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DENSITY-FUNCTIONAL THEORY OF ELASTICALLYDEFORMED FINITE METALLIC SYSTEM:WORK FUNCTION AND SURFACE STRESSV. V. Pogosov *, V. P. Kurbatsky **Department of Miroeletronis, Zaporozhye State Tehnial University69063, Zaporozhye, UkraineSubmitted 3 August 2000We study the external strain e�et on surfae properties of simple metals within the modi�ed stabilized jelliummodel. We derive the equations for the stabilization energy of the deformed Wigner�Seitz ells onsideredas a funtion of the bulk eletron density and the given deformation. The results for the surfae stress andthe work funtion of aluminium alulated within the self-onsistent Kohn�Sham method are also given. Theproblem of anisotropy of the work funtion of a �nite system is disussed. A lear explanation of independentexperiments on the stress-indued ontat potential di�erene at metal surfaes is presented.PACS: 68.35.Md, 36.40.-1. INTRODUCTIONThe early experimental investigations of the foreating on eletron and positron inside a metalli tubein the gravitational �eld of the Earth [1; 2℄ raisedthe question about the in�uene of metal deforma-tion on the eletroni work funtion. The diretmeasurements using the Kelvin method showed aderease/inrease of the ontat potential di�erene(CPD) of the tensed/ompressed metal samples [3�5℄.Similarly, the experiment with a high-speed spinningmetal rotor nonuniformly deformed over the lengthdemonstrated that the CPD hanges between areas ofthe surfae subjeted to di�erent deformations [6℄ (seealso the disussion of the earlier experiments by Har-rison [7℄). The in�uene of the deformation on theeletroni emission from a thin metalli �lm has alsobeen investigated [8℄. Reently, a similar e�et on theCPD was observed at the surfae of a sample witha nonuniform distribution of the residual mehanialstress [9℄. These at �rst sight surprising results im-ply the respetive inrease/derease of the work fun-tion with the uniaxial tension/ompression of the met-ali sample. All these experiments raise two importantquestions that must be answered by the mirosopi*E-mail: vpogosov�zstu.edu.ua**Also at Department of Physis.

theory: (i) Does the hange of the CPD orrespond toa hange in the work funtion? (ii) What is the signof the deformation gradients of the surfae energy andthe work funtion for a metal subjet to the tension (orompression) along some diretion?The �rst question is related to the violation of theloal eletroneutrality of metal and hene, to non-equi-potentiality of its geometri surfae. The seond ques-tion stems from the general statement of the elastiitytheory: the hange in the total energy of a solid isproportional to the square of the relative deformation.Therefore, the energy must inrease for ompression asit does for tension. On the other hand, it was foundexperimentally that in the elasti deformation range, auniaxial deformation of a metalli sample leads to a lin-ear hange in the CPD [4; 5℄. This implies that the las-sial elastiity theory is not ompletely orret in deter-mining elasti harateristis of surfaes. This questionis also important in determining the surfae tensionor the surfae stress for marosopi samples [10℄ andsmall metal partiles [11℄.The measurements of the derivative of surfae ten-sion of a solid with respet to the eletrial variable (theso-alled �estans� [12℄) indiretly show a small di�er-ene between the surfae stress and the surfae energy.On the other hand, di�erent alulations [13�15℄, in-luding the ones based on the �rst priniples [16℄, show350



