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DENSITY-FUNCTIONAL THEORY OF ELASTICALLYDEFORMED FINITE METALLIC SYSTEM:WORK FUNCTION AND SURFACE STRESSV. V. Pogosov *, V. P. Kurbatsky **Department of Mi
roele
troni
s, Zaporozhye State Te
hni
al University69063, Zaporozhye, UkraineSubmitted 3 August 2000We study the external strain e�e
t on surfa
e properties of simple metals within the modi�ed stabilized jelliummodel. We derive the equations for the stabilization energy of the deformed Wigner�Seitz 
ells 
onsideredas a fun
tion of the bulk ele
tron density and the given deformation. The results for the surfa
e stress andthe work fun
tion of aluminium 
al
ulated within the self-
onsistent Kohn�Sham method are also given. Theproblem of anisotropy of the work fun
tion of a �nite system is dis
ussed. A 
lear explanation of independentexperiments on the stress-indu
ed 
onta
t potential di�eren
e at metal surfa
es is presented.PACS: 68.35.Md, 36.40.-
1. INTRODUCTIONThe early experimental investigations of the for
ea
ting on ele
tron and positron inside a metalli
 tubein the gravitational �eld of the Earth [1; 2℄ raisedthe question about the in�uen
e of metal deforma-tion on the ele
troni
 work fun
tion. The dire
tmeasurements using the Kelvin method showed ade
rease/in
rease of the 
onta
t potential di�eren
e(CPD) of the tensed/
ompressed metal samples [3�5℄.Similarly, the experiment with a high-speed spinningmetal rotor nonuniformly deformed over the lengthdemonstrated that the CPD 
hanges between areas ofthe surfa
e subje
ted to di�erent deformations [6℄ (seealso the dis
ussion of the earlier experiments by Har-rison [7℄). The in�uen
e of the deformation on theele
troni
 emission from a thin metalli
 �lm has alsobeen investigated [8℄. Re
ently, a similar e�e
t on theCPD was observed at the surfa
e of a sample witha nonuniform distribution of the residual me
hani
alstress [9℄. These at �rst sight surprising results im-ply the respe
tive in
rease/de
rease of the work fun
-tion with the uniaxial tension/
ompression of the met-ali
 sample. All these experiments raise two importantquestions that must be answered by the mi
ros
opi
*E-mail: vpogosov�zstu.edu.ua**Also at Department of Physi
s.

theory: (i) Does the 
hange of the CPD 
orrespond toa 
hange in the work fun
tion? (ii) What is the signof the deformation gradients of the surfa
e energy andthe work fun
tion for a metal subje
t to the tension (or
ompression) along some dire
tion?The �rst question is related to the violation of thelo
al ele
troneutrality of metal and hen
e, to non-equi-potentiality of its geometri
 surfa
e. The se
ond ques-tion stems from the general statement of the elasti
itytheory: the 
hange in the total energy of a solid isproportional to the square of the relative deformation.Therefore, the energy must in
rease for 
ompression asit does for tension. On the other hand, it was foundexperimentally that in the elasti
 deformation range, auniaxial deformation of a metalli
 sample leads to a lin-ear 
hange in the CPD [4; 5℄. This implies that the 
las-si
al elasti
ity theory is not 
ompletely 
orre
t in deter-mining elasti
 
