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QUASIPARTICLES IN A STRONGLY CORRELATED LIQUIDWITH THE FERMION CONDENSATE: APPLICATIONS TOHIGH-TEMPERATURE SUPERCONDUCTORSS. A. Artamonov, V. R. Shaginyan*Petersburg Nu
lear Physi
s Institute, Russian A
ademy of S
ien
es188350, Gat
hina, Leningrad region, RussiaSubmitted 9 April 2000A model of a strongly 
orrelated ele
tron liquid based on the fermion 
ondensation (FC) is extended to high-temperature super
ondu
tors. Within our model, the appearan
e of FC presents a boundary separating theregion of a strongly intera
ting ele
tron liquid from the region of a strongly 
orrelated ele
tron liquid. We studythe super
ondu
tivity of a strongly 
orrelated liquid and show that under 
ertain 
onditions, the super
ondu
-tivity vanishes at temperatures T > T
 � Tnode, with the super
ondu
ting gap being smoothly transformedinto a pseudogap. As the result, the pseudogap o

upies only a part of the Fermi surfa
e. The gapped areashrinks with in
reasing the temperature and vanishes at T = T �. The single-parti
le ex
itation width is alsostudied. The quasiparti
le dispersion in systems with FC 
an be represented by two straight lines 
hara
terizedby the respe
tive e�e
tive masses M�FC and M�L, and interse
ting near the binding energy that is of the orderof the super
ondu
ting gap. It is argued that this strong 
hange of the quasiparti
le dispersion at the binding
an be enhan
ed in underdoped samples be
ause of strengthening the FC in�uen
e. The FC phase transition inthe presen
e of the super
ondu
tivity is examined, and it is shown that this phase transition 
an be 
onsideredas kineti
 energy driven.PACS: 71.27.+a, 74.20.Fg, 74.25.Jb1. INTRODUCTIONUnusual properties of the normal state of high-tem-perature super
ondu
tors have been attra
ting atten-tion for a long time. In des
ribing these properties,whi
h are well beyond the standard Fermi liquid theory,the notion of a strongly 
orrelated liquid has emerged(see, e.g., [1, 2℄). Later on, angle-resolved photoemis-sion studies revealed unusual properties observed in un-derdoped samples, with the leading edge gap dis
overedup to the temperature T � > T
. This behavior is in-terpreted as 
oming from the pseudogap formation; itwas observed in a number of underdoped 
ompoundssu
h as YBa2Cu3O6+x, Bi2Sr2CaCu2O8+Æ, et
. As Tin
reases above T �, the pseudogap 
loses, leading toa large Fermi surfa
e and an extremely �at dispersionin ele
troni
 spe
tra, whi
h is 
alled the extended VanHove singularity [3�7℄. A break in the quasiparti
ledispersion observed near 50meV results in a drasti
*E-mail: vrshag�thd.pnpi.spb.ru


hange of the quasiparti
le velo
ity [8�10℄. This behav-ior is de�nitely di�erent from what one would expe
tfrom a normal Fermi liquid.A 
orrelated liquid 
an be des
ribed in 
onventionalterms, assuming that the 
orrelated regime is relatedwith the nonintera
ting Fermi gas by adiabati
 
onti-nuity. This is done in the well-known Landau theoryof the normal Fermi liquid, but the question arisingat this point is whether this is possible. Most likely,the answer is negative. To ta
kle the above-mentionedproblems, we 
onsider a model where a strongly 
orre-lated liquid is separated from the 
onventional Fermiliquid by a phase transition related to the onset of theFC [11, 12℄. The purpose of our paper is to show thatwithout any adjustable parameters, a number of fun-damental problems of strongly 
orrelated systems arenaturally explained within the model. The paper is or-ganized as follows. In Se
. 2, we 
onsider the generalfeatures of Fermi systems with the FC. In Se
. 3, weshow that the pseudogap behavior 
an be understoodwithin the standard BCS super
ondu
tivity me
hanism331
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e of FC is taken into a

ount.In Se
. 4, we analyze the 
ondensation energy that isliberated when the system in question undergoes thesuper
ondu
ting phase transition superimposing on theFC phase transition. In Se
. 5, we des
ribe the quasi-parti
le dispersion and lineshape. Finally, in Se
. 6, wesummarize our main results.2. THE MAIN FEATURES OF LIQUIDSWITH FCWe �rst 
onsider the key points of the FC theory.The FC is related to a new 
lass of solutions of theFermi liquid theory equation [13℄Æ(F � �N)Æn(p; T ) = "(p; T )� �(T )�� T ln 1� n(p; T )n(p; T ) = 0 (1)for the quasiparti
le distribution fun
tion n(p; T ) de-pending on the momentum p and the temperature T .Here F is the free energy, � is the 
hemi
al potential,and "(p; T ) = ÆE=Æn(p; T ) is the quasiparti
le energy,whi
h is a fun
tional of n(p; T ) just like the energy Eand the other thermodynami
 fun
tions. Equation (1)is usually represented as the Fermi�Dira
 distributionn(p; T ) = �1 + exp� ("(p; T )� �)T ���1 : (2)In a homogeneous matter and at T = 0, oneobtains from Eq. (2) the standard solutionnF (p; T = 0) = �(pF � p), with "(p � pF ) � � == pF (p � pF )=M�L, where pF is the Fermi momentumand M�L is the 
ommonly used e�e
tive mass [13℄,1M�L = 1p d"(p; T = 0)dp ����p=pF : (3)It is assumed to be positive and �nite at the Fermi mo-mentum pF . This implies the T -dependent 
orre
tionsto M�L, the quasiparti
le energy "(p), and the otherquantities start with T 2-terms.But this solution of Eq. (1) is not the only one pos-sible. There exist �anomalous� solutions of Eq. (1)asso
iated with the so-
alled fermion 
ondensation [11,14, 15℄. Being 
ontinuous and satisfying the inequality0 < n(p) < 1 within some region in p, su
h a solutionn(p) admits a �nite limit for the logarithm in Eq. (1)as T ! 0, yielding"(p) = ÆE[n(p)℄Æn(p) = �; pi � p � pf : (4)