ÆÝÒÔ, òîì 119, âûï. 2, 2001 Density-funtional theory : : :an appreiable di�erene between these two quantities.A rough estimation of the di�erene between the sur-fae energy and the surfae stress an also be done usingthe ohesive energy and the vaany formation energy.In the ontinuum approximation, the ohesive energy(or the atomi �work funtion�) "oh and the vaanyformation energy "va give respetively the irreversibleand reversible work required for the reation of a newspherial surfae of the Wigner�Seitz ell of the radiusr0. Following [17℄, we have"oh � 4�r200(1 + Æ=r0);where 0 is the surfae energy per unit area of the �atsurfae and Æ=r0 is the size orretion for the surfae ofa positive urvature. The reversible work for the re-ation of a vaany (whih an be de�ned as the workneeded for blowing a small bubble) is given by [18℄"va � r0Z0 dr 4�r2 [2�0(1� Æ=2r)=r℄ = 4�r20�0(1� Æ=r0);where we introdue a well-de�ned physial quantity �the surfae stress of the �at surfae �0 � to desribe atensed urved surfae [19; 20℄. Combining the expres-sions for "oh and "va, we obtain�0 � 0�1 + Æ=r01� Æ=r0� "va"oh :The Kohn�Sham alulations in Refs. [21; 22℄ giveÆ=r0 � 0:40 and 0.52 for Na and Al, and the respetiveratio of the experimental values "va="oh is approxi-mately equal to 1/2 and 1/3. These values agree verywell with Æ=r0 � 1=2 obtained in Ref. [18℄, whih fol-lows from the Langmuir semi-empirial rule [23℄. Fromthis simple estimation, it follows that �0 is approxi-mately equal to or less than 0.In this work, we investigate theoretially the sur-fae energy, stress, and work funtion of an elastiallydeformed metal. A uni-axial strain applied to the sur-fae introdues anisotropy to the metal by hangingthe density (or separation) of the atomi planes andthe eletron gas onentration and ontributes to anextra surfae dipole barrier. A rigorous study of thisproblem from �rst priniples is tedious and requiresheavy numerial omputations. On the other hand,the alulations based on the isotropi models of metal,i.e., on the jellium model [24℄, whih ignores the dis-rete nature of ions, or the stabilized jellium model, inwhih interpartile interations are averaged over vol-umes of the spherial Wigner�Seitz ells, do not allowone to properly aount for the inhomogeneous strain

e�ets. We develop a modi�ation of the stabilized jel-lium model in order to desribe the metal deformedby the strain [25�27℄. In this modi�ation, the metalenergy is expressed as a funtion of the density param-eter rs and of the given deformation. In Se. 2, we givea general disussion of the e�et of the deformation-indued anisotropy on the work funtion, whih is oneof the most important eletroni surfae harateristis.In Se. 3, we present equations for the stabilized jelliummodel aounting for the elasti deformation. In Se. 4,the modi�ed stabilized-jellium model is applied to al-ulate, by the Kohn�Sham method, the e�et of theuniaxial strain on eletroni surfae harateristis ofsingle rystals of aluminum.2. THE DESCRIPTION OF DEFORMATIONIt is important to note that in all experiments, wedeal with �nite samples. Di�erent retiular eletrondensities at partiular faes of a single rystal (rystal-lite) of an irregular shape lead to di�erent eletrostatipotentials for these faes. A similar situation an ourin the deformed metal.We onsider a hypothetial rystal having the shapeof a retangular parallelepiped (see Figure). We assumethe equivalene of all its faes in the undeformed state.This piture breaks down beause of the rystal defor-mation. The four side faes remain equivalent to eahother, but not to the two base faes. The eletroneu-trality ondition for the metalli sample that is tensedor ompressed along the x-axis an be written asZ dx Z dy Z dz [n(x; y; z)� �(x; y; z)℄ = 0; (1)where the eletron harge density distribution n(r) at-tains the magnitude n0 in the metal bulk. The ioniharge distribution an be modeled by the step fun-tion, �(r) = ��(r� r0);
y
