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QUASIPARTICLES IN A STRONGLY CORRELATED LIQUID
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A model of a strongly correlated electron liquid based on the fermion condensation (FC) is extended to high-
temperature superconductors. Within our model, the appearance of FC presents a boundary separating the
region of a strongly interacting electron liquid from the region of a strongly correlated electron liquid. We study
the superconductivity of a strongly correlated liquid and show that under certain conditions, the superconduc-
tivity vanishes at temperatures T > T. = Tpq4e, With the superconducting gap being smoothly transformed
into a pseudogap. As the result, the pseudogap occupies only a part of the Fermi surface. The gapped area
shrinks with increasing the temperature and vanishes at T = T*. The single-particle excitation width is also
studied. The quasiparticle dispersion in systems with FC can be represented by two straight lines characterized
by the respective effective masses My~ and M;, and intersecting near the binding energy that is of the order
of the superconducting gap. It is argued that this strong change of the quasiparticle dispersion at the binding
can be enhanced in underdoped samples because of strengthening the FC influence. The FC phase transition in
the presence of the superconductivity is examined, and it is shown that this phase transition can be considered
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as kinetic energy driven.
PACS: 71.27.+a, 74.20.Fg, 74.25.b

1. INTRODUCTION

Unusual properties of the normal state of high-tem-
perature superconductors have been attracting atten-
tion for a long time. In describing these properties,
which are well beyond the standard Fermi liquid theory,
the notion of a strongly correlated liquid has emerged
(see, e.g., [1, 2]). Later on, angle-resolved photoemis-
sion studies revealed unusual properties observed in un-
derdoped samples, with the leading edge gap discovered
up to the temperature 7% > T,.. This behavior is in-
terpreted as coming from the pseudogap formation; it
was observed in a number of underdoped compounds
such as YBayCu3zOgy,, BioSroCaCusOgyyg, ete. As T
increases above T, the pseudogap closes, leading to
a large Fermi surface and an extremely flat dispersion
in electronic spectra, which is called the extended Van
Hove singularity [3-7]. A break in the quasiparticle
dispersion observed near 50meV results in a drastic
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change of the quasiparticle velocity [8-10]. This behav-
ior is definitely different from what one would expect
from a normal Fermi liquid.

A correlated liquid can be described in conventional
terms, assuming that the correlated regime is related
with the noninteracting Fermi gas by adiabatic conti-
nuity. This is done in the well-known Landau theory
of the normal Fermi liquid, but the question arising
at this point is whether this is possible. Most likely,
the answer is negative. To tackle the above-mentioned
problems, we consider a model where a strongly corre-
lated liquid is separated from the conventional Fermi
liquid by a phase transition related to the onset of the
FC [11, 12]. The purpose of our paper is to show that
without any adjustable parameters, a number of fun-
damental problems of strongly correlated systems are
naturally explained within the model. The paper is or-
ganized as follows. In Sec. 2, we consider the general
features of Fermi systems with the FC. In Sec. 3, we
show that the pseudogap behavior can be understood
within the standard BCS superconductivity mechanism
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provided the appearance of FC is taken into account.
In Sec. 4, we analyze the condensation energy that is
liberated when the system in question undergoes the
superconducting phase transition superimposing on the
FC phase transition. In Sec. 5, we describe the quasi-
particle dispersion and lineshape. Finally, in Sec. 6, we
summarize our main results.

2. THE MAIN FEATURES OF LIQUIDS
WITH FC

We first consider the key points of the FC theory.
The FC is related to a new class of solutions of the
Fermi liquid theory equation [13]

O(F — uN)

—u(T) -

1—n(p,T)

—Tln
n(p,T)

=0 (1)
for the quasiparticle distribution function n(p,T) de-
pending on the momentum p and the temperature 7.
Here F is the free energy, u is the chemical potential,
and £(p,T) = 0E/én(p,T) is the quasiparticle energy,
which is a functional of n(p,T) just like the energy E
and the other thermodynamic functions. Equation (1)

is usually represented as the Fermi—Dirac distribution

(e, T)

EwT) = w) ‘“)}}1. @)

n(p,T) = {l-l-exp[

T
In a homogeneous matter and at T = 0, one
obtains from Eq. (2) the standard solution
np(p,T = 0) = 6(pr — p), with e(p ~ pr) —p =

= pr(p —pr)/Mj, where pr is the Fermi momentum
and M7 is the commonly used effective mass [13],
11 de(p,T =0)
Mg p dp

(3)
pP=PF
It is assumed to be positive and finite at the Fermi mo-
mentum pp. This implies the T-dependent corrections
to Mj, the quasiparticle energy ¢(p), and the other
quantities start with T2-terms.