Equation (4) is used in sear
hing the minimum valueof E as a fun
tional of n(p) under the assumption thata strong rearrangement of the single-parti
le spe
trum
an o

ur. We see from Eq. (4) that the o

upationnumbers n(p) be
ome variational parameters: the so-lution n(p) exists if the energy E is de
reased by al-teration of the o

upation numbers. Thus, within theregion pi < p < pf , the solution n(p) deviates fromthe Fermi step fun
tion nF (p) su
h that the energy"(p) stays 
onstant, while n(p) 
oin
ides with nF (p)outside this region. As a result, the standard Kohn�Sham s
heme for the single-parti
le equations is nolonger valid beyond the FC phase transition point [16℄.This behavior of systems with the FC is 
learly di�er-ent from what one expe
ts from the well known lo
aldensity 
al
ulations; therefore, these 
al
ulations arenot appli
able to systems with the FC. On the otherhand, the quasiparti
le formalism is appli
able to thisproblem, be
ause as we see in what follows, the damp-ing of single-parti
le ex
itations is not large 
omparedto their energy [15℄. It is also seen from Eq. (4) that asystem with the FC has a well-de�ned Fermi surfa
e.It follows from Eq. (1) that at low T , new solutionswithin the interval o

upied by the fermion 
ondensatehave the spe
trum "(p; T ) that is linear in T [15, 17℄,"(p; T )� �(T ) � (p� pF )pFM�FC �� T [1� 2n(p)℄� Tf : (5)Here Tf is the quasi-FC phase transition temperatureabove whi
h FC e�e
ts be
ome insigni�
ant [15℄,Tf"F � p2f � p2i2M"F � 
FC
F ; (6)where M is the bare ele
tron mass, 
FC is the 
on-densate volume, "F is the Fermi energy, and 
F is thevolume of the Fermi sphere. One 
an imagine thatthe dispersionless plateau "(p) = � given by Eq. (4) isslightly tilted 
ounter-
lo
kwise about � and roundedo� at the end points. If T � Tf , it follows from Eqs. (1)and (5) that the e�e
tive mass M�FC related to the FCis temperature dependent,M�FCM � N(0)N0(0) � TfT ; (7)where N0(0) is the density of states of the noninter-a
ting ele
tron gas, and N(0) is the density of statesat the Fermi level. We note that outside the FC re-gion, the single-parti
le spe
trum is not distin
tly af-fe
ted by temperature, being determined by the e�e
-tive mass M�L given by Eq. (3), whi
h is now evaluated332
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les in a strongly 
orrelated liquid : : :at p � pi. Thus, we are led to the 
on
lusion that sys-tems with a FC must be 
hara
terized by two e�e
tivemasses: M�FC related to the single-parti
le spe
trum ofa low-energy s
ale and M�L related to the spe
trum ofa higher energy s
ale. The existen
e of these two ef-fe
tive masses 
an be observed as a break in the quasi-parti
le dispersion. This break is observed at temper-atures T � Tf , and also when the super
ondu
tingstate is superimposed on the FC state. In the former
ase, the o

upation numbers over the area o

upiedby the fermion 
ondensate are slightly disturbed by thepairing 
orrelations su
h that the e�e
tive mass M�FCbe
omes large but �nite. We remark that at 
ompara-tively low temperatures, the FC and super
ondu
tivitygo together be
ause of the remarkable pe
uliarities ofthe FC phase transition. This transition is related to aspontaneous gauge symmetry breaking: the super
on-du
tivity order parameter�(p) =pn(p)[1� n(p)℄has a nonzero value over the region o

upied by thefermion 
ondensate, while the gap � 
an vanish [15,16℄.It is seen from Eq. (4) that at the FC phase tran-sition point, pf ! pi ! pF , while the e�e
tive massand the density of states tend to the in�nity as fol-lows from Eqs. (4) and (7). One 
an 
on
lude thatthe beginning of the FC phase transition is related tothe absolute growth of M�FC . The onset of the 
har-ge-density wave instability in an ele
tron system, whi
ho

urs as soon as the e�e
tive ele
tron�ele
tron inter-a
tion 
onstant rs rea
hes its 
riti
al value r
dw, mustbe pre
eded by the unbounded growth of the e�e
tivemass [18℄. For a simple ele
tron liquid, the e�e
tive
onstant is proportional to the dimensionless averagedistan
e rs � r0=aB between parti
les of the system inquestion, with r0 being the average distan
e and aB theBohr radius. The physi
al reason for this growth is the
ontribution of the virtual 
harge density �u
tuationsto the e�e
tive mass. The ex
itation energy of these�u
tuations be
omes very small if rs � r
dw. Thus, aFC 
an o

ur when rs � r
dw. The standard Fermi liq-uid behavior 
an therefore be broken by strong 
harge�u
tuations when the insulator regime is approa
hed ina 
ontinuous fashion. We re
all that the 
harge-densitywave instability o

urs in three-dimensional [19℄ andtwo-dimensional (2D) ele
tron liquids [20℄ at a su�-
iently high rs. As soon as rs rea
hes its 
riti
al valuerFC < r
dw, the FC phase transition o

urs. There-after, the 
ondensate volume is proportional to rs�rFCand also Tf="F � rs�rFC [15, 18℄. In fa
t, the e�e
tive
oupling 
onstant rs in
reases with de
reasing doping.

