total resistance of the circuit. The first term in
Eq. (5) corresponds to the Ohm’s law'). The second

term,
d

e = /adT,

c

coincides with the expression for the conventional
thermoelectromotive force under zero current condi-
tions [1]. We notice that ep is a universal value be-
cause it only depends on the contact temperatures for
arbitrary cooling conditions. There exists a correlation
between the thermoelectromotive force and the Peltier
and Thomson heats. The total power evolved in the
circuit, UI, is the sum of the Joule heat RI? and the
power erl related to the thermal effects. The product
erI is then exactly the sum of the Peltier heat

Qprp = Q4 — Qy = TAaAT

evolved at both contacts and the Tomson heat

d

Qr =— / ITVade
c
in the conductor bulk:
erl =Qp +Qr. (6)

Tt follows from Eq. (6) that for an arbitrary circuit un-
der the same contact temperatures (T, T}, and 1), the
zero-current measurements of the thermoelectromotive
force allow one to find the total amount of both the
Peltier and Thomson heats at I # 0.

We recall that the sample contacts are always extra
heated (or cooled) because of the Peltier effect. The
difference of the contact temperatures AT is linear in
current, and therefore, there exists a thermal correction
to the ohmic resistance:

AR=er/I=U/I -R.

For simplicity, we assume that the conductivity o, the
thermopower a, and the thermal conductivity ¢ are
temperature independent. The thermoelectromotive
force is then given by er = AaAT.

Using Eqs. (4) and (5), one can easily find the volt-
age swing U and, thus, the thermal correction AR for
an arbitrary circuit. We emphasize that the real cooling
conditions strongly influence AR. Now we specify the

1) Ohm’s law: «The amount of current flowing in a circuit
made up of pure resistances is directly proportional to the elec-
tromotive forces (voltages) impressed on the circuit and inversely

proportional to the total resistance of the circuit» (1827).
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cooling conditions of the circuit shown in Fig. 1. We
consider the adiabatic conditions with the sample being
thermally isolated from the environment. For example,
the sample can be placed into the vacuum chamber (see
Fig. 1) surrounded by the thermal reservoir kept at Tp.
We neglect the heat transfer within the leads consid-
ering a self-isolated sample. We emphasize that under
the above conditions, the sample is not heated. In fact,
at small current we have T, ~ T ~ T, and hence, the
amount of Peltier heat evolved at contact a is equal to
the one absorbed at contact b. The energy flux ¢S is
continuous at each contact, and therefore,

Qa (7)

dT
= _Qb = IAC!T(] = —%2—52.
dz
Using Eq. (7), we find the thermal correction to
resistivity as

_ T[)(Aa)2l2

AR
Sasts

(8)
According to Eqgs. (5) and (8), AR depends on the
reservoir temperature and on the geometry and heat
conductivity of the sample. We emphasize that the
thermal correction is always positive, because the total
amount of the Peltier heat Qp = ARI? > 0.

Now we estimate the magnitude of the thermal cor-
rection AR to resistivity in the case where both the
conductor and leads are metals. At room temperature,
the electron heat conductivity and thermopower of the
electron gas are given by

2
»=LoT, «a= F—kf.,
2e

where L = n°k?/3e? is the Lorentz number and
¢ = kT/Erp < 1 is the degeneracy parameter. The
difference A« is of the order k&/e. It follows from the
above assumptions that AR/R ~ ¢2 < 1. Thus, the
thermal correction is small compared with the ohmic
resistance because the electron gas is degenerate. For
semimetals (bismuth, Ep 35 meV), the thermal
correction can be greater. In contrast to strongly
degenerate electron gas, the thermal correction must
be greater for a non-degenerate semiconductor because
we then have

~
~

5

2

k

e

g

where r is the parameter related to the scattering mech-
anism of the electrons. For example, we consider the
non-degenerate n-InSh at 7' = 0.5 K. The Fermi en-
ergy lies between the conduction band and the shallow

+r—§1>
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Fig.2. The dimensionless T'(n) relation given by Eq. (9)
for fixed current, A = 0, 2, 5, 10, and contact tempera-
ture difference AT found at A =0

donor impurity level AE; ~ 7 K. For phonon scattering
(r = 3/2) we obtain Aa = 11k /e. At low temperatures,
the electron heat conductivity is then less than the
phonon-related Debye one 3,;, = 0.057% W /cm- K. For
n-InSb with the electron concentration n = 10" cm=3
and mobility g = 5-105 cm?/ V-, we obtain the ther-
mal correction to resistivity AR/R ~ 0.01.

In reality, the cooling conditions can be different
from those assumed above. Now we consider a more
realistic case where the local cooling of the sample is
important, for example, with the sample chamber con-
taining the gas. One can take the cooling effects into
account using Eq. (4) with the linear term —3(T — Tp)
included, where 5 denotes the strength of the sample-
to-gas thermal exchange. Under small current the spa-
tial temperature distribution (Fig. 2) is given by

(To—To) sh[A(1—n)]+(Tp—To) shiin]

T = T\

+T07 (9)
where n = x/l5 is the dimensionless coordinate. The
sample local cooling is therefore governed by the di-
mensionless parameter A = /f3/2lo. Actually, A is
the ratio of the outgoing and internal (within the sam-
ple) heat fluxes. When A <« 1, the local cooling can
be neglected, and hence, T'(n) is linear (Fig. 2). In the
opposite intensive cooling case where A > 1, the T'(n)
dependence is sharp near the contacts.

The above results allow us to calculate the thermal
correction to the sample resistance. Using Eqs. (5),
(7), and (9) and omitting cumbersome algebraic cal-
culations, we calculate the thermal correction to the
resistance as

_ T[)(Aa)2l2 th(A/Q)

AR A/2

Syt (10)

For small cooling as A — 0, Egs. (8) and (10) coincide.
In the opposite strong-cooling case, where A — oo,
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the difference AT and, thus, the thermal correction
decrease (see Fig. 2).

Now we estimate AR given by Eq. (10) for natural
air convection cooling. For a sample with the typical di-
mension d ~ /S, the outgoing thermal flux is given by
905 (T —To)Nu/S, where Nu ~ 10 is the Nusselt num-
ber. For the n-InSb sample (0.5%0.5%x 0.5 cm), the heat
conductivity is s, = 0.15 W/K-cm (T = 293 K). As-
suming the air heat conductivity s,qs = 2.6 W/cm- K,
we find A = 14. Thus, the thermal correction to resis-
tivity is approximately seven times less than the one in
the absence of convection.

We emphasize that both dc and ac ohmic mea-
surements lead to a thermal correction. However,
AR diminishes at high frequencies because of the
thermal inertial effects. In fact, Eq. (8) is valid below
some critical frequency f.. = x/d?, where x is the
temperature diffusive coefficient of the sample. For
example, at room temperature for a metal conductor
X = #/C =~ 10% ecm?/s, where C is the specific heat
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of the electron gas. For the typical metal conduc-
tor with d = 1 mm, we obtain the critical frequency
for = 10* Hz. We suggest that the spectral dependence
of the thermal correction can be used to estimate the
magnitude of the thermal correction.

In conclusion, the ohmic measurements of a
conductor resistance contain the thermal correction
caused by the Peltier effect. The thermal correction
always exists, while its magnitude depends on the
actual cooling conditions of the circuit. Above some
critical frequency depending on thermal inertial effects,
the thermal correction disappears.

The author is grateful to M. I. Dyakonov and
V. I. Perel for useful discussions.
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