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We study the external strain effect on surface properties of simple metals within the modified stabilized jellium
model. We derive the equations for the stabilization energy of the deformed Wigner—Seitz cells considered
as a function of the bulk electron density and the given deformation. The results for the surface stress and
the work function of aluminium calculated within the self-consistent Kohn—Sham method are also given. The
problem of anisotropy of the work function of a finite system is discussed. A clear explanation of independent
experiments on the stress-induced contact potential difference at metal surfaces is presented.
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1. INTRODUCTION

The early experimental investigations of the force
acting on electron and positron inside a metallic tube
in the gravitational field of the Earth [1,2] raised
the question about the influence of metal deforma-
tion on the electronic work function. The direct
measurements using the Kelvin method showed a
decrease/increase of the contact potential difference
(CPD) of the tensed/compressed metal samples [3-5].
Similarly, the experiment with a high-speed spinning
metal rotor nonuniformly deformed over the length
demonstrated that the CPD changes between areas of
the surface subjected to different deformations [6] (see
also the discussion of the earlier experiments by Har-
rison [7]). The influence of the deformation on the
electronic emission from a thin metallic film has also
been investigated [8]. Recently, a similar effect on the
CPD was observed at the surface of a sample with
a nonuniform distribution of the residual mechanical
stress [9]. These at first sight surprising results im-
ply the respective increase/decrease of the work func-
tion with the uniaxial tension/compression of the met-
alic sample. All these experiments raise two important
questions that must be answered by the microscopic
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theory: (i) Does the change of the CPD correspond to
a change in the work function? (ii) What is the sign
of the deformation gradients of the surface energy and
the work function for a metal subject to the tension (or
compression) along some direction?

The first question is related to the violation of the
local electroneutrality of metal and hence, to non-equi-
potentiality of its geometric surface. The second ques-
tion stems from the general statement of the elasticity
theory: the change in the total energy of a solid is
proportional to the square of the relative deformation.
Therefore, the energy must increase for compression as
it does for tension. On the other hand, it was found
experimentally that in the elastic deformation range, a
uniaxial deformation of a metallic sample leads to a lin-
ear change in the CPD [4,5]. This implies that the clas-
sical elasticity theory is not completely correct in deter-
mining elastic characteristics of surfaces. This question
is also important in determining the surface tension
or the surface stress for macroscopic samples [10] and
small metal particles [11].

The measurements of the derivative of surface ten-
sion of a solid with respect to the electrical variable (the
so-called «estans» [12]) indirectly show a small differ-
ence between the surface stress and the surface energy.
On the other hand, different calculations [13-15], in-
cluding the ones based on the first principles [16], show
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an appreciable difference between these two quantities.
A rough estimation of the difference between the sur-
face energy and the surface stress can also be done using
the cohesive energy and the vacancy formation energy.
In the continuum approximation, the cohesive energy
(or the atomic «work function») .0, and the vacancy
formation energy .4, give respectively the irreversible
and reversible work required for the creation of a new
spherical surface of the Wigner—Seitz cell of the radius
ro. Following [17], we have

Ecoh ~ 47”'(%’70(1 + 5/T0)7

where 7 is the surface energy per unit area of the flat
surface and d/rq is the size correction for the surface of
a positive curvature. The reversible work for the cre-
ation of a vacancy (which can be defined as the work
needed for blowing a small bubble) is given by [18]

ro
Evac R /dr 4rr? [210(1 — 6/2r) /7] = 4nrdro(1 -6 /7o),
0

where we introduce a well-defined physical quantity —
the surface stress of the flat surface 7o — to describe a
tensed curved surface [19,20]. Combining the expres-
sions for .o, and €,4., we obtain

)

The Kohn—Sham calculations in Refs. [21,22] give
d/ro &~ 0.40 and 0.52 for Na and Al, and the respective
ratio of the experimental values €,q./¢con 1S approxi-
mately equal to 1/2 and 1/3. These values agree very
well with 6/r9 ~ 1/2 obtained in Ref. [18], which fol-
lows from the Langmuir semi-empirical rule [23]. From
this simple estimation, it follows that 7 is approxi-
mately equal to or less than ~q.