It is assumed that both Tf and 
ondensate volume 
FCbuild up with de
reasing doping. The FC then serves asa stimulating sour
e of new phase transitions lifting thedegenera
y of the spe
trum. The FC 
an produ
e, forinstan
e, the spin density wave (SDW) phase transitionor the antiferromagneti
 one, thereby promoting a va-riety of the system properties. We note that the SDWphase transition, the antiferromagneti
 transition, andthe 
harge density one also depend on rs and o

ur ata su�
iently large value of rs even if the FC is absent.The super
ondu
ting phase transition is also aided bythe FC. We analyze the situation where the super
on-du
tivity wins the 
ompetition with the other phasetransitions up to a temperature T
. Above the temper-ature T � � Tf , the system under 
onsideration is in itsanomalous normal state, Eq. (7) is valid, and one 
anobserve smooth non-dispersive segments of the spe
traat the Fermi surfa
e [6℄.3. SUPERCONDUCTIVITY IN THEPRESENCE OF FCWe fo
us our attention on investigating the pseu-dogap that is formed above T
 in underdoped (UD)high-temperature super
ondu
tors [4�8℄. As we see inwhat follows, the existen
e of the pseudogap is 
loselyallied with the presen
e of the FC 
hara
terized bya su�
iently high temperature Tf given by Eq. (6).Thus, the pseudogap is pe
uliar to UD samples, whileoptimally doped (OP) and overdoped (OD) samplesmay not exhibit this feature. We 
onsider a 2D liquidon a simple square latti
e that has a super
ondu
tingstate with the d-wave symmetry of the order parameter�. We assume that the long-range 
omponent Vlr(q) ofthe parti
le�parti
le intera
tion Vpp(q) is repulsive andhas the radius qlr in the momentum spa
e su
h thatpF =qlr � 1. The short-range 
omponent Vsr(q) is rela-tively large and attra
tive, with its radius pF =qsr � 1.In agreement with the d-symmetry requirements thelow temperature gap � is then given by the expres-sion [21�23℄�(�) = 2�(�)E(�) � �1 
os(2�) = �1(x2 � y2);where E(�) =p"2(�) + �2(�) and �1 is the maximalgap. At �nite temperatures, the equation for the gap
an be written as�(p; �) = � 2�Z0 Z Vpp(p; �; p1; �1)�(p1; �1)�� th E(p1; �1)2T p1dp1d�14�2 ; (8)333
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ordan
e withEq. (7). We note that the di�erent FC areas overlaponly slightly [17℄. �(�) obeys the following equationthat is determined by the 
hosen intera
tion Vpp,���4 + �� = ����4 � �� : (9)It vanishes at �=4 and 
an therefore be expanded inthe Taylor series around �=4, with p � pF :�(p; �) = �a� �3b+ : : : ; (10)where � = � � �=4. Hereafter, we 
onsider solutionsof Eq. (8) on the interval 0 < � < �=4. We trans-form Eq. (8) by setting p � pF and separating the
ontribution Ilr 
oming from Vlr , with the 
ontribu-tion related to Vsr denoted by Isr . At small angles,Ilr 
an be approximated in a

ordan
e with (10) byIlr = �A + �3B, with the parameters A and B in-dependent of T if T � T � � Tf , be
ause they arede�ned by the integral over the regions o

upied bythe FC. This theoreti
al observation is 
onsistent withthe experimental results showing that �1 is essentiallyT -independent at the temperatures T < T � [6℄. The
oe�
ients of the expansion of Isr in powers of � de-pend on T . It is therefore more 
onvenient to use theintegral representation for Isr following from (8). We,thus, have�(�) = Isr + Ilr = � 2�Z0 Z Vsr(�; p1; �1)�(p1; �1)�� th E(p1; �1)2T p1dp1d�14�2 + �A+ �3B: (11)In Eq. (11), the variable p was omitted sin
e p � pF .It is seen from this equation that the FC produ
es thefree term �A + �3B. In what follows, we show that atT � Tnode, the solution of Eq. (11) has the se
ond nodeat �
(T ) in the vi
inity of the �rst node at �=4. Wealso demonstrate that the temperature Tnode has themeaning of the temperature T
 at whi
h the super
on-du
tivity vanishes. To show this, we simplify Eq. (11)to an algebrai
 equation. We have Isr � (V0=T )� be-
ause th(E=2T ) � E=2T for E � T and T � Tnode,as is the 
ase in the vi
inity of the gap node at � = 0.The integration in Eq. (11) runs over a small area lo-
ated at the gap node be
ause of the small radius ofVsr . Dividing both parts of Eq. (11) by �(�), we obtainE(�) = ��V0T � A1 � �2B1� j�j; (12)