hara
teristi
s of surfa
es. This questionis also important in determining the surfa
e tensionor the surfa
e stress for ma
ros
opi
 samples [10℄ andsmall metal parti
les [11℄.The measurements of the derivative of surfa
e ten-sion of a solid with respe
t to the ele
tri
al variable (theso-
alled �estans� [12℄) indire
tly show a small di�er-en
e between the surfa
e stress and the surfa
e energy.On the other hand, di�erent 
al
ulations [13�15℄, in-
luding the ones based on the �rst prin
iples [16℄, show350
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tional theory : : :an appre
iable di�eren
e between these two quantities.A rough estimation of the di�eren
e between the sur-fa
e energy and the surfa
e stress 
an also be done usingthe 
ohesive energy and the va
an
y formation energy.In the 
ontinuum approximation, the 
ohesive energy(or the atomi
 �work fun
tion�) "
oh and the va
an
yformation energy "va
 give respe
tively the irreversibleand reversible work required for the 
reation of a newspheri
al surfa
e of the Wigner�Seitz 
ell of the radiusr0. Following [17℄, we have"
oh � 4�r20
0(1 + Æ=r0);where 
0 is the surfa
e energy per unit area of the �atsurfa
e and Æ=r0 is the size 
orre
tion for the surfa
e ofa positive 
urvature. The reversible work for the 
re-ation of a va
an
y (whi
h 
an be de�ned as the workneeded for blowing a small bubble) is given by [18℄"va
 � r0Z0 dr 4�r2 [2�0(1� Æ=2r)=r℄ = 4�r20�0(1� Æ=r0);where we introdu
e a well-de�ned physi
al quantity �the surfa
e stress of the �at surfa
e �0 � to des
ribe atensed 
urved surfa
e [19; 20℄. Combining the expres-sions for "
oh and "va
, we obtain�0 � 
0�1 + Æ=r01� Æ=r0� "va
"
oh :The Kohn�Sham 
al
ulations in Refs. [21; 22℄ giveÆ=r0 � 0:40 and 0.52 for Na and Al, and the respe
tiveratio of the experimental values "va
="
oh is approxi-mately equal to 1/2 and 1/3. These values agree verywell with Æ=r0 � 1=2 obtained in Ref. [18℄, whi
h fol-lows from the Langmuir semi-empiri
al rule [23℄. Fromthis simple estimation, it follows that �0 is approxi-mately equal to or less than 
0.In this work, we investigate theoreti
ally the sur-fa
e energy, stress, and work fun
tion of an elasti
allydeformed metal. A uni-axial strain applied to the sur-fa
e introdu
es anisotropy to the metal by 
hangingthe density (or separation) of the atomi
 planes andthe ele
tron gas 
on
entration and 
ontributes to anextra surfa
e dipole barrier. A rigorous study of thisproblem from �rst prin
iples is tedious and requiresheavy numeri
al 
omputations. On the other hand,the 
al
ulations based on the isotropi
 models of metal,i.e., on the jellium model [24℄, whi
h ignores the dis-
rete nature of ions, or the stabilized jellium model, inwhi
h interparti
le intera
tions are averaged over vol-umes of the spheri
al Wigner�Seitz 
ells, do not allowone to properly a

ount for the inhomogeneous strain

e�e
ts. We develop a modi�
ation of the stabilized jel-lium model in order to des
ribe the metal deformedby the strain [25�27℄. In this modi�
ation, the metalenergy is expressed as a fun
tion of the density param-eter rs and of the given deformation. In Se
. 2, we givea general dis
ussion of the e�e
t of the deformation-indu
ed anisotropy on the work fun
tion, whi
h is oneof the most important ele
troni
 surfa
e 
hara
teristi
s.In Se
. 3, we present equations for the stabilized jelliummodel a

ounting for the elasti
 deformation. In Se
. 4,the modi�ed stabilized-jellium model is applied to 
al-
ulate, by the Kohn�Sham method, the e�e
t of theuniaxial strain on ele
troni
 surfa
e 
hara
teristi
s ofsingle 
rystals of aluminum.2. THE DESCRIPTION OF DEFORMATIONIt is important to note that in all experiments, wedeal with �nite samples. Di�erent reti
ular ele
trondensities at parti
ular fa
es of a single 
rystal (
rystal-lite) of an irregular shape lead to di�erent ele
trostati
potentials for these fa
es. A similar situation 
an o

urin the deformed metal.We 
onsider a hypotheti
al 
rystal having the shapeof a re
tangular parallelepiped (see Figure). We assumethe equivalen
e of all its fa
es in the undeformed state.This pi
ture breaks down be
ause of the 
rystal defor-mation. The four side fa
es remain equivalent to ea
hother, but not to the two base fa
es. The ele
troneu-trality 
ondition for the metalli
 sample that is tensedor 
ompressed along the x-axis 
an be written asZ dx Z dy Z dz [n(x; y; z)� �(x; y; z)℄ = 0; (1)where the ele
tron 
harge density distribution n(r) at-tains the magnitude n0 in the metal bulk. The ioni