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V. V. Pogosov, V. P. Kurbatsky ÆÝÒÔ, òîì 119, âûï. 2, 2001where r0 is the radius-vetor of the surfae, � == n0=Z, and Z is the valene. We use atomi units(e = m = ~ = 1) throughout.By de�nition [14℄, with the eletrostati potentialset equal to zero in the vauum, the eletron work fun-tion for a fae of the semi-in�nite rystal isWfae = ��0 � ddn (n0"J)� hÆvifae; (2)where �0 < 0 denotes the eletrostati potential in themetal bulk and "J � "J (n0) is the average energy pereletron in the uniform eletron gas. The last term rep-resents the di�erene Æv(r) between the pseudopoten-tial of the lattie of ions and the eletrostati potentialof the positive bakground averaged over the Wigner�Seitz ell; this term allows us to distinguish betweendi�erent faes of the rystal (f. Se. 3).For a deformed sample, we assume that the y- andz-diretions are equivalent. The deformation along thex-axis indues an arti�ial homogeneous anisotropy.The work funtions along the x- and z-diretions seemto be di�erent for a �nite sample, but this onlusionis not orret. It is related to the widely spread pointof view (see [28℄ and referenes therein) that the workfuntion �anisotropy� is determined by the retiulareletron density of the given rystal fae. However, theeletron work funtion is de�ned as the di�erene be-tween the eletron energy level in the vauum and atthe Fermi surfae. This di�erene is independent ofspae diretions and oordinates and is onstant for ametalli sample. The work funtion (or the ionizationpotential) is a salar quantity.From the viewpoint of �nite sizes of a sample, theonsiderations presented by Smoluhowski [28℄ and byLang and Kohn [29℄ are orret in the ase where all thefaes of a �nite sample posses the same atomi pakingdensity. For the ubi rystals, it is a parallelepipedwith all its sides having equivalent Miller indies. Fora sample of an arbitrary form, the work funtion de-pends on the orientation of all parts of the surfae ingeneral1).We note that the �spurious� di�erene Wx � Wyof the work funtions along the x- and z-diretions de-�ned using the standart form (2) vanishes. This leadsto an important inequality�x � �z = �hÆvix + hÆviz 6= 0 (3)that means that the values �x and �z of the eletro-stati potential in the bulk of the metal an be treated1) In the speial ase of a nonzero quadrupole moment of theharge distribution in the elementary ell, the e�etive potentialin the bulk depends on the shape of the sample [30℄.

as if they orresponded to di�erent semi-in�nite rys-tals. This inequality does not allow us to unambigu-ously de�ne the work funtion of a �nite marosopisample beause the surfae eletrostati barrier is dif-ferent for di�erent diretions.To simplify the analysis, we express the eletronpro�le of the sample asn(r) = n0(r) + Æn(r) (4)and � = �0 + Æ�; (5)where n0(r) and �0 are the values orresponding to asemi-in�nite metal. The �surplus� density Æn(r) orig-inates from the eletron transfer from one rystal sideto another [31℄ and di�ers from zero only in the near-surfae layer. Condition (1) along eah diretion thentakes the trivial formAi 1Z�1 dx [n0(r) � �(r)℄ = 0; (6)where Ai � Ax; Ay; Az are the areas of faes of a maro-sopi sample and Ay = Az . Taking Eq. (4) into a-ount, Eq. (6) an be written in the �ross-diretional�formAx 1Z�1 dx Æn(r) +Ay 1Z�1 dy Æn(r) ++Az 1Z�1 dz Æn(r) = 0; (7)where the surplus harge at eah side is proportionalto its area. Here, for simpliity of illustration, we as-sume that Æn(r) is onstant at eah side. It followsfrom Eq. (7) that1Z�1 dz Æn(r)1Z�1 dx Æn(r) = � Ax2Az ; (8)whih means that the harges on these sides have theopposite signs. The entire sample must be neutral2).2) We note that the phase shift �k of the single-partile wavefuntion along eah diretion depends on the potential shape inthe viinity of the surfae and the Sugiyama�Langreth neutral-ity sum-rule [32℄ must be rewritten with the anisotropy (i.e., theself-harging) taken into aount [33℄.352