021 0 1 2 3 4 5 6�2�1 �
�=T � 123

Fig. 1. The gap � as a fu
ntion of � 
al
ulatedat three di�erent temperatures expressed in terms ofTnode � T
, while � is presented in terms of T �. Curve1, solid line, shows the gap 
al
ulated at temperature0:9Tnode. In 
urve 2, dashed line, the gap is given atTnode. Note the important di�eren
e in 
urve 2 
om-pared with 
urve 1 due to a �attening of the 
urve 2over the region 
n. Cal
ulated �(�) at 1:2Tnode isshown by 
urve 3, dotted line. The arrows indi
ate thetwo nodes restri
ting area 
n and emerged at Tnodewhere A1 and B1 are new 
onstants and V0 � Vsr(0)is a 
onstant. Imposing the 
ondition that Eq. (8) hasthe only solution � � 0 when Vsr = 0, we see thatA1 is negative and B1 is positive. The fa
tor in thebra
kets on the right-hand side of Eq. (12) 
hanges itssign at some temperature Tnode � V0=A1; on the otherhand, the ex
itation energy must be E(�) > 0. There-fore, we have two possibilities [24, 25℄. The �rst followsfrom the assumption that �(�) � 0 if � belongs to theinterval 
n [0 < � < �
℄. In this 
ase, for T > Tnode wemust solve Eq. (8) with the 
ondition�(�) � 0; 0 < � < �
; Tnode < T:This resembles Eq. (4) with the parameter � beingequal to zero. The similarity is not 
oin
idental, be-
ause we are sear
hing for new solutions in both 
ases.Su
h solutions do exist be
ause the points � = 0 and� = �
 represent the bran
hing points of the solutions.The se
ond possibility 
an o

ur if the above solutiondoes not lead to a minimum value of the free energy.Be
ause the ex
itation energy must be positive for astable state, the sign of � must be reversed at the point� = �
. Then the gap�(�) has the same sign within theinterval 
n and 
hanges its sign on
e more at the point� = 0, with �(�
) = �(0) = 0. Thus, we 
on
lude thatthe gap � possesses new nodes at T > Tnode [25℄, seeFig. 1. It 
an be seen from Eq. (12) that the angle �
is related to T > Tnode by334
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les in a strongly 
orrelated liquid : : :T � V0A1 +B1�2
 : (13)It follows from the above 
onsideration and Eq. (12)that even below Tnode, the order parameter � 
annotbe approximated by a simple d-wave form; a more so-phisti
ated expression must be used to �t the �atteningof the gap� around the node. The following expression
an be used for this purpose,�(�) = �1 [B 
os(2�) + (1�B) 
os(6�)℄ : (14)Here 0 < B < 1 in a

ordan
e with the experimentalresults [7℄ and the term involving 
os(6�) is the next
ompatible with the d-symmetry of the gap. It also fol-lows from Eq. (12) that the parameter B is a de
reas-ing fun
tion of the temperature. At the temperaturesT > Tnode, the value of 1 � B is su�
iently large toprodu
e new nodes of � given by Eq. (14).As an example of the solutions of Eqs. (8) and (11),we show, in Fig. 1 the gap �(�) 
al
ulated at threedi�erent temperatures 0:9Tnode, Tnode, and 1:2Tnode.An important di�eren
e between 
urves 2 and 1 is the�attening of 
urve 2 at the nodes lo
alized within theregion 
n 
ontaining the interval ��
 � � � �
: Asseen from Fig. 1, the �attening o

urs as the result ofthe new nodes restri
ting the area 
n. It is also seenfrom Fig. 1 that the gap � is extremely small over therange 
n. It was re
ently shown in a number of pa-pers (see, e.g., [26, 27℄) that there exists an interplaybetween the magnetism and the super
ondu
tivity or-der parameters, leading to the damping of the mag-netism order parameter below T
. Conversely, one 
ananti
ipate the damping of the super
ondu
tivity orderparameter by magnetism. Thus, we 
on
lude that thegap in the range 
n 
an be destroyed by strong anti-ferromagneti
 
orrelations (or by spin density waves)existing in underdoped super
ondu
tors [28, 29℄. It isbelieved that impurities 
an easily destroy� in the 
on-sidered area. As a result, one is led to the 
on
lusionthat T
 � Tnode, with the exa
t value of T
 de�ned bythe 
ompetition between the antiferromagneti
 
orrela-tions (or spin density waves) and the super
ondu
ting
orrelations over the range 
n.We now 
onsider the possibility for two quite di�er-ent properties, the super
ondu
tivity and stati
 spindensity wave (SDW), to 
oexist. We start by brie�youtlining the main features of the SDW [30℄. A simpleexample is given by the linear SDW, with the net spinpolarization P(r)P(r) = P0e 
os(
Qx); (15)

where 
Qx is the angle between the ve
tors Q and x.For 
onvenien
e, the dire
tion of the SDW is takenalong the x axis, and e is the unit polarization ve
tor,whi
h in general 
an have any orientation with respe
tto Q. In 
ontrast to the super
ondu
tivity, SDW 
ano

upy only a part of the Fermi sphere with the vol-ume ÆS � pF Æ�Æk, where Æ� is the Fermi surfa
e angleand Æk is the �penetration depth� of the SDW into theFermi sphere. At T = 0, the energy gain ÆW due tothe onset of SDW is given byÆW � g2N(0)Æ�; (16)where g is the SDW gap determined by the formula [30℄g � pF ÆkN(0) exp�� 4N(0)
0Æ�� ; (17)where 
0 is the 
oupling 
onstant. As seen from Eq. (8),the variation of the gap within some area produ
esa variation of the gap over the entire o

upied areawith the same order of magnitude. Therefore, elimi-nation of � over a segment Æ� requires the energyÆE1 � N(0)�2(�). We 
on
lude that at T < Tnode, thedestru
tion of the gap on the interval Æ� eliminates �over the entire region, be
ause ÆE1 is 
omparable withthe gain ÆE due to the super
ondu
ting state. A dif-ferent situation o