harge distribution 
an be modeled by the step fun
-tion, �(r) = ��(r� r0);
y

�xxxzd�xx 0
A qualitative sket
h of the sample deformation351
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tor of the surfa
e, � == n0=Z, and Z is the valen
e. We use atomi
 units(e = m = ~ = 1) throughout.By de�nition [14℄, with the ele
trostati
 potentialset equal to zero in the va
uum, the ele
tron work fun
-tion for a fa
e of the semi-in�nite 
rystal isWfa
e = ��0 � ddn (n0"J)� hÆvifa
e; (2)where �0 < 0 denotes the ele
trostati
 potential in themetal bulk and "J � "J (n0) is the average energy perele
tron in the uniform ele
tron gas. The last term rep-resents the di�eren
e Æv(r) between the pseudopoten-tial of the latti
e of ions and the ele
trostati
 potentialof the positive ba
kground averaged over the Wigner�Seitz 
ell; this term allows us to distinguish betweendi�erent fa
es of the 
rystal (
f. Se
. 3).For a deformed sample, we assume that the y- andz-dire
tions are equivalent. The deformation along thex-axis indu
es an arti�
ial homogeneous anisotropy.The work fun
tions along the x- and z-dire
tions seemto be di�erent for a �nite sample, but this 
on
lusionis not 
orre
t. It is related to the widely spread pointof view (see [28℄ and referen
es therein) that the workfun
tion �anisotropy� is determined by the reti
ularele
tron density of the given 
rystal fa
e. However, theele
tron work fun
tion is de�ned as the di�eren
e be-tween the ele
tron energy level in the va
uum and atthe Fermi surfa
e. This di�eren
e is independent ofspa
e dire
tions and 
oordinates and is 
onstant for ametalli
 sample. The work fun
tion (or the ionizationpotential) is a s
alar quantity.From the viewpoint of �nite sizes of a sample, the
onsiderations presented by Smolu
howski [28℄ and byLang and Kohn [29℄ are 
orre
t in the 
ase where all thefa
es of a �nite sample posses the same atomi
 pa
kingdensity. For the 
ubi
 
rystals, it is a parallelepipedwith all its sides having equivalent Miller indi
es. Fora sample of an arbitrary form, the work fun
tion de-pends on the orientation of all parts of the surfa
e ingeneral1).We note that the �spurious� di�eren
e Wx � Wyof the work fun
tions along the x- and z-dire
tions de-�ned using the standart form (2) vanishes. This leadsto an important inequality�x � �z = �hÆvix + hÆviz 6= 0 (3)that means that the values �x and �z of the ele
tro-stati
 potential in the bulk of the metal 
an be treated1) In the spe
ial 
ase of a nonzero quadrupole moment of the
harge distribution in the elementary 
ell, the e�e
tive potentialin the bulk depends on the shape of the sample [30℄.

as if they 
orresponded to di�erent semi-in�nite 
rys-tals. This inequality does not allow us to unambigu-ously de�ne the work fun
tion of a �nite ma
ros
opi
sample be
ause the surfa
e ele
trostati
 barrier is dif-ferent for di�erent dire
tions.To simplify the analysis, we express the ele
tronpro�le of the sample asn(r) = n0(r) + Æn(r) (4)and � = �0 + Æ�; (5)where n0(r) and �0 are the values 
orresponding to asemi-in�nite metal. The �surplus� density Æn(r) orig-inates from the ele
tron transfer from one 
rystal sideto another [31℄ and di�ers from zero only in the near-surfa
e layer. Condition (1) along ea
h dire
tion thentakes the trivial formAi 1Z�1 dx [n0(r) � �(r)℄ = 0; (6)where Ai � Ax; Ay; Az are the areas of fa
es of a ma
ro-s
opi
 sample and Ay = Az . Taking Eq. (4) into a
-
ount, Eq. (6) 
an be written in the �
ross-dire
tional�formAx 1Z�1 dx Æn(r) +Ay 1Z�1 dy Æn(r) ++Az 1Z�1 dz Æn(r) = 0; (7)where the surplus 
harge at ea
h side is proportionalto its area. Here, for simpli
ity of illustration, we as-sume that Æn(r) is 
onstant at ea
h side. It followsfrom Eq. (7) that1Z�1 dz Æn(r)1Z�1 dx Æn(r) = � Ax2Az ; (8)whi
h means that the 
harges on these sides have theopposite signs. The entire sample must be neutral2).2) We note that the phase shift �k of the single-parti
le wavefun
tion along ea
h dire
tion depends on the potential shape inthe vi
inity of the surfa
e and the Sugiyama�Langreth neutral-ity sum-rule [32℄ must be rewritten with the anisotropy (i.e., theself-
harging) taken into a