ÆÝÒÔ, òîì 119, âûï. 2, 2001 Density-funtional theory : : :The orresponding hanges of the eletrostati poten-tial are determined by the Poisson equation, whihyields relations for the x- and z-omponents. Theserelations have the same formÆ�x = �4� 1Z�1 dx xÆn(r) = �Cxx0; (9)where x0 and aordingly z0 are the positions of self-in-dued harge density at the lateral and base sides andCx and Cz are onstants. This allows us to speak aboutthe appearane of an additional, three-dimensional sur-fae dipole barrier. BeauseAx � Az ; Ay (10)(see Eq. (8)), we havejCx=Czj / Az=Axfor the weight oe�ients andjÆ�yj = jÆ�zj � jÆ�xjfor the additional potentials. Using (5), we an rewriteEq. (3) asÆ�x � hÆviz � hÆvix and Æ�z = Æ�y � 0: (11)Condition (10) means that the work funtion is weaklydependent on the eletron transfer between the faesperpendiular to y- and z-diretions, and the measure-ment of the work funtion at these faes an there-fore be replaed by the measurement for a semi-in�nitemetal. The true work funtion an be measured by theKelvin method in the areas near the edges. These areasorrespond to sign hanges of the density, Æn(r) � 0.For the photoemission method of measuring the workfuntion, onditions (10) and (11) imply that the reg-istration of the measured eletrons must our at thedistanes muh greater than the linear dimensions ofthe sample. Otherwise, if the photon energy is not suf-�iently high, an eletron esaping from the metal doesnot reah the �in�nity� but may transit from one faeinto the other.The surplus harge Qx transferred from one fae tothe other (see Eq. (9)) an be roughly estimated withthe help of the standard eletrostati relationÆ�x � Qx=pAx :Writing Ax � Nx2�r20 ;

where Nx is the number of the surfae Wigner�Seitzells of the radius r0, we obtainQx � 3r0pNx Æ�x:The ondition Qx > 0 means that Qx eletrons aretransfered from the base faes to the lateral ones.The surfae energy per unit area therefore hanges by�WxQx=Ax and +WzQx=2Az at the base and the late-ral sides, respetively. The ratio of these values orre-sponds to (7). Here, WxQx is equal to the work neededto remove Qx eletrons from the base side of the metal-li sample to in�nity and Wi is the work funtion of agiven side i. Self-harging of the surfae an there-fore a�et the surfae energy anisotropy of the singlerystal. For example, for an aluminum sample withÆ�z � 0:5 eV and Nx = 102, 104, the respetive ele-troni harges are Qx � 1, 10. It is worth noting thatthis harge an be very signi�ant for a small rys-tal (luster) [34℄. Therefore, the elastiity and self-harging e�ets an play an important role in explaningthe reently observed fore and ondutane �utua-tions in tensed metalli nanowires [35; 36℄.On the ground of the above disussion, and owingto Eq. (11), the properties of a large surfae plane ofa deformed metalli rystal an be alulated in thestandard manner.3. THE MODEL OF A UNIFORMLYDEFORMED METALThe dependene of the CPD on the uniaxial de-formation uxx was measured for polyrystalline tensedsamples [4; 5℄. We assume that the deformation is ameasured quantity and the polyrystal is onsideredas being assembled of a number of simple rystallites.Qualitatively, the problem an therefore be redued tothe onsideration of tension or ompression applied toa single rystal.We �rst express the average eletron density in themetal as a funtion of the deformation. For this pur-pose, we onsider an undeformed ubi ell of the sidelength a0 and the volume
0 = a30 = 43 �r30 ; (12)where r0 = Z1=3rs is the radius of the spherialWigner�Seitz ell. For a uni-axially deformed ellelongated or ompressed along the x-axis, we an write