In this work, we investigate theoretically the sur-
face energy, stress, and work function of an elastically
deformed metal. A uni-axial strain applied to the sur-
face introduces anisotropy to the metal by changing
the density (or separation) of the atomic planes and
the electron gas concentration and contributes to an
extra surface dipole barrier. A rigorous study of this
problem from first principles is tedious and requires
heavy numerical computations. On the other hand,
the calculations based on the isotropic models of metal,
i.e., on the jellium model [24], which ignores the dis-
crete nature of ions, or the stabilized jellium model, in
which interparticle interactions are averaged over vol-
umes of the spherical Wigner—Seitz cells, do not allow
one to properly account for the inhomogeneous strain

1+(5/7’0
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effects. We develop a modification of the stabilized jel-
lium model in order to describe the metal deformed
by the strain [25-27]. In this modification, the metal
energy is expressed as a function of the density param-
eter ry and of the given deformation. In Sec. 2, we give
a general discussion of the effect of the deformation-
induced anisotropy on the work function, which is one
of the most important electronic surface characteristics.
In Sec. 3, we present equations for the stabilized jellium
model accounting for the elastic deformation. In Sec. 4,
the modified stabilized-jellium model is applied to cal-
culate, by the Kohn—Sham method, the effect of the
uniaxial strain on electronic surface characteristics of
single crystals of aluminum.

2. THE DESCRIPTION OF DEFORMATION

It is important to note that in all experiments, we
deal with finite samples. Different reticular electron
densities at particular faces of a single crystal (crystal-
lite) of an irregular shape lead to different electrostatic
potentials for these faces. A similar situation can occur
in the deformed metal.

We consider a hypothetical crystal having the shape
of a rectangular parallelepiped (see Figure). We assume
the equivalence of all its faces in the undeformed state.
This picture breaks down because of the crystal defor-
mation. The four side faces remain equivalent to each
other, but not to the two base faces. The electroneu-
trality condition for the metallic sample that is tensed
or compressed along the z-axis can be written as

/daf;/dy/dz [n(z,y,z) — plz,y,z)] =0, (1)

where the electron charge density distribution n(r) at-
tains the magnitude ng in the metal bulk. The ionic
charge distribution can be modeled by the step func-
tion,

p(r) = p6(x — '),
.
%ﬂ 0 _ / Eﬁ

A qualitative sketch of the sample deformation
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where r' is the radius-vector of the surface, 7 =
= No/Z, and Z is the valence. We use atomic units
(e = m = h = 1) throughout.

By definition [14], with the electrostatic potential
set equal to zero in the vacuum, the electron work func-
tion for a face of the semi-infinite crystal is

(2)

where ¢, < 0 denotes the electrostatic potential in the
metal bulk and e; = £;(7g) is the average energy per
electron in the uniform electron gas. The last term rep-
resents the difference dv(r) between the pseudopoten-
tial of the lattice of ions and the electrostatic potential
of the positive background averaged over the Wigner—
Seitz cell; this term allows us to distinguish between
different faces of the crystal (cf. Sec. 3).

For a deformed sample, we assume that the y- and
z-directions are equivalent. The deformation along the
zr-axis induces an artificial homogeneous anisotropy.
The work functions along the z- and z-directions seem
to be different for a finite sample, but this conclusion
is not correct. It is related to the widely spread point
of view (see [28] and references therein) that the work
function «anisotropy» is determined by the reticular
electron density of the given crystal face. However, the
electron work function is defined as the difference be-
tween the electron energy level in the vacuum and at
the Fermi surface. This difference is independent of
space directions and coordinates and is constant for a
metallic sample. The work function (or the ionization
potential) is a scalar quantity.

From the viewpoint of finite sizes of a sample, the
considerations presented by Smoluchowski [28] and by
Lang and Kohn [29] are correct in the case where all the
faces of a finite sample posses the same atomic packing
density. For the cubic crystals, it is a parallelepiped
with all its sides having equivalent Miller indices. For
a sample of an arbitrary form, the work function de-
pends on the orientation of all parts of the surface in
general).