ount [33℄.352
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tional theory : : :The 
orresponding 
hanges of the ele
trostati
 poten-tial are determined by the Poisson equation, whi
hyields relations for the x- and z-
omponents. Theserelations have the same formÆ�x = �4� 1Z�1 dx xÆn(r) = �Cxx0; (9)where x0 and a

ordingly z0 are the positions of self-in-du
ed 
harge density at the lateral and base sides andCx and Cz are 
onstants. This allows us to speak aboutthe appearan
e of an additional, three-dimensional sur-fa
e dipole barrier. Be
auseAx � Az ; Ay (10)(see Eq. (8)), we havejCx=Czj / Az=Axfor the weight 
oe�
ients andjÆ�yj = jÆ�zj � jÆ�xjfor the additional potentials. Using (5), we 
an rewriteEq. (3) asÆ�x � hÆviz � hÆvix and Æ�z = Æ�y � 0: (11)Condition (10) means that the work fun
tion is weaklydependent on the ele
tron transfer between the fa
esperpendi
ular to y- and z-dire
tions, and the measure-ment of the work fun
tion at these fa
es 
an there-fore be repla
ed by the measurement for a semi-in�nitemetal. The true work fun
tion 
an be measured by theKelvin method in the areas near the edges. These areas
orrespond to sign 
hanges of the density, Æn(r) � 0.For the photoemission method of measuring the workfun
tion, 
onditions (10) and (11) imply that the reg-istration of the measured ele
trons must o

ur at thedistan
es mu
h greater than the linear dimensions ofthe sample. Otherwise, if the photon energy is not suf-�
iently high, an ele
tron es
aping from the metal doesnot rea
h the �in�nity� but may transit from one fa
einto the other.The surplus 
harge Qx transferred from one fa
e tothe other (see Eq. (9)) 
an be roughly estimated withthe help of the standard ele
trostati
 relationÆ�x � Qx=pAx :Writing Ax � Nx2�r20 ;

where Nx is the number of the surfa
e Wigner�Seitz
ells of the radius r0, we obtainQx � 3r0pNx Æ�x:The 
ondition Qx > 0 means that Qx ele
trons aretransfered from the base fa
es to the lateral ones.The surfa
e energy per unit area therefore 
hanges by�WxQx=Ax and +WzQx=2Az at the base and the late-ral sides, respe
tively. The ratio of these values 
orre-sponds to (7). Here, WxQx is equal to the work neededto remove Qx ele
trons from the base side of the metal-li
 sample to in�nity and Wi is the work fun
tion of agiven side i. Self-
harging of the surfa
e 
an there-fore a�e
t the surfa
e energy anisotropy of the single
rystal. For example, for an aluminum sample withÆ�z � 0:5 eV and Nx = 102, 104, the respe
tive ele
-troni
 
harges are Qx � 1, 10. It is worth noting thatthis 
harge 
an be very signi�
ant for a small 
rys-tal (
luster) [34℄. Therefore, the elasti
ity and self-
harging e�e
ts 
an play an important role in explaningthe re
ently observed for
e and 
ondu
tan
e �u
tua-tions in tensed metalli
 nanowires [35; 36℄.On the ground of the above dis
ussion, and owingto Eq. (11), the properties of a large surfa
e plane ofa deformed metalli
 
rystal 
an be 
al
ulated in thestandard manner.3. THE MODEL OF A UNIFORMLYDEFORMED METALThe dependen
e of the CPD on the uniaxial de-formation uxx was measured for poly
rystalline tensedsamples [4; 5℄. We assume that the deformation is ameasured quantity and the poly
rystal is 
onsideredas being assembled of a number of simple 
rystallites.Qualitatively, the problem 
an therefore be redu
ed tothe 
onsideration of tension or 
ompression applied toa single 
rystal.We �rst express the average ele
tron density in themetal as a fun
tion of the deformation. For this pur-pose, we 
onsider an undeformed 
ubi
 
ell of the sidelength a0 and the volume
0 = a30 = 43 �r30 ; (12)where r0 = Z1=3rs is the radius of the spheri
alWigner�Seitz 
ell. For a uni-axially deformed 
ellelongated or 
ompressed along the x-axis, we 
an write
 = axa2y = 43�ab2; (13)9 ÆÝÒÔ, âûï. 2 353