 = axa2y = 43�ab2; (13)9 ÆÝÒÔ, âûï. 2 353



V. V. Pogosov, V. P. Kurbatsky ÆÝÒÔ, òîì 119, âûï. 2, 2001where ax and ay = az are the sides of the elemen-tary parallelogram and a and b are the half-axes ofthe equivalent prolate or oblate spheroid of revolutionaround the x-axis. We also haveax = a0(1 + uxx) and az = a0(1 + uzz) == a0(1� �uxx); (14)where � is the Poisson oe�ient for the polyrystal,and 
=
0 � 1 = uxx + uyy + uzz:It follows from Eqs. (12)�(14) thata = r0(1 + uxx) and b = r0(1� �uxx): (15)Similarly, the spaing between the lattie planes per-pendiular to the y- or z-diretion isdu = d0(1� �uxx); (16)where d0 is the interplanar spaing in the undeformedrystal. It then follows from (12)�(15) that the averageeletron density in the deformed metal is given byn = n0
0=
 = n0 [1� (1� 2�)uxx℄ +O(u2xx) (17)and the orresponding density parameter isrsu = rs [1 + (1� 2�)uxx℄1=3 : (18)Proeeding similarly to the derivation of the equationsfor the original stabilized jellium model [25℄, we on-sider a metal assembled from Wigner�Seitz ells. Theaverage energy per valene eletron in the bulk is" = "J(n) + "M + wR; (19)where the �rst term gives the jellium energy"J(n) = 3k2F (n)10 � 34�kF (n) + "or(n) (20)onsisting of the average kineti and exhange-orrelation energy per eletron,kF = (3�2n)1=3:The remaining two terms in (19) represent the averageof the repulsive part of the Ashroft model potential,the Madelung energy. A small band-struture energyterm [25; 37℄ is negleted in (19).By transforming the ordinary jellium into the sta-bilized one, the Coulomb interations were averaged,over the Wigner�Seitz ells, as is usual for an isotropimedium. The uni-axial strain applied to the rystal de-forms the spherial Wigner�Seitz ells into ellipsoidal

ones. This a�ets the Madelung energy "M that nowmust be averaged over the volume of the deformed ell.It an be expressed similarly to the gravitational energyof the uniform spheroid [38℄ as"M (n) = 1Z Zspheroid d
n ��Zr �++ 12Z Zspheroid d
nV (r) ==8>><>>: � 9Z10a 12p log 1 + p1� p ; a > b;� 9Z10a 1p artg p; b > a; (21)where V (r) is the eletrostati potential inside the uni-formly harged spheroid, p =pj1� b2=a2j determinesthe spheroid eentriity, and the upper/lower aseorresponds to a prolate/oblate spheroid, respetively.This expression has the orret limit"M (n)! �0:9Z=r0 as uxx ! 0:We assume that the shape of ioni ores is not in�u-ened by the deformation and remains spherial; there-fore, wR = 2�nr2 :For the potential di�erene Æv(r) averaged over theWigner�Seitz ell [25℄, we have the same relation asfor the undisturbed rystal,hÆviWS = ~"+ "M + wR; (22)where the eletrostati self-energy of the uniform neg-ative bakground inside the spheroid is~" = �23"M : (23)The pseudopotential ore radius an be found fromthe mehanial equilibrium ondition depending on themehanial stress indued in the volume of the ell.To determine the ore radius r, we note that for thestrained metal, the intrinsi pressure in the bulk of ametalli sample, P = �dE=d
 = n2d"=dn, is ompen-sated by the pressure exerted by external fores,P = �(�xx + �yy + �zz) = �Y uxx(1� 2�); (24)where �ii are the mehanial stress tensor omponentsand Y is the Young modulus.For a strained metal, the averaged energy per ele-tron in the bulk is therefore given by" = "J(n) + "M + wR + P=n: (25)354