We note that the «spurious» difference W, — W,
of the work functions along the z- and z-directions de-
fined using the standart form (2) vanishes. This leads
to an important inequality

bp = 0. = —(6v)s + (v): £ 0 (3)

that means that the values ¢, and ¢, of the electro-
static potential in the bulk of the metal can be treated

D In the special case of a nonzero quadrupole moment of the
charge distribution in the elementary cell, the effective potential
in the bulk depends on the shape of the sample [30].

352

as if they corresponded to different semi-infinite crys-
tals. This inequality does not allow us to unambigu-
ously define the work function of a finite macroscopic
sample because the surface electrostatic barrier is dif-
ferent for different directions.
To simplify the analysis, we express the electron
profile of the sample as
n(r) =

no(r) + dn(r) (4)

and o B
¢ = 9o+ 00, (5)

where ng(r) and @, are the values corresponding to a
semi-infinite metal. The «surplus» density on(r) orig-
inates from the electron transfer from one crystal side
to another [31] and differs from zero only in the near-
surface layer. Condition (1) along each direction then
takes the trivial form

oo

A, / dz [no(r) — p(x)] =0,

— o0

(6)

where A; = A,, A, A, are the areas of faces of a macro-
scopic sample and A, = A,. Taking Eq. (4) into ac-
count, Eq. (6) can be written in the «cross-directional»
form

Ax/dx(Sn(r)—}—Ay/dy(Sn(r)—}—

-I-Az/dzén(r)—(), (7)

where the surplus charge at each side is proportional
to its area. Here, for simplicity of illustration, we as-
sume that dn(r) is constant at each side. It follows
from Eq. (7) that

which means that the charges on these sides have the
opposite signs. The entire sample must be neutral?.

2) We note that the phase shift 1, of the single-particle wave
function along each direction depends on the potential shape in
the vicinity of the surface and the Sugiyama—Langreth neutral-
ity sum-rule [32] must be rewritten with the anisotropy (i.e., the
self-charging) taken into account [33].
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The corresponding changes of the electrostatic poten-
tial are determined by the Poisson equation, which
yields relations for the z- and z-components. These
relations have the same form

oo

5¢, = —4m / dx zon(r) = —Cy g, (9)

— o0

where xg and accordingly zg are the positions of self-in-
duced charge density at the lateral and base sides and
C, and C, are constants. This allows us to speak about
the appearance of an additional, three-dimensional sur-
face dipole barrier. Because

A, < AL A, (10)
(see Eq. (8)), we have
|Ca/C:] x Az /Ay
for the weight coefficients and

166, | = 106.] < 160, ]

for the additional potentials. Using (5), we can rewrite
Eq. (3) as

50, ~ (6v), — (), and d¢, = (%y ~0. (11)

Condition (10) means that the work function is weakly
dependent on the electron transfer between the faces
perpendicular to y- and z-directions, and the measure-
ment of the work function at these faces can there-
fore be replaced by the measurement for a semi-infinite
metal. The true work function can be measured by the
Kelvin method in the areas near the edges. These areas
correspond to sign changes of the density, on(r) ~ 0.
For the photoemission method of measuring the work
function, conditions (10) and (11) imply that the reg-
istration of the measured electrons must occur at the
distances much greater than the linear dimensions of
the sample. Otherwise, if the photon energy is not suf-
ficiently high, an electron escaping from the metal does
not reach the «infinity» but may transit from one face
into the other.

The surplus charge @, transferred from one face to
the other (see Eq. (9)) can be roughly estimated with
the help of the standard electrostatic relation

Writing
A, =~ N,2mr2,

9 ZKIT®, B, 2

where N, is the number of the surface Wigner—Seitz
cells of the radius rg, we obtain

Qr ~ 3rg\/ N, 6596.