urs at the temperatures T > Tnode,when � is extremely small in 
n and the 
orrespon-ding destru
tion energy satis�es inequality ÆE1 � ÆE.Equations (16) and (17) are very similar to the 
or-responding BCS equations and this similarity also re-mains at �nite temperatures [30℄. Thus, the gain ÆWand the gap g vary with the temperature similarly tothe super
ondu
ting gain ÆE and the gap �. We alsoassume that the SDW transition temperature Tn is suf-�
iently high, namely, Tn � T
. We then 
ome to the
on
lusion that ÆE1 < ÆW , and the region 
n is there-fore o

upied by the SDW at temperatures T � Tnode,resulting in the destru
tion of the super
ondu
tivity[24, 25℄. We note that the Fermi surfa
e angle Æ� mustbe su�
iently large, be
ause the gap g depends expo-nentially on Æ� in a

ordan
e with Eq. (17). On theother hand, be
ause we are dealing with SDW, we haveÆ�=� � 10�2 [30℄. We thus 
on
lude that a strong vari-ation of the super
ondu
tivity 
hara
teristi
s may beobserved in the vi
inity of Tnode.It follows from the above 
onsiderations that �(�)
an be destroyed only lo
ally within the region 
n be-
ause of the di�erent reasons. It also follows that Tnodeis the temperature at whi
h the super
ondu
tivity van-ishes, that is, T
 � Tnode. As to the gap at T > T
,or more pre
isely, the pseudogap, it persists outside the335
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(T � T
)=T
Fig. 2. Cal
ulated angle �
, pulling apart the twonodes, as a fun
tion of (T � T
)=T

n region. In a

ordan
e with [4, 7℄, we see that the su-per
ondu
ting gap �(�) smoothly transforms into thepseudogap at T > T
. We 
an therefore expe
t a dra-mati
 redu
tion in the di�eren
e between the free en-ergy of the normal and the super
ondu
ting state atT = T
 (the so-
alled 
ondensation energy, whi
h we
onsider in some detail in the next se
tion). It 
an thenbe 
on
luded that the temperature T � has the physi
almeaning of the BCS transition temperature betweenthe state with the order parameter � 6= 0 and the nor-mal state. Be
ause T
 � V0=A1, we �nd from Eq. (13)that �
 / p(T � T
)=T
. This result is in harmonywith our 
al
ulations of the fun
tion �
([T � T
℄=T
)plotted in Fig. 2. Thus, we 
on
lude that the pseudo-gap �dies out� in UD samples as the temperature T � isapproa
hed. Quite naturally, one has to re
ognize that�1 must s
ale with T �.A few remarks are in order at this point. On thebasis of the previous 
onsideration, we 
on
lude thatthe BCS approa
h is fruitful in 
onsidering OD, OP,and UD samples in the weak 
oupling regime. Withmore underdoping, the antiferromagneti
 
orrelationsbe
ome stronger, breaking down the gap over the range
n at lower temperatures. Thus, one observes the de-
rease of T
 with the de
rease of doping. On the otherhand, the 
ondensate volume 
FC be
omes larger withthe de
rease of doping, leading to in
rease of the gap�1 whi
h is proportional to the volume and intera
tionVpp [11℄. Consequently, the temperature T � be
omeshigher with de
reasing doping. All these results arein agreement with the experimental �ndings [4, 7℄. Apeak was observed at 41 meV� 2�1 in inelasti
 neu-tron s
attering from single 
rystals of the OD, OP, andUD samples YBa2Cu3O6+x and Bi2Sr2CaCu2O8+Æ attemperatures below T
, while a broad maximum aboveT
 exists in underdoped samples only [31, 32℄. The ex-

planation of this peak given in [33℄ was based on theideas of the BCS theory. From the above dis
ussion, itappears that the same explanation holds for the broadmaximum in underdoped samples above T
 be
ause thephysi
s of the pro
ess is essentially the same.4. CONDENSATION ENERGYWe now 
onsider the energy gain or 
ondensationenergy E
ond liberated when the system in question un-dergoes the super
ondu
ting phase transition involvedin the FC phase transition. We set T = 0 for simpli
ity.The energy E
ond 
an be s
hemati
ally broken into twoparts related to the kineti
 and the potential energy.The 
ondensation energy was 
onsidered in [34℄, whereit was argued that the main 
ontribution to the 
onden-sation energy 
omes from the kineti
 energy, i.e., thesuper
ondu
ting phase transition of high-temperaturesuper
ondu
tors is kineti
 energy driven. Here, we givea possible interpretation of the situation. It is known[35℄ that in the super
ondu
ting phase transition, thepositive 
ontribution 
omes from the potential energy,while the gain in the kineti
 energy is negative. In theother words, the super
ondu
ting phase transition isdriven by the gain in the potential energy. This resultis rather obvious be
ause the ground state energy Egsis given byEgs [�(p)℄ = E [n(p)℄ +Es
 [�(p)℄ ; (18)with the o