V. V. Pogosov, V. P. Kurbatsky ÆÝÒÔ, òîì 119, âûï. 2, 2001where ax and ay = az are the sides of the elemen-tary parallelogram and a and b are the half-axes ofthe equivalent prolate or oblate spheroid of revolutionaround the x-axis. We also haveax = a0(1 + uxx) and az = a0(1 + uzz) == a0(1� �uxx); (14)where � is the Poisson 
oe�
ient for the poly
rystal,and 
=
0 � 1 = uxx + uyy + uzz:It follows from Eqs. (12)�(14) thata = r0(1 + uxx) and b = r0(1� �uxx): (15)Similarly, the spa
ing between the latti
e planes per-pendi
ular to the y- or z-dire
tion isdu = d0(1� �uxx); (16)where d0 is the interplanar spa
ing in the undeformed
rystal. It then follows from (12)�(15) that the averageele
tron density in the deformed metal is given byn = n0
0=
 = n0 [1� (1� 2�)uxx℄ +O(u2xx) (17)and the 
orresponding density parameter isrsu = rs [1 + (1� 2�)uxx℄1=3 : (18)Pro
eeding similarly to the derivation of the equationsfor the original stabilized jellium model [25℄, we 
on-sider a metal assembled from Wigner�Seitz 
ells. Theaverage energy per valen
e ele
tron in the bulk is" = "J(n) + "M + wR; (19)where the �rst term gives the jellium energy"J(n) = 3k2F (n)10 � 34�kF (n) + "
or(n) (20)
onsisting of the average kineti
 and ex
hange-
orrelation energy per ele
tron,kF = (3�2n)1=3:The remaining two terms in (19) represent the averageof the repulsive part of the Ash
roft model potential,the Madelung energy. A small band-stru
ture energyterm [25; 37℄ is negle
ted in (19).By transforming the ordinary jellium into the sta-bilized one, the Coulomb intera
tions were averaged,over the Wigner�Seitz 
ells, as is usual for an isotropi
medium. The uni-axial strain applied to the 
rystal de-forms the spheri
al Wigner�Seitz 
ells into ellipsoidal

ones. This a�e
ts the Madelung energy "M that nowmust be averaged over the volume of the deformed 
ell.It 
an be expressed similarly to the gravitational energyof the uniform spheroid [38℄ as"M (n) = 1Z Zspheroid d
n ��Zr �++ 12Z Zspheroid d
nV (r) ==8>><>>: � 9Z10a 12p log 1 + p1� p ; a > b;� 9Z10a 1p ar
tg p; b > a; (21)where V (r) is the ele
trostati
 potential inside the uni-formly 
harged spheroid, p =pj1� b2=a2j determinesthe spheroid e

entri
ity, and the upper/lower 
ase
orresponds to a prolate/oblate spheroid, respe
tively.This expression has the 
orre
t limit"M (n)! �0:9Z=r0 as uxx ! 0:We assume that the shape of ioni
 