ÆÝÒÔ, òîì 119, âûï. 2, 2001 Density-funtional theory : : :For the ideal metal, � = 1=2 and P = 0. This meansthat the external fore hanges not the volume but theshape of a ell or a sample. In the linear approximation,Madelung energy (21) is well approximated by"M (n)! �0:9Z=r0u:Inserting the expliit expressions for (20), (21), and(24) in (25), we have from the minimum ondition thatr = (� 215 �9�4 �2=3 rs + 16� �9�4 �1=3 r2s++ 15Z2=3r2s + 29r4s d"ordrs + 89�r6sP�1=2rs=rsu ; (26)where rsu is the equilibrium density parameter of thestrained metal. Here, we assume that the volume ofthe spheroid is equal to the volume of the equivalentsphere of the radius r0u = Z1=3rsu. BeausehÆviWS = n ddn ("M + wR) ; (27)at the equilibrium density for the strained metal weobtain hÆviWS = �n ddn �"J(n) + Pn � : (28)Subsequently, similarly to Perdew et al. [25℄, we anintrodue the fae dependene of the stabilization po-tential ashÆvifae = hÆviWS ��"M3 + �n6 d2u� : (29)The total energy of a �nite rystal an be writtenas the sum of the bulk Eb and the surfae Es energies,where Es = y4Ay + x2Ax; (30)with y and x being the respetive surfae energiesper unit area of the lateral and base sides. In the unde-formed state, where x = y = z � , surfae energy(30) hanges bydEs = 4Ay �Æ�� + ddu��� du�� ++ 2Ax�Æ�� + ddu��� du��; (31)where � and � denote diretions in the plane of the lat-eral and base sides and Æ�� is the Kroneker symbol.In our model, we alulate only�xx =  + dduxx : (32)

The work funtion is alulated from the disp-laed-pro�le hange-in-self-onsistent �eld (DP�SCF)expression instead of Eq. (2).To disuss our results, it is useful to rewrite Eq. (2)as Wfae = �veff � "F ; (33)where veff = �+ vx + hÆvifaeis the e�etive potential in the bulk giving the to-tal barrier height at the metal�vauum interfae andvx is the exhange-orrelation potential in the bulk(vx = vx(�1)).4. RESULTS AND DISCUSSIONTo verify the theory presented in Se. 3, wesolved the Kohn�Sham equations for two most denselypaked surfaes of Al represented by the stabilized jel-lium model. In the language of our model, we onsidertwo regular single rystals of Al suh that all their sidesare equivalent in the undeformed state. Under the rys-tal deformation, the four side faes remain equivalentto eah other, but not to the two base faes (see Fig-ure). The hÆvifae term inluded into the e�etive po-tential allows us to generate the fae-dependent densitypro�les used in alulating the surfae harateristis:the work funtion, the surfae energy, and the surfaestress. All alulations were arried out for the upperside of the sample (see Figure) assuming the polyrys-talline value of the Poisson oe�ient � = 0:36 for elas-ti properties of Al [39℄.Within the applied range of deformations �0:03 �� uxx � +0:03, the hanges in surfae quantities re-main linear. The positive/negative deformation uxximplies the tension/ompression of the side of the sam-ple, i.e., the derease/inrease of the atomi pak-ing density at this side, and the derease/inrease ofthe mean eletron onentration n and the interplanarspaing in the diretion perpendiular to the hosenrystal side. For better understanding the rystal ef-fets, we have also performed alulations for the spe-ial ase of the �ideal� metal with � = 1=2. In thisase, the deformation does not hange n, however, theseond term (the orrugation dipole barrier) in the fae-dependent potential (29) is hanged.The results of alulations are summarized in Ta-ble 1. As an be seen, the surfae energy inreaseslinearly with the applied positive deformation uxx anddereases with the negative one. This means thatd=duxx is positive for either uxx > 0 or uxx < 0.Aordingly, Eq. (32) gives the values of the surfae355 9*