upation numbers n(p) determined by�(p) = pn(p)[1� n(p)℄. The se
ond term Es
 [�(p)℄on the right-hand side of Eq. (18) is de�ned by the su-per
ondu
ting 
ontribution, whi
h in the simplest 
aseis of the formEs
 [�(p)℄ == g2 Z Vpp(p1;p2)�(p1)�(p2)dp1dp2(2�)4 : (19)The �rst term E [n(p)℄ 
an be taken asE [n(p)℄ = Z p22Mn(p) dp4�2 ++ g12 Z V (p1;p2)n(p1)n(p2)dp1dp2(2�)4 ; (20)with the se
ond integral playing the role of theex
hange-
orrelation 
ontribution to the ground stateenergy. If the e�e
tive mass M�L given by Eq. (3) ispositive and �nite, E [n(p)℄ rea
hes its minimum atn(p) = nF (p) and in
reases with the deviation of n(p)from the Fermi distribution, as it o

urs in the presen
e336
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les in a strongly 
orrelated liquid : : :of super
ondu
ting 
orrelations. Thus, the standardsituation is that the super
ondu
ting phase transitionis driven by a de
rease of the potential energy [35℄. Thesituation 
an be di�erent if the system undergoes theFC phase transition. To see this we temporarily assumethat g2 ! 0 and rewrite Eq. (20) asE [n(p)℄ = Z "(p)n(p) dp4�2 �� g12 Z V (p1;p2)n(p1)n(p2)dp1dp2(2�)4 ; (21)with the single parti
le energy"(p) = ÆE [n(p)℄Æn(p) : (22)The energy E [n(p)℄ 
an be lowered by alteration ofn(p) if Eq. (4) has solutions. As the result, we 
anwrite the inequality [11℄E
ond = EN �EFC �� Z ["(p)� �℄ Æn(p) dp4�2 � 0; (23)with EN being the energy of system in its normal state,EFC the energy with FC, and the integral taken overthe region o

upied by FC. The 
hemi
al potential �preserves the 
onservation of the parti
le number un-der the variation Æn(p). We assume that the kineti
energy is given by the �rst term on the right-handside of Eq. (21). It then follows from Eq. (23) thatthe kineti
 energy 
an be lowered, and this loweringis driven by the FC phase transition. It is instru
-tive to illustrate this by a simple example. We takeV (p1;p2) = g1Æ(p1�p2), then E
ond given by Eq. (23)be
omesE
ond = Z ["0(p)nF (p)� "(p)n(p)℄ dp4�2 ++ g12 Z �n2(p)� n2F (p)� dp4�2 ; (24)with "0(p) being the single parti
le energy of the nor-mal ground state. It is easily veri�ed that the se
ondterm on the right-hand side of Eq. (24), whi
h is relatedto the potential energy gain, is negative. This term 
anbe written asg12 Z �n2(p)� n2F (p)� dp4�2 == g12 Z [n(p)� nF (p)℄ [n(p) + nF (p)℄ dp4�2 :

Observing thatZ [n(p)� nF (p)℄ dp4�2 = 0be
ause of the parti
le number 
onservation and takinginto a

ount that[n(p) + nF (p)℄p�pF > [n(p) + nF (p)℄pF�p ;we arrive at the 
on
lusion. The �rst term is positivebe
ause of inequality (23). Thus, we are led to the 
on-
lusion that the FC phase transition 
an be 
onsideredas driven by the kineti
 energy. We now let the 
ou-pling 
onstant g2 be small, then the gap � is propor-tional to g2 [11℄. The optimum values of the o

upationnumbers given by Eq. (4) are disturbed, leading to anin
rease of the energy E [n(p)℄. The positive gain in thepotential energy given by Eq. (19) is driving the forma-tion of the super
ondu
ting ground state. Be
ause the
oupling 
onstant g2 is su�
iently small, the stru
tureof the system ground state is de�ned by the FC, andthe super
ondu
ting state is a �shadow� of the FC un-der these 
onditions [15℄. Then, the main 
ontributionto E
ond 
omes from the FC phase transition, and the
omplex transition (FC plus super
ondu
tivity) is ki-neti
 energy driven [36℄. On the other hand, in the 
asewhere FC is weak 
ompared to the super
ondu
tivity(or is absent), we are dealing with a pure super
on-du
ting phase transition, whi
h is obviously potentialenergy driven.5. QUASIPARTICLE DISPERSION ANDLINESHAPEWe now dis
uss the origin of two e�e
tive massesM�L and M�FC o

urring in the super
ondu
ting stateand leading to a nontrivial quasiparti
le dispersion anda 
hange of the quasiparti
le velo
ity. As we see in whatfollows, our results are in a reasonably good agreementwith the experimentally dedu
ed data [8�10℄. For sim-pli
ity, we set T = 0. Varying Egs given by Eq. (18)with respe
t to �p, we �ndEgs[�p℄Æ�p = ["(p)� �℄ th(2�p) + �(p) = 0; (25)with n(p) = 
os2 �p, �(p) = sin�p 
os�p, and "(p) de-�ned by Eq. (22). As g2 ! 0, we have that �(p)! 0,and Eq. (25) be
omes["(p)� �℄ th(2�p) = 0: (26)Equation (26) requires that"(p)� � = 0; if th(2�p) 6= 0 (0 < n(p) < 1); (27)8 ÆÝÒÔ, âûï. 2 337
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h leads to the FC solutions de�ned by Eq. (4) [16,25℄. As soon as the 
oupling 
onstant g2 be
omes�nite but small, su
h that g2=g1 � 1, the plateau"(p) � � = 0 is slightly tilted and rounded o� at theend points. This implies that"(p)� � � �1; (28)whi
h allows us to estimate the e�e
tive mass asM�FCM � Tf�1 : (29)Outside the 
ondensate area, the quasiparti
le disper-sion is determined by the e�e
tive mass M�L givenby Eq. (3). We note that 
al
ulations in the 
on-text of a simple model support the above 
onsidera-tion [15℄. In that 
ase, putting V (p1;p2) = Æ(p1;p2)and Vpp(p1;p2) = Æ(p1;p2) in Eqs. (19) and (20) and
arrying out dire
t 
al
ulations, we obtain at T = 0E0 = "(pf )� "(pi) � (pf � pi)pFM�FC � 2�1: (30)On the other hand, at T � T
, taking into a