But this solution of Eq. (1) is not the only one pos-
sible. There exist «anomalous» solutions of Eq. (1)
associated with the so-called fermion condensation [11,
14, 15]. Being continuous and satisfying the inequality
0 < n(p) < 1 within some region in p, such a solution
n(p) admits a finite limit for the logarithm in Eq. (1)
as T — 0, yielding
_ GEl(p)] _

on(p)

£(p) (4)

pi <p < py.
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Equation (4) is used in searching the minimum value
of E as a functional of n(p) under the assumption that
a strong rearrangement of the single-particle spectrum
can occur. We see from Eq. (4) that the occupation
numbers n(p) become variational parameters: the so-
lution n(p) exists if the energy E is decreased by al-
teration of the occupation numbers. Thus, within the
region p; < p < py, the solution n(p) deviates from
the Fermi step function np(p) such that the energy
e(p) stays constant, while n(p) coincides with np(p)
outside this region. As a result, the standard Kohn—
Sham scheme for the single-particle equations is no
longer valid beyond the FC phase transition point [16].
This behavior of systems with the FC is clearly differ-
ent from what one expects from the well known local
density calculations; therefore, these calculations are
not applicable to systems with the FC. On the other
hand, the quasiparticle formalism is applicable to this
problem, because as we see in what follows, the damp-
ing of single-particle excitations is not large compared
to their energy [15]. It is also seen from Eq. (4) that a
system with the FC has a well-defined Fermi surface.
It follows from Eq. (1) that at low T', new solutions
within the interval occupied by the fermion condensate
have the spectrum e(p, T') that is linear in T' [15, 17],

_ p—pr)pF _
Mfc

~T[1-2n(p)| < Ty.

e(p,T) = u(T)

(5)

Here T} is the quasi-FC phase transition temperature
above which FC effects become insignificant [15],

Ty ff‘p?NQFc

QMEF QF ’ (6)

EF
where M is the bare electron mass, Qp¢ is the con-
densate volume, er is the Fermi energy, and Q5 is the
volume of the Fermi sphere. One can imagine that
the dispersionless plateau e(p) = p given by Eq. (4) is
slightly tilted counter-clockwise about p and rounded
off at the end points. If T' <« T, it follows from Eqgs. (1)
and (5) that the effective mass M} related to the FC
is temperature dependent,

Mic  N(O)
M No(0)

~ —

a8 (7

where Ny(0) is the density of states of the noninter-
acting electron gas, and N(0) is the density of states
at the Fermi level. We note that outside the FC re-
gion, the single-particle spectrum is not distinctly af-
fected by temperature, being determined by the effec-
tive mass M} given by Eq. (3), which is now evaluated
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at p < p;. Thus, we are led to the conclusion that sys-
tems with a FC must be characterized by two effective
masses: M}~ related to the single-particle spectrum of
a low-energy scale and M} related to the spectrum of
a higher energy scale. The existence of these two ef-
fective masses can be observed as a break in the quasi-
particle dispersion. This break is observed at temper-
atures T < Ty, and also when the superconducting
state is superimposed on the FC state. In the former
case, the occupation numbers over the area occupied
by the fermion condensate are slightly disturbed by the
pairing correlations such that the effective mass Mj
becomes large but finite. We remark that at compara-
tively low temperatures, the FC and superconductivity
go together because of the remarkable peculiarities of
the FC phase transition. This transition is related to a
spontaneous gauge symmetry breaking: the supercon-
ductivity order parameter

n(p)[l —n(p)]

has a nonzero value over the region occupied by the
fermion condensate, while the gap A can vanish [15,
16)].

It is seen from Eq. (4) that at the FC phase tran-
sition point, py — p; — pp, while the effective mass
and the density of states tend to the infinity as fol-
lows from Eqs. (4) and (7). One can conclude that
the beginning of the FC phase transition is related to
the absolute growth of M%~. The onset of the char-
ge-density wave instability in an electron system, which
occurs as soon as the effective electron—electron inter-
action constant r, reaches its critical value r.q,,, must
be preceded by the unbounded growth of the effective
mass [18]. For a simple electron liquid, the effective
constant is proportional to the dimensionless average
distance rg ~ rg/ap between particles of the system in
question, with rq being the average distance and ap the
Bohr radius. The physical reason for this growth is the
contribution of the virtual charge density fluctuations
to the effective mass. The excitation energy of these
fluctuations becomes very small if ry & r.4,. Thus, a
FC can occur when rg ~ r.q,,. The standard Fermi lig-
uid behavior can therefore be broken by strong charge
fluctuations when the insulator regime is approached in
a continuous fashion. We recall that the charge-density
wave instability occurs in three-dimensional [19] and
two-dimensional (2D) electron liquids [20] at a suffi-
ciently high rs. As soon as rg reaches its critical value
rec < Teqw, the FC phase transition occurs. There-
after, the condensate volume is proportional to rs—rprc
and also Ty /ep ~ rs—rpc [15, 18]. In fact, the effective
coupling constant ry increases with decreasing doping.