V. V. Pogosov, V. P. Kurbatsky ÆÝÒÔ, òîì 119, âûï. 2, 2001Table 1. The alulated surfae energies , the work funtion W , the strain derivative d=duxx, and the surfae stress�xx, for elastially deformed Al (rs = 2:06) samplesMetal Fae , erg/m2 W , eV uxx d=duxx, erg/m2 � , erg/m2 �W , eVAl (111) 946 4.096 (+) 460 1406 �0:032(�) 400 1346 +0:033(100) 1097 3.780 (+) 833 1930 �0:025(�) 810 1907 +0:016Note. uxx = �0:03, positive and negative deformations are labeled with (+) or (�). �W is the workfuntion di�erene. The value of Young's modulus is 70 GPa (Al) [39℄.stress omponent �xx, larger than the surfae energy.For uxx > 0, the surfae stress is somewhat larger thanfor uxx < 0. We now onsider the �ideal� metal with� = 1=2. It seems that the ideal metal �ts better to thelassial de�nition of the surfase stress [19; 20℄. This isrelated to the fat that in the ideal metal subjeted todeformation, only the surfae area is hanged, while theeletron onentration in the bulk remains unhanged.The alulations performed for Al (111) surfae yieldthe respetive strain derivatives d=duxx = 247 and213 erg/m2 for uxx > 0 and uxx < 0. These valuesare muh smaller than the ones reported in Table 1. Inthis ase (with � = 1=2), we an also evaluate the otheromponents of the surfae stress as�zz = �yy =  + d=duyy:Inserting duzz = duyy = ��duxx;we obtain �zz = �yy =  � 2d=duxx < :We an make two observations at this point. First, thelatter result agrees with our estimation (� < ) in Se. 1and with the results derived on the basis of the elasti-ity theory [40℄, where the �= ratio expressed in termsof the Poisson oe�ient � is given by (3��1)=(1��).For � = 1=2, this formula gives �= = 1 and � < for � < 1=2. Seond, in order to alulate �zz and�yy for a sample tensed along the x-axis, we must used=duxx for uxx < 0, whereas for a ompressed sam-ple, we use the orresponding value for uxx > 0. This isbeause the tension applied along the x-diretion leadsto ompressing the sample along the orthogonal (y andz) axes. The alulated surfae stress for Al(111) is ina very good agreement with the values resulting fromthe alulations available ab initio: 1441 erg/m2 in

Ref. [15℄, and 1249 erg/m2 in Ref. [41℄. This alsoimproves the results obtained for the ordinary jelliummodel [24; 41℄ and the previous diret appliation of thestabilized-jellium model [13℄.The work funtion derases linearly with uxx, butthe relative hange is less than 1% (see Table 1) for theonsidered strains. A similar behavior is observed for� = 1=2. The dominating omponent leading to a de-rease of W with uxx is a hange in the hÆvifae term.Thus, the hange of the work funtion under the defor-mation is determined by the ompetition of negativehanges in the exhange-orrelation (vx) and the ele-tostati (�s) omponents of the e�etive potential veffand the positive hange in the fae-dependent ompo-nent hÆvifae. A dominant role is played by the hangeof hÆvifae, while the hange in the Fermi energy is neg-ligibly small. An overall derease/inrease of the workfuntion W is determined by a positive/negative shiftof the eletrostati potential in the metal interior.The alulated hange of the work funtionwith strain seems to ontradit the experimentalresults [3�6℄ where the work funtion was found toinrease/derease with the elongation/ompression ofthe sample. This onlusion was based on the analysisof the measured CPD [3�7; 9; 27℄. In what follows,we demonstrate that this ontradition is spurious.The point is that the measurement by the Kelvinmethod �xes the hange of the surfae potential. Theexperimental observations an therefore be explainednot as the hange of the work funtion but as thehange of the e�etive potential veff upon deformation.The Kelvin method gives the value of the potentialdi�erene at the surfae of a sample, whih an bede�ned as the position of the image plane z = z0 [26℄.In distintion to the work funtion, to whih hÆvifaeontributes diretly (Eq. (2)), at the image-plane posi-tion loated outside the geometri surfae, the e�etive356