The condition @), > 0 means that (), electrons are
transfered from the base faces to the lateral ones.
The surface energy per unit area therefore changes by
—W,Q./A; and +W.Q,/2A, at the base and the late-
ral sides, respectively. The ratio of these values corre-
sponds to (7). Here, W, Q. is equal to the work needed
to remove (. electrons from the base side of the metal-
lic sample to infinity and W; is the work function of a
given side i. Self-charging of the surface can there-
fore affect the surface energy anisotropy of the single
crystal. For example, for an aluminum sample with
8¢, ~ 0.5 eV and N, = 102, 10%, the respective elec-
tronic charges are @), ~ 1, 10. It is worth noting that
this charge can be very significant for a small crys-
tal (cluster) [34]. Therefore, the elasticity and self-
charging effects can play an important role in explaning
the recently observed force and conductance fluctua-
tions in tensed metallic nanowires [35, 36].

On the ground of the above discussion, and owing
to Eq. (11), the properties of a large surface plane of
a deformed metallic crystal can be calculated in the
standard manner.

3. THE MODEL OF A UNIFORMLY
DEFORMED METAL

The dependence of the CPD on the uniaxial de-
formation u,, was measured for polycrystalline tensed
samples [4,5]. We assume that the deformation is a
measured quantity and the polycrystal is considered
as being assembled of a number of simple crystallites.
Qualitatively, the problem can therefore be reduced to
the consideration of tension or compression applied to
a single crystal.

We first express the average electron density in the
metal as a function of the deformation. For this pur-
pose, we consider an undeformed cubic cell of the side
length ag and the volume

4
Qp = a(?’) =3 71'7“8, (12)
where rq = ZY3r, is the radius of the spherical

Wigner—Seitz cell. For a uni-axially deformed cell
elongated or compressed along the z-axis, we can write

4
Q= axaz = gﬂab2, (13)
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where a, and ay, = a. are the sides of the elemen-
tary parallelogram and a and b are the half-axes of
the equivalent prolate or oblate spheroid of revolution
around the x-axis. We also have

a; = ap(l+uz,) and a. = ag(l+ u,.)

=ao(l — vug,), (14)

where v is the Poisson coefficient for the polycrystal,
and
Q/Qo — 1 = ugy + Uyy + Uz

It follows from Eqs. (12)—(14) that

a=ro(l+u,) and b=ro(l—vig,).  (15)

Similarly, the spacing between the lattice planes per-
pendicular to the y- or z-direction is

dy = do(1 = vug,), (16)

where dj is the interplanar spacing in the undeformed
crystal. It then follows from (12)—(15) that the average
electron density in the deformed metal is given by

7 =m0/ =T [1 — (1 — 20)uy,] + O(u2,) (17)
and the corresponding density parameter is
Pou =1 [L4 (1= 20)u,,]" /2. (18)

Proceeding similarly to the derivation of the equations
for the original stabilized jellium model [25], we con-
sider a metal assembled from Wigner—Seitz cells. The
average energy per valence electron in the bulk is

e=¢e;(M) +cm + Tr, (19)
where the first term gives the jellium energy
__3kx(m) 3, _ _
EJ(n) = F( ) - —kF(n) + Ecor(n) (20)
10 dr

consisting of the average kinetic and exchange-
correlation energy per electron,

kr = (371'2ﬁ)1/3.

The remaining two terms in (19) represent the average
of the repulsive part of the Ashcroft model potential,
the Madelung energy. A small band-structure energy
term [25, 37] is neglected in (19).

By transforming the ordinary jellium into the sta-
bilized one, the Coulomb interactions were averaged,
over the Wigner—Seitz cells, as is usual for an isotropic
medium. The uni-axial strain applied to the crystal de-
forms the spherical Wigner—Seitz cells into ellipsoidal
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ones. This affects the Madelung energy cps that now
must be averaged over the volume of the deformed cell.
It can be expressed similarly to the gravitational energy
of the uniform spheroid [38] as

em () :% / anmn [‘%] +
spheroid
1 _
+ 37 / aQnv(r) =
spheroid
9z 1 tep
_ 10a 2p 1—p (21)
97
—m—arctgp, b> a,

where V(r) is the electrostatic potential inside the uni-
formly charged spheroid, p = /|1 — b?/a?| determines
the spheroid eccentricity, and the upper/lower case
corresponds to a prolate/oblate spheroid, respectively.
This expression has the correct limit

em(@) = —09Z/ro as 1wz, — 0.