K(p) =

It is assumed that both Ty and condensate volume Qrc¢
build up with decreasing doping. The FC then serves as
a stimulating source of new phase transitions lifting the
degeneracy of the spectrum. The FC can produce, for
instance, the spin density wave (SDW) phase transition
or the antiferromagnetic one, thereby promoting a va-
riety of the system properties. We note that the SDW
phase transition, the antiferromagnetic transition, and
the charge density one also depend on 75 and occur at
a sufficiently large value of r4 even if the FC is absent.
The superconducting phase transition is also aided by
the FC. We analyze the situation where the supercon-
ductivity wins the competition with the other phase
transitions up to a temperature T.. Above the temper-
ature T* < T, the system under consideration is in its
anomalous normal state, Eq. (7) is valid, and one can
observe smooth non-dispersive segments of the spectra
at the Fermi surface [6].

3. SUPERCONDUCTIVITY IN THE
PRESENCE OF FC

We focus our attention on investigating the pseu-
dogap that is formed above T, in underdoped (UD)
high-temperature superconductors [4-8]. As we see in
what follows, the existence of the pseudogap is closely
allied with the presence of the FC characterized by
a sufficiently high temperature Ty given by Eq. (6).
Thus, the pseudogap is peculiar to UD samples, while
optimally doped (OP) and overdoped (OD) samples
may not exhibit this feature. We consider a 2D liquid
on a simple square lattice that has a superconducting
state with the d-wave symmetry of the order parameter
r. We assume that the long-range component Vj,.(q) of
the particle-particle interaction Vj,(q) is repulsive and
has the radius ¢ in the momentum space such that
pr/qir < 1. The short-range component Vj,.(q) is rela-
tively large and attractive, with its radius pg/qs. > 1.
In agreement with the d-symmetry requirements the
low temperature gap A is then given by the expres-
sion [21-23]

A(9) = 2k(¢) E(¢) ~ Ai cos(29) = Ai(2? — y?),

where E(¢) = 1/c2(4) + A%(¢) and A, is the maximal
gap. At finite temperatures, the equation for the gap
can be written as

27
A(p/ ¢) = _//Vpp(p7¢7p17¢l)n(plv¢1) X
0

E(p1, 1) pidpidé
h
*th =7 PRI

(8)
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where p is the absolute value of the momentum and ¢
is the angle. It is also assumed that the FC arises
near the Van Hove singularities, leading to a large
density of states at these points in accordance with
Eq. (7). We note that the different FC areas overlap
only slightly [17]. A(¢) obeys the following equation
that is determined by the chosen interaction V,,,,

sGro=-a(G-e) w

It vanishes at 7/4 and can therefore be expanded in
the Taylor series around 7 /4, with p & pp:

A(p,) =6a— 030+ ..., (10)

where § = ¢ — 7/4. Hereafter, we consider solutions
of Eq. (8) on the interval 0 < 0 < w/4. We trans-
form Eq. (8) by setting p &~ pp and separating the
contribution [ coming from Vj,., with the contribu-
tion related to Vi, denoted by I.. At small angles,
I}, can be approximated in accordance with (10) by
I;, = HA + 6>B, with the parameters A and B in-
dependent of 7" if T" < T* <« Ty, because they are
defined by the integral over the regions occupied by
the FC. This theoretical observation is consistent with
the experimental results showing that A; is essentially
T-independent at the temperatures 7' < T* [6]. The
coefficients of the expansion of I, in powers of 6 de-
pend on T'. It is therefore more convenient to use the
integral representation for I, following from (8). We,
thus, have

27
A(G) - Isr + Ilr = - ‘/Ysr(97p17¢1)"€(p17¢1) X
Il

E(p1, ¢1) pidpidgy
2T 472

In Eq. (11), the variable p was omitted since p & pp.
It is seen from this equation that the FC produces the
free term AA + 62 B. In what follows, we show that at
T > Thode, the solution of Eq. (11) has the second node
at 0.(T) in the vicinity of the first node at 7/4. We
also demonstrate that the temperature T),,4. has the
meaning of the temperature T, at which the supercon-
ductivity vanishes. To show this, we simplify Eq. (11)
to an algebraic equation. We have I, ~ (Vp/T)6 be-
cause th(E/2T) ~ E/2T for E « T and T = Tpode,
as is the case in the vicinity of the gap node at 6§ = 0.
The integration in Eq. (11) runs over a small area lo-
cated at the gap node because of the small radius of
V. Dividing both parts of Eq. (11) by k(8), we obtain

E) = — (VO

x th +60A+6°B.