ÆÝÒÔ, òîì 119, âûï. 2, 2001 Density-funtional theory : : :Table 2. The alulated hange in the e�etivepotential for elastially deformed surfaes of AlMetal Fae uxx �veff (z0; uxx), eVAl (111) (+) �0:103(�) +0:106(100) (+) �0:064(�) +0:069potential feels the hange in hÆvifae by means of theself-onsistent proedure for solving the Kohn�Shamequations (even though hÆvifae is nonzero inside thesample only). The alulations performed for Al(111)demonstrate that the ratio of the e�etive potentialdi�erenes �veff of the strained (uxx = �0:03) andstrain-free samples at the surfae and in the bulk is�veff (z = z0)=�veff � �0:8:Here, �veff denotes the respetive di�erene in themetal bulk.The results for �veff (z0;uxx) are shown in Table 2.The potential di�erene outside the sample is morenegative as the deformation inreases. The alulatedhanges in the e�etive potential have the same signas the CPD measured for Al. For a polyrystalline Alsample subjet to the deformation with uxx = 0:03, theCPD amounts to �0:025� 0:002 Volts [5℄. Beause apolyrystalline sample an be onsidered as being as-sembled from arbitrarily oriented single rystals, thevalues obtained by us must be averaged in order toompare them with experiment. Thus, both the exper-iment and the alulations give a negative hange ofthe surfae potential,CPD = �veff (z = z0) < 0:For the onventional method of measuring the workfuntion hanges upon strain [4; 5; 9℄, this implies thatW (uxx) =W (0)�CPD(uxx) > W (0);i.e., the work funtion inreases for a tensed sam-ple. In general, therefore, our results agree with theindependent experiments for both tensed [4�6℄ andompressed [1; 3℄ metalli samples. The results for�veff (z0; uxx) orrespond to a diret observation of thestress-indued shift in the measured ontat potential:the e�etive potential outside the open faes of the sam-ple is more negative/positive when tensile/ompressivefore is applied. However, unlike the e�etive po-tential at the surfae, the value of the potential in

the metal bulk is more positive/negative for an ex-panded/ompressed sample beause of the di�erent ef-fet of the hÆvifae term. Thus, for the Al sample,the work funtion hange vs. strain shows the oppositetrend ompared to that of the ontat potential (whihalso di�ers from the predition of non self-onsistentalulations [27℄). Aordingly, the results in Table 1demonstrate that the work funtion dereases with uxx.In other words, our results show that the measurementsby the Kelvin method give not the variation of the workfuntion upon strain but the variation of the surfaepotential.In summary, the stabilized-jellium model has beenextended to enompass the elasti strain e�ets onsurfae properties of simple metals. By imposing a uni-axial strain to the metal surfae and limiting ourselvesto linear terms in the deformation, we have obtained arealisti desription of the strain dependene of surfaequantities: surfae energy, surfae stress, and the workfuntion. We have presented a onsistent explanationof experiments on the stress-indued ontat potentialdi�erene at metal surfaes.The authors are grateful to A. Kiejna for help withnumerial alulations. One of the authors (V. V. P.)would like to thank the Institute of ExperimentalPhysis at the University of Wrolaw for kind hospital-ity. This work was partially supported by the NATO�Siene for Peae� Programm (projet SfP-974109).REFERENCES1. F. C. Witteborn and W. N. Fairbank, Phys. Rev. Lett.19, 1049 (1967).2. Sh. M. Kogan, Uspekhi Fiz. Nauk 105, 157 (1971).3. P. P. Craig, Phys. Rev. Lett. 22, 700 (1969).4. P. I. Mints, V. P. Melekhin, and M. B. Partensky,Fizika Tverd. Tela 16, 3584 (1974).5. S. V. Loskutov, Fizika Met. i Metalloved. 86, 149(1998).6. J. W. Beams, Phys. Rev. Lett. 21, 1093 (1969).7. W. A. Harrison, Phys. Rev. 180, 1606 (1969).8. Yu. A. Kulyupin and S. A. Nepijko, Fizika Tverd. Tela17, 2747 (1975).9. V. V. Levitin, S. V. Loskutov, M. I. Pravda, andB. A. Serpetzky, Sol. St. Comm. 92, 973 (1994).10. A. Kiejna and K. F. Wojiehowski, Metal SurfaeEletron Physis, Pergamon, Oxford (1996).357
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