ount thatn(pi) � 1 and n(pf ) � 0, we obtain from Eq. (5) withthe same a

ura
y,E0 � (pf � pi)pFM�FC � 2T: (31)Equations (30) and (31) allow us to estimate the e�e
-tive mass M�FC related to the region o

upied by theFC at temperatures T � Tf . Outside the region, thee�e
tive mass is M�L. When Eqs. (28) and (29) are
ompared with Eqs. (5) and (7), it is apparent that thegap �1 plays the role of the e�e
tive temperature thatde�nes the slope of the plateau. On the other hand,at T = T
 in OD or OP samples, the gap vanishesand Eqs. (5) and (31) de�ne the quasiparti
le disper-sion and the e�e
tive mass. Taking into a

ount that�1 � T
, we are led to the 
on
lusion that Eqs. (28)and (29) derived at T = 0 mat
h Eqs. (5) and (7) atT
. Thus, Eqs. (28) and (29) are approximately validover the range 0 � T � T
. It follows from Eq. (30)that at T � T
, the quasiparti
le dispersion 
an bepresented with two straight lines 
hara
terized by therespe
tive e�e
tive massesM�FC andM�L and interse
t-ing near the binding energy E0 � 2�1. Equation (31)implies above T
, the lines interse
t near the bindingenergy � 2T . The break separating the faster dispers-ing high-energy part related to M�L from the slowerdispersing low-energy part de�ned by M�FC is likelyto be enhan
ed in UD samples at least be
ause of therise of the temperature Tf , whi
h grows with the de-
rease of doping. We re
all that in a

ordan
e with

k+ qk+ qk k
p pp� qp p� q

a bFig. 3. Diagram a depi
ts a pro
ess 
ontributing tothe imaginary part. Diagram b shows a real pro
ess
ontributing to the imaginary part, observe that quasi-parti
les p� q, k+ q, and k are on the mass shellour assumption, the 
ondensate volume 
FC and Tfare growing with underdoping, see Eq. (6) and Se
. 3.It was also suggested that the FC arises near the VanHove singularities, while the FC di�erent areas overlaponly slightly. Therefore, as one moves from (0; 0) to-wards (�; 0) the ratio M�FC=M�L grows in magnitude,developing into the distin
t break. In fa
t, assumingthat the temperature Tf depends on the angle � alongthe Fermi surfa
e and taking Eq. (29) into a

ount,one 
an arrive at the same 
on
lusion. The disper-sions above T
 exhibit the same stru
ture ex
ept thatthe e�e
tive mass M�FC is governed by Eq. (31) ratherthan (30) and both the dispersion and the break arepartly �
overed� by the quasiparti
le width. Thus,one 
on
ludes that there also exists a new energy s
aleat T � Tf de�ned by E0 and intimately related toTf [36℄. We turn to the quasiparti
le ex
itations withthe energy E(�) = p"2(�) + �2(�): At temperaturesT < T
, they are typi
al ex
itations of the super
on-du
ting state. We now qualitatively analyze the pro-
esses 
ontributing to the width 
. Within the limitsof the analysis, we 
an take � � 0, whi
h 
orrespondsto 
onsidering ex
itations at the node. Our treatmentis then valid for both T � T
 and T
 � T . For de�-niteness, we 
onsider the de
ay of a parti
le with themomentum p > pF . Then 
(p; !) is given by the imag-inary part of the diagram shown in Fig. 3a, where thewiggly lines stand for the e�e
tive intera
tion. Be
auseof the unitarity, diagram 3b whi
h represents the realevents 
an be used to 
al
ulate the width [37℄ as
(p; !) = 2� Z ���� V (q)�(q;�!pq) ����2 �� n(k) [1� n(k+ q)℄ Æ(!pq + !kq) dqdk(2�)4 ; (32)with �(q;�!pq) being the 
omplex diele
tri
 
onstantand V (q)=� the e�e
tive intera
tion. Here, q and338
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les in a strongly 
orrelated liquid : : :!kq = "(k + q) � "(k) are the transferred momentumand energy, respe
tively, and !pq = !� "(p�q) is thede
rease in the quasiparti
le energy as the result of theres
attering pro
esses: the quasiparti
le with the en-ergy ! de
ays into a quasihole "(k) and two quasipar-ti
les "(p�q) and "(k+q). The transferred momentumq must satisfy the 
onditionp > jp� qj > pF : (33)Equation (32) gives the width as a fun
tion of p and!; the width of a quasiparti
le with the energy "(p)is given by 
(p; ! = "(p)). Estimating the width inEq. (32) with the 
onstraint (33) and !pq � T , we �ndthat 
(p; ! = "(p)) � (M�L)3T 2; (34)for normal Fermi liquids. In the 
ase of the FC one
ould estimate 
 � 1=T upon using Eqs. (9) and (34).This estimate were 
orre
t if the diele
tri
 