We assume that the shape of ionic cores is not influ-
enced by the deformation and remains spherical; there-
fore,

Wr = 27Nr

2
-

For the potential difference dv(r) averaged over the

Wigner—Seitz cell [25], we have the same relation as

for the undisturbed crystal,

(0v)ws =€+ cem + Wh, (22)

where the electrostatic self-energy of the uniform neg-
ative background inside the spheroid is
L2
g = —§6M.

The pseudopotential core radius can be found from
the mechanical equilibrium condition depending on the
mechanical stress induced in the volume of the cell.
To determine the core radius r., we note that for the
strained metal, the intrinsic pressure in the bulk of a
metallic sample, P = —dE/d) = n*de/dn, is compen-
sated by the pressure exerted by external forces,

(23)

P=—(040+0yy+0:.) =—Yu,(1-2v), (24)

where o;; are the mechanical stress tensor components
and Y is the Young modulus.

For a strained metal, the averaged energy per elec-
tron in the bulk is therefore given by

e=¢;(M) +eym +Wr + P/7. (25)
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For the ideal metal, v = 1/2 and P = 0. This means
that the external force changes not the volume but the
shape of a cell or a sample. In the linear approximation,
Madelung energy (21) is well approximated by

en (@) = —0.97Z/rou.

Inserting the explicit expressions for (20), (21), and
(24) in (25), we have from the minimum condition that

2 (or\?/? 1 /on\'?
Te = —1—5 <T> Trs + 6_71' <T> Ts+

1 2, de 8 1/2
—72/3,2 4 Z,alCcor
+ 5 ry + grs ar. b

Ts=Tsu

where 74, is the equilibrium density parameter of the
strained metal. Here, we assume that the volume of
the spheroid is equal to the volume of the equivalent
sphere of the radius ro, = Z/3r,. Because

d
<6'U>WS = ﬁ% (EM + ER) R (27)
at the equilibrium density for the strained metal we
obtain

() ws = —ﬁ% {gj(n) + % . (28)

Subsequently, similarly to Perdew et al. [25], we can
introduce the face dependence of the stabilization po-
tential as

™

(00) face = (6V)ws — <6?M + ?di> - (29)

The total energy of a finite crystal can be written
as the sum of the bulk E? and the surface E* energies,
where

E° = v, 44, + 7,24, (30)

with v, and 7, being the respective surface energies
per unit area of the lateral and base sides. In the unde-
formed state, where v, = v, = 7. = v, surface energy
(30) changes by

dy
E° =4A o — o
d y<755+duaﬁ>du 5+
w24y (0us + - dus, (31)
z | V0ap duaﬁ afBs

where a and 3 denote directions in the plane of the lat-
eral and base sides and dog is the Kronecker symbol.
In our model, we calculate only

dy
gy ‘
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The work function is calculated from the disp-
laced-profile change-in-self-consistent field (DPASCF)
expression instead of Eq. (2).

To discuss our results, it is useful to rewrite Eq. (2)
as

Wface = —Uetf —€EF, (33)

where
5eff = ¢ + Ve + <5U>face

is the effective potential in the bulk giving the to-
tal barrier height at the metal-vacuum interface and
U, is the exchange-correlation potential in the bulk
(Ve = Vge(—00)).

4. RESULTS AND DISCUSSION

To verify the theory presented in Sec. 3, we
solved the Kohn—Sham equations for two most densely
packed surfaces of Al represented by the stabilized jel-
lium model. In the language of our model, we consider
two regular single crystals of Al such that all their sides
are equivalent in the undeformed state. Under the crys-
tal deformation, the four side faces remain equivalent
to each other, but not to the two base faces (see Fig-
ure). The (6v) pqce term included into the effective po-
tential allows us to generate the face-dependent density
profiles used in calculating the surface characteristics:
the work function, the surface energy, and the surface
stress. All calculations were carried out for the upper
side of the sample (see Figure) assuming the polycrys-
talline value of the Poisson coefficient v = 0.36 for elas-
tic properties of Al [39].