ores is not in�u-en
ed by the deformation and remains spheri
al; there-fore, wR = 2�nr2
 :For the potential di�eren
e Æv(r) averaged over theWigner�Seitz 
ell [25℄, we have the same relation asfor the undisturbed 
rystal,hÆviWS = ~"+ "M + wR; (22)where the ele
trostati
 self-energy of the uniform neg-ative ba
kground inside the spheroid is~" = �23"M : (23)The pseudopotential 
ore radius 
an be found fromthe me
hani
al equilibrium 
ondition depending on theme
hani
al stress indu
ed in the volume of the 
ell.To determine the 
ore radius r
, we note that for thestrained metal, the intrinsi
 pressure in the bulk of ametalli
 sample, P = �dE=d
 = n2d"=dn, is 
ompen-sated by the pressure exerted by external for
es,P = �(�xx + �yy + �zz) = �Y uxx(1� 2�); (24)where �ii are the me
hani
al stress tensor 
omponentsand Y is the Young modulus.For a strained metal, the averaged energy per ele
-tron in the bulk is therefore given by" = "J(n) + "M + wR + P=n: (25)354
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tional theory : : :For the ideal metal, � = 1=2 and P = 0. This meansthat the external for
e 
hanges not the volume but theshape of a 
ell or a sample. In the linear approximation,Madelung energy (21) is well approximated by"M (n)! �0:9Z=r0u:Inserting the expli
it expressions for (20), (21), and(24) in (25), we have from the minimum 
ondition thatr
 = (� 215 �9�4 �2=3 rs + 16� �9�4 �1=3 r2s++ 15Z2=3r2s + 29r4s d"
ordrs + 89�r6sP�1=2rs=rsu ; (26)where rsu is the equilibrium density parameter of thestrained metal. Here, we assume that the volume ofthe spheroid is equal to the volume of the equivalentsphere of the radius r0u = Z1=3rsu. Be
ausehÆviWS = n ddn ("M + wR) ; (27)at the equilibrium density for the strained metal weobtain hÆviWS = �n ddn �"J(n) + Pn � : (28)Subsequently, similarly to Perdew et al. [25℄, we 
anintrodu
e the fa
e dependen
e of the stabilization po-tential ashÆvifa
e = hÆviWS ��"M3 + �n6 d2u� : (29)The total energy of a �nite 
rystal 
an be writtenas the sum of the bulk Eb and the surfa
e Es energies,where Es = 
y4Ay + 
x2Ax; (30)with 
y and 
x being the respe
tive surfa
e energiesper unit area of the lateral and base sides. In the unde-formed state, where 
x = 
y = 
z � 
, surfa
e energy(30) 
hanges bydEs = 4Ay �
Æ�� + d
du��� du�� ++ 2Ax�
Æ�� + d
du��� du��; (31)where � and � denote dire
tions in the plane of the lat-eral and base sides and Æ�� is the Krone
ker symbol.In our model, we 
al
ulate only�xx = 
 + d
duxx : (32)

The work fun
tion is 
al
ulated from the disp-la
ed-pro�le 
hange-in-self-
onsistent �eld (DP�SCF)expression instead of Eq. (2).To dis
uss our results, it is useful to rewrite Eq. (2)as Wfa
e = �veff � "F ; (33)where veff = �+ vx
 + hÆvifa
eis the e�e
tive potential in the bulk giving the to-tal barrier height at the metal�va
uum interfa
e andvx
 is the ex
hange-
orrelation potential in the bulk(vx
 = vx
(�1)).4. RESULTS AND DISCUSSIONTo verify the theory presented in Se
. 3, wesolved the Kohn�Sham equations for two most denselypa
ked surfa
es of Al represented by the stabilized jel-lium model. In the language of our model, we 
onsidertwo regular single 
rystals of Al su
h that all their sidesare equivalent in the undeformed state. Under the 
rys-tal deformation, the four side fa
es remain equivalentto ea
h other, but not to the two base fa
es (see Fig-ure). The hÆvifa
e term in
luded into the e�e
tive po-tential allows us to generate the fa
e-dependent densitypro�les used in 
al
ulating the surfa
e 
hara
teristi
s:the work fun
tion, the surfa
e energy, and the surfa
estress. All 
al
ulations were 
arried out for the upperside of the sample (see Figure) assuming the poly
rys-talline value of the Poisson 
oe�
ient � = 0:36 for elas-ti
 properties of Al [39℄.Within the applied range of deformations �0:03 �� uxx � +0:03, the 
hanges in surfa
e quantities re-main linear. The positive/negative deformation uxximplies the tension/
ompression of the side of the sam-ple, i.e., the de
rease/in
rease of the atomi
 pa
k-ing density at this side, and the de
rease/in
rease ofthe mean ele
tron 
on
entration n and the interplanarspa
ing in the dire
tion perpendi
ular to the 
hosen
rystal side. For better understanding the 
rystal ef-fe
ts, we have also performed 
al
ulations for the spe-
ial 
ase of the �ideal� metal with � = 1=2. In this
ase, the deformation does not 
hange n, however, these
ond term (the 
orrugation dipole barrier) in the fa
e-dependent potential (29) is 
hanged.The results of 
al
ulations are summarized in Ta-ble 1. As 
an be seen, the surfa
e energy in
reaseslinearly with the applied positive deformation uxx andde
reases with the negative one. This means thatd
=duxx is positive for either uxx > 0 or uxx < 0.A