onstant issmall, but � �M�FC . As the result, for the FC we have
(p; ! = "(p)) � (M�FC)3T 2(M�FC)2 � T Tf"F ; (35)where "F is the Fermi energy [38℄. Cal
ulating 
(p; !)as a fun
tion of p at 
onstant !, we obtain the sameresult for the width given by Eq. (35) when ! = "(p).The 
al
ulated fun
tion 
an be �tted with a simpleLorentzian form, be
ause quasiparti
les and quasiholesinvolved in the pro
ess are also lo
ated in the vi
in-ity of the Fermi level provided ! � "F � T . It thenfollows from Eq. (35) that the well-de�ned ex
itationsexist at the Fermi surfa
e even in the normal state [38℄.This result is in line with the experimental �ndings de-termined from the s
ans at a 
onstant binding energy(momentum distribution 
urves or MDCs) [8, 39℄. Onthe other hand, 
onsidering 
(p; !) as a fun
tion of! at 
onstant p, we 
an 
he
k that the quasiparti
lesand quasiholes 
ontributing to the fun
tion 
an havethe energy of the same order of the magnitude. For! � "F � T , the fun
tion is of the same Lorentzianform, otherwise the shape of the fun
tion is disturbedat high ! by high-energy ex
itations. In that 
ase thespe
ial form of the quasiparti
le dispersion 
hara
ter-ized by the two e�e
tive masses must be taken intoa

ount. As the result, the lineshape of the quasiparti-
le peak as a fun
tion of the binding energy possesses a
omplex peak�dip�hump stru
ture [9, 10, 40℄ dire
tlyde�ned by the existen
e of the e�e
tive masses M�FCand M�L. Our 
onsideration shows that it is the spe
-tral peak obtained from MDCs that provides importantinformation on the existen
e of well-de�ned ex
itations

at the Fermi level and their width [36℄. The detailednumeri
al results will be presented elsewhere.At T > T
, the gap is absent in OD or OP samples,and the width 
 of ex
itations 
lose to the Fermi sur-fa
e is given by Eq. (35). For UD samples, �(�) � 0in the range 
n and we have normal quasiparti
le ex-
itations with the width 
. Outside the range 
n,the Fermi level is o

upied by the BCS-type ex
ita-tions with �nite ex
itation energy given by the gap�(�). Both types of ex
itations have widths of thesame order of magnitude. We now estimate 
. Forthe entire Fermi level o

upied by the normal state,the width is equal to 
 � N3(0)T 2=�2, with the den-sity of states N(0) � 1=T and the diele
tri
 
onstant� � N(0). Thus, 
 � T [15℄. In our 
ase, howe-ver, only a part of the Fermi level within 
n belongsto the normal ex
itations. Therefore, the number ofstates allowed for quasiparti
les and for quasiholes isproportional to �
, the fa
tor T 2 is therefore repla
edby T 2�2
 . Taking these fa
tors into a

ount, we ob-tain 
 � �2
T � T (T � T
)=T
 � T � T
, be
ause onlysmall angles are 
onsidered. Here, we have omitted thesmall 
ontribution 
oming from the BCS-type ex
ita-tions. That is why the width 
 vanishes at T = T
.Thus, the foregoing analysis shows that in UD sam-ples at T > T
, the super
ondu
ting gap smoothlytransforms into the pseudogap. The ex
itations of thegapped area of the Fermi surfa
e have the same width
 � T � T
 and the region o

upied by the pseudogapis shrinking with in
reasing temperature. These resultsare in good qualitative agreement with the experimen-tal fa
ts [4�7℄.6. CONCLUDING REMARKSWe have dis
ussed the model of a strongly 
orre-lated ele
tron liquid based on the FC phase transitionand extended it to high-temperature super
ondu
tors.The FC transition plays the role of a boundaryseparating the region of a strongly intera
ting ele
tronliquid from the region of a strongly 
orrelated ele
tronliquid. On the basis of the BCS theory ideas we havealso 
onsidered the super
ondu
tivity with the d-wavesymmetry of the order parameter in the presen
e ofthe FC. We 
an 
on
lude that the BCS-type approa
his fruitful for OD, OP, and UD samples. We haveshown that in UD samples, the gap be
omes �atternear the nodes at temperatures T < T
, and thesuper
ondu
ting gap smoothly transforms into apseudogap above T
. The pseudogap o

upies only apart of the Fermi surfa
e, whi
h eventually shrinks339 8*
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reasing temperature, vanishing at T = T �, andthe maximum gap �1 s
ales with the temperature T �.We have also shown that the general dependen
e of T
,T �, and �1 on the underdoping level �ts naturally intothe 
onsidered model. At temperatures T � > T > T
,the single-parti
le ex
itations of the gapped area ofthe Fermi surfa
e have the width 
 � T � T
. Thequasiparti
le dispersion in systems with FC 
an berepresented by two straight lines 
hara
terized by therespe
tive e�e
tive masses M�FC and M�L. At T < T
,these lines interse
t near the point E0 � 2�1, whileabove T
, we have E0 � 2T . It is argued that thisstrong 
hange of the quasiparti
le dispersion at E0 
anbe enhan
ed in UD samples be
ause of strengtheningthe FC in�uen
e. The single-parti
le ex
itations andtheir width 
 are also studied. We have shown thatwell-de�ned ex
itations with 
 � T exist at the Fermilevel even in the normal state. This result is in linewith the experimental �ndings determined from thes
ans at a 
onstant binding energy, or MDCs. We havealso treated the FC phase transition in the presen
eof the super
ondu
tivity and shown that this phasetransition 
an be 
onsidered as kineti
 energy driven.Thus, without any adjustable parameters, a numberof the fundamental problems of strongly 
orrelatedsystems are naturally explained within the proposedmodel.This resear
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