Within the applied range of deformations —0.03 <
< Ugpe < +0.03, the changes in surface quantities re-
main linear. The positive/negative deformation gy,
implies the tension/compression of the side of the sam-
ple, i.e., the decrease/increase of the atomic pack-
ing density at this side, and the decrease/increase of
the mean electron concentration 7 and the interplanar
spacing in the direction perpendicular to the chosen
crystal side. For better understanding the crystal ef-
fects, we have also performed calculations for the spe-
cial case of the «ideal» metal with » = 1/2. In this
case, the deformation does not change 7, however, the
second term (the corrugation dipole barrier) in the face-
dependent potential (29) is changed.

The results of calculations are summarized in Ta-
ble 1. As can be seen, the surface energy increases
linearly with the applied positive deformation wu,, and
decreases with the negative one. This means that
dy/duy, is positive for either u,, > 0 or u,, < 0.
Accordingly, Eq. (32) gives the values of the surface

9*



V. V. Pogosov, V. P. Kurbatsky

MKITD, Tom 119, BeIm. 2, 2001

Table 1.  The calculated surface energies ~, the work function W, the strain derivative dv/du.., and the surface stress
Tzz, for elastically deformed Al (rs = 2.06) samples
Metal Face 7, erg/cm? W, eV Uga dvy/duy,, erg/cm? 7, erg/cm? AW, eV
(111) 946 4.096 (+) 460 1406 —0.032
Al (— 400 1346 +0.033
(100) 1097 3.780 (+ 833 1930 —0.025
(— 810 1907 +0.016
Note. uz, = £0.03, positive and negative deformations are labeled with (+) or (—). AW is the work

function difference. The value of Young’s modulus is 70 GPa (Al) [39].

stress component 7., larger than the surface energy.
For u,, > 0, the surface stress is somewhat larger than
for uy, < 0. We now consider the «ideal» metal with
v =1/2. Tt seems that the ideal metal fits better to the
classical definition of the surfase stress [19,20]. This is
related to the fact that in the ideal metal subjected to
deformation, only the surface area is changed, while the
electron concentration in the bulk remains unchanged.
The calculations performed for Al (111) surface yield
the respective strain derivatives dv/du,, = 247 and
213 erg/cm? for uz, > 0 and uz, < 0. These values
are much smaller than the ones reported in Table 1. In
this case (with v = 1/2), we can also evaluate the other
components of the surface stress as

Tzz = Tyy =7 + d’)//duyy

Inserting
du. = diuyy = —vdug,,

we obtain
Ter = Tyy =7 — 2dv/dugy, < 7.

We can make two observations at this point. First, the
latter result agrees with our estimation (7 < «) in Sec. 1
and with the results derived on the basis of the elastic-
ity theory [40], where the 7/~ ratio expressed in terms
of the Poisson coefficient v is given by (3v —1)/(1 —v).
For v = 1/2, this formula gives 7/y = 1 and 7 < 7
for v < 1/2. Second, in order to calculate 7., and
Tyy for a sample tensed along the z-axis, we must use
dy/duy, for u,, < 0, whereas for a compressed sam-
ple, we use the corresponding value for u,, > 0. This is
because the tension applied along the z-direction leads
to compressing the sample along the orthogonal (y and
z) axes. The calculated surface stress for Al(111) is in
a very good agreement with the values resulting from
the calculations available ab initio: 1441 erg/cm? in
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Ref. [15], and 1249 erg/cm? in Ref. [41]. This also
improves the results obtained for the ordinary jellium
model [24,41] and the previous direct application of the
stabilized-jellium model [13].