ordingly, Eq. (32) gives the values of the surfa
e355 9*



V. V. Pogosov, V. P. Kurbatsky ÆÝÒÔ, òîì 119, âûï. 2, 2001Table 1. The 
al
ulated surfa
e energies 
, the work fun
tion W , the strain derivative d
=duxx, and the surfa
e stress�xx, for elasti
ally deformed Al (rs = 2:06) samplesMetal Fa
e 
, erg/
m2 W , eV uxx d
=duxx, erg/
m2 � , erg/
m2 �W , eVAl (111) 946 4.096 (+) 460 1406 �0:032(�) 400 1346 +0:033(100) 1097 3.780 (+) 833 1930 �0:025(�) 810 1907 +0:016Note. uxx = �0:03, positive and negative deformations are labeled with (+) or (�). �W is the workfun
tion di�eren
e. The value of Young's modulus is 70 GPa (Al) [39℄.stress 
omponent �xx, larger than the surfa
e energy.For uxx > 0, the surfa
e stress is somewhat larger thanfor uxx < 0. We now 
onsider the �ideal� metal with� = 1=2. It seems that the ideal metal �ts better to the
lassi
al de�nition of the surfase stress [19; 20℄. This isrelated to the fa
t that in the ideal metal subje
ted todeformation, only the surfa
e area is 
hanged, while theele
tron 
on
entration in the bulk remains un
hanged.The 
al
ulations performed for Al (111) surfa
e yieldthe respe
tive strain derivatives d
=duxx = 247 and213 erg/
m2 for uxx > 0 and uxx < 0. These valuesare mu
h smaller than the ones reported in Table 1. Inthis 
ase (with � = 1=2), we 
an also evaluate the other
omponents of the surfa
e stress as�zz = �yy = 
 + d
=duyy:Inserting duzz = duyy = ��duxx;we obtain �zz = �yy = 
 � 2d
=duxx < 
:We 
an make two observations at this point. First, thelatter result agrees with our estimation (� < 
) in Se
. 1and with the results derived on the basis of the elasti
-ity theory [40℄, where the �=
 ratio expressed in termsof the Poisson 
oe�
ient � is given by (3��1)=(1��).For � = 1=2, this formula gives �=
 = 1 and � < 
for � < 1=2. Se
ond, in order to 
al
ulate �zz and�yy for a sample tensed along the x-axis, we must used
=duxx for uxx < 0, whereas for a 
ompressed sam-ple, we use the 
orresponding value for uxx > 0. This isbe
ause the tension applied along the x-dire
tion leadsto 
ompressing the sample along the orthogonal (y andz) axes. The 
al
ulated surfa
e stress for Al(111) is ina very good agreement with the values resulting fromthe 
al
ulations available ab initio: 1441 erg/
m2 in

Ref. [15℄, and 1249 erg/
m2 in Ref. [41℄. This alsoimproves the results obtained for the ordinary jelliummodel [24; 41℄ and the previous dire
t appli
ation of thestabilized-jellium model [13℄.The work fun
tion de
rases linearly with uxx, butthe relative 
hange is less than 1% (see Table 1) for the
onsidered strains. A similar behavior is observed for� = 1=2. The dominating 
omponent leading to a de-
rease of W with uxx is a 
hange in the hÆvifa
e term.Thus, the 
hange of the work fun
tion under the defor-mation is determined by the 
ompetition of negative
hanges in the ex
hange-
orrelation (vx
) and the ele
-tostati
 (�s) 
omponents of the e�e
tive potential veffand the positive 
hange in the fa
e-dependent 
ompo-nent hÆvifa
e. A dominant role is played by the 
hangeof hÆvifa
e, while the 
hange in the Fermi energy is neg-ligibly small. An overall de
rease/in
rease of the workfun
tion W is determined by a positive/negative shiftof the ele
trostati
 potential in the metal interior.The 
al
ulated 
hange of the work fun
tionwith strain seems to 
ontradi
t the experimentalresults [3�6℄ where the work fun
tion was found toin
rease/de
rease with the elongation/
ompression ofthe sample. This 
on
lusion was based on the analysisof the measured CPD [3�7; 9; 27℄. In what follows,we demonstrate that this 
ontradi
tion is spurious.The point is that the measurement by the Kelvinmethod �xes the 
hange of the surfa
e potential. Theexperimental observations 
an therefore be explainednot as the 
hange of the work fun
tion but as the
hange of the e�e
tive potential veff upon deformation.The Kelvin method gives the value of the potentialdi�eren
e at the surfa
e of a sample, whi
h 
an bede�ned as the position of the image plane z = z0 [26℄.In distin
tion to the work fun
tion, to whi
h hÆvifa
e
ontributes dire
tly (Eq. (2)), at the image-plane posi-tion lo
ated outside the geometri
 surfa
e, the e�e
tive356