The work function decrases linearly with wu,,, but
the relative change is less than 1% (see Table 1) for the
considered strains. A similar behavior is observed for
v = 1/2. The dominating component leading to a de-
crease of W with u,, is a change in the (0v) rqce term.
Thus, the change of the work function under the defor-
mation is determined by the competition of negative
changes in the exchange-correlation (v,.) and the elec-
tostatic (¢5) components of the effective potential veyy
and the positive change in the face-dependent compo-
nent (6v) rqce- A dominant role is played by the change
of (0v) face, while the change in the Fermi energy is neg-
ligibly small. An overall decrease/increase of the work
function W is determined by a positive/negative shift
of the electrostatic potential in the metal interior.

The calculated change of the work function
with strain seems to contradict the experimental
results [3-6] where the work function was found to
increase/decrease with the elongation/compression of
the sample. This conclusion was based on the analysis
of the measured CPD [3-7,9,27]. In what follows,
we demonstrate that this contradiction is spurious.
The point is that the measurement by the Kelvin
method fixes the change of the surface potential. The
experimental observations can therefore be explained
not as the change of the work function but as the
change of the effective potential v,y upon deformation.
The Kelvin method gives the value of the potential
difference at the surface of a sample, which can be
defined as the position of the image plane z = zy [26].
In distinction to the work function, to which (6v) rqce
contributes directly (Eq. (2)), at the image-plane posi-
tion located outside the geometric surface, the effective
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Table 2. The calculated change in the effective
potential for elastically deformed surfaces of Al
Metal Face Upa Avepr (20, Ugy ), €V

(111) (+) —0.103

Al (-) +0.106
(100) (+) —0.064

(-) +0.069

potential feels the change in (0v)face by means of the
self-consistent procedure for solving the Kohn—Sham
equations (even though (dv)fqc. is nonzero inside the
sample only). The calculations performed for Al(111)
demonstrate that the ratio of the effective potential
differences Avess of the strained (uz, = #0.03) and
strain-free samples at the surface and in the bulk is

Aveff(z = ZO)/Aﬁeff ~ —0.8.

Here, Awess denotes the respective difference in the
metal bulk.

The results for Avegs(20; Uzs) are shown in Table 2.
The potential difference outside the sample is more
negative as the deformation increases. The calculated
changes in the effective potential have the same sign
as the CPD measured for Al. For a polycrystalline Al
sample subject to the deformation with u,, = 0.03, the
CPD amounts to —0.025 £ 0.002 Volts [5]. Because a
polycrystalline sample can be considered as being as-
sembled from arbitrarily oriented single crystals, the
values obtained by us must be averaged in order to
compare them with experiment. Thus, both the exper-
iment and the calculations give a negative change of
the surface potential,

CPD = Aveff(z = 20) < 0.

For the conventional method of measuring the work
function changes upon strain [4, 5, 9], this implies that

W (uze) = W(0) — CPD(ugq) > W(0),

i.e., the work function increases for a tensed sam-
ple. In general, therefore, our results agree with the
independent experiments for both tensed [4-6] and
compressed [1,3] metallic samples. The results for
Avepr (20, ugy) correspond to a direct observation of the
stress-induced shift in the measured contact potential:
the effective potential outside the open faces of the sam-
ple is more negative/positive when tensile/compressive
force is applied. However, unlike the effective po-
tential at the surface, the value of the potential in
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the metal bulk is more positive/negative for an ex-
panded/compressed sample because of the different ef-
fect of the (0v)fqee term. Thus, for the Al sample,
the work function change vs. strain shows the opposite
trend compared to that of the contact potential (which
also differs from the prediction of non self-consistent
calculations [27]). Accordingly, the results in Table 1
demonstrate that the work function decreases with w,,.
In other words, our results show that the measurements
by the Kelvin method give not the variation of the work
function upon strain but the variation of the surface
potential.

In summary, the stabilized-jellium model has been
extended to encompass the elastic strain effects on
surface properties of simple metals. By imposing a uni-
axial strain to the metal surface and limiting ourselves
to linear terms in the deformation, we have obtained a
realistic description of the strain dependence of surface
quantities: surface energy, surface stress, and the work
function. We have presented a consistent explanation
of experiments on the stress-induced contact potential
difference at metal surfaces.
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