ÆÝÒÔ, òîì 119, âûï. 2, 2001 Density-fun
tional theory : : :Table 2. The 
al
ulated 
hange in the e�e
tivepotential for elasti
ally deformed surfa
es of AlMetal Fa
e uxx �veff (z0; uxx), eVAl (111) (+) �0:103(�) +0:106(100) (+) �0:064(�) +0:069potential feels the 
hange in hÆvifa
e by means of theself-
onsistent pro
edure for solving the Kohn�Shamequations (even though hÆvifa
e is nonzero inside thesample only). The 
al
ulations performed for Al(111)demonstrate that the ratio of the e�e
tive potentialdi�eren
es �veff of the strained (uxx = �0:03) andstrain-free samples at the surfa
e and in the bulk is�veff (z = z0)=�veff � �0:8:Here, �veff denotes the respe
tive di�eren
e in themetal bulk.The results for �veff (z0;uxx) are shown in Table 2.The potential di�eren
e outside the sample is morenegative as the deformation in
reases. The 
al
ulated
hanges in the e�e
tive potential have the same signas the CPD measured for Al. For a poly
rystalline Alsample subje
t to the deformation with uxx = 0:03, theCPD amounts to �0:025� 0:002 Volts [5℄. Be
ause apoly
rystalline sample 
an be 
onsidered as being as-sembled from arbitrarily oriented single 
rystals, thevalues obtained by us must be averaged in order to
ompare them with experiment. Thus, both the exper-iment and the 
al
ulations give a negative 
hange ofthe surfa
e potential,CPD = �veff (z = z0) < 0:For the 
onventional method of measuring the workfun
tion 
hanges upon strain [4; 5; 9℄, this implies thatW (uxx) =W (0)�CPD(uxx) > W (0);i.e., the work fun
tion in
reases for a tensed sam-ple. In general, therefore, our results agree with theindependent experiments for both tensed [4�6℄ and
ompressed [1; 3℄ metalli
 samples. The results for�veff (z0; uxx) 
orrespond to a dire
t observation of thestress-indu
ed shift in the measured 
onta
t potential:the e�e
tive potential outside the open fa
es of the sam-ple is more negative/positive when tensile/
ompressivefor
e is applied. However, unlike the e�e
tive po-tential at the surfa
e, the value of the potential in

the metal bulk is more positive/negative for an ex-panded/
ompressed sample be
ause of the di�erent ef-fe
t of the hÆvifa
e term. Thus, for the Al sample,the work fun
tion 
hange vs. strain shows the oppositetrend 
ompared to that of the 
onta
t potential (whi
halso di�ers from the predi
tion of non self-
onsistent
al
ulations [27℄). A

ordingly, the results in Table 1demonstrate that the work fun
tion de
reases with uxx.In other words, our results show that the measurementsby the Kelvin method give not the variation of the workfun
tion upon strain but the variation of the surfa
epotential.In summary, the stabilized-jellium model has beenextended to en
ompass the elasti
 strain e�e
ts onsurfa
e properties of simple metals. By imposing a uni-axial strain to the metal surfa
e and limiting ourselvesto linear terms in the deformation, we have obtained arealisti
 des
ription of the strain dependen
e of surfa
equantities: surfa
e energy, surfa
e stress, and the workfun
tion. We have presented a 
onsistent explanationof experiments on the stress-indu
ed 
onta
t potentialdi�eren
e at metal surfa
es.The authors are grateful to A. Kiejna for help withnumeri
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