(11)

04

- (12

- 9231> 16|,
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Fig.1. The gap A as a fucntion of ¢ calculated
at three different temperatures expressed in terms of
Trode = Tc, while A is presented in terms of T*. Curve
1, solid line, shows the gap calculated at temperature
0.9T0de. In curve 2, dashed line, the gap is given at
Trode. Note the important difference in curve 2 com-
pared with curve 1 due to a flattening of the curve 2
over the region Q,. Calculated A(¢) at 1.2T 04 is
shown by curve 3, dotted line. The arrows indicate the
two nodes restricting area 2,, and emerged at T04c

where A; and B; are new constants and Vg ~ Vj,.(0)
is a constant. Imposing the condition that Eq. (8) has
the only solution A = 0 when Vi, = 0, we see that
A; is negative and Bj is positive. The factor in the
brackets on the right-hand side of Eq. (12) changes its
sign at some temperature Tpogqe & Vo/A1; on the other
hand, the excitation energy must be E(#) > 0. There-
fore, we have two possibilities [24, 25]. The first follows
from the assumption that A(#) = 0 if 6 belongs to the
interval ©,, [0 < 6 < 6.]. In this case, for T' > T},04e We
must solve Eq. (8) with the condition

A(6)

=0, 0<60<8, Thoge<T.

This resembles Eq. (4) with the parameter p being
equal to zero. The similarity is not coincidental, be-
cause we are searching for new solutions in both cases.
Such solutions do exist because the points # = 0 and
f = 6. represent the branching points of the solutions.
The second possibility can occur if the above solution
does not lead to a minimum value of the free energy.
Because the excitation energy must be positive for a
stable state, the sign of A must be reversed at the point
6 = 0.. Then the gap A(#) has the same sign within the
interval ,, and changes its sign once more at the point
6 =0, with A(f.) = A(0) = 0. Thus, we conclude that
the gap A possesses new nodes at T > Tpoge [25], see
Fig. 1. It can be seen from Eq. (12) that the angle 6.
is related to T' > Ty04e by
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Vo

Ta—0
Ay + B,62

(13)
It follows from the above consideration and Eq. (12)
that even below Ty04e, the order parameter A cannot
be approximated by a simple d-wave form; a more so-
phisticated expression must be used to fit the flattening
of the gap A around the node. The following expression
can be used for this purpose,

A(¢) = Ay [Beos(2¢) + (1 — B) cos(6¢)]. (14)

Here 0 < B < 1 in accordance with the experimental
results [7] and the term involving cos(6¢) is the next
compatible with the d-symmetry of the gap. It also fol-
lows from Eq. (12) that the parameter B is a decreas-
ing function of the temperature. At the temperatures
T > Thode, the value of 1 — B is sufficiently large to
produce new nodes of A given by Eq. (14).

As an example of the solutions of Egs. (8) and (11),
we show, in Fig. 1 the gap A(¢) calculated at three
different temperatures 0.9 Thode, Thode, and 1.2 Ty oqe.
An important difference between curves 2 and 1 is the
flattening of curve 2 at the nodes localized within the
region (), containing the interval —6. < 6 < 6.. As
seen from Fig. 1, the flattening occurs as the result of
the new nodes restricting the area €,,. It is also seen
from Fig. 1 that the gap A is extremely small over the
range (2,. It was recently shown in a number of pa-
pers (see, e.g., [26, 27]) that there exists an interplay
between the magnetism and the superconductivity or-
der parameters, leading to the damping of the mag-
netism order parameter below 7T,.. Conversely, one can
anticipate the damping of the superconductivity order
parameter by magnetism. Thus, we conclude that the
gap in the range €2, can be destroyed by strong anti-
ferromagnetic correlations (or by spin density waves)
existing in underdoped superconductors [28, 29]. It is
believed that impurities can easily destroy A in the con-
sidered area. As a result, one is led to the conclusion
that T, ~ Tyoqe, with the exact value of T, defined by
the competition between the antiferromagnetic correla-
tions (or spin density waves) and the superconducting
correlations over the range ,,.

We now consider the possibility for two quite differ-
ent properties, the superconductivity and static spin
density wave (SDW), to coexist. We start by briefly
outlining the main features of the SDW [30]. A simple
example is given by the linear SDW, with the net spin
polarization P(r)

P(r) = Pye cos(Qz), (15)
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where C/ﬁ; is the angle between the vectors Q and x.
For convenience, the direction of the SDW is taken
along the x axis, and e is the unit polarization vector,
which in general can have any orientation with respect
to Q. In contrast to the superconductivity, SDW can
occupy only a part of the Fermi sphere with the vol-
ume 4S5 ~ ppdddk, where §¢ is the Fermi surface angle
and dk is the «penetration depthy of the SDW into the
Fermi sphere. At T = 0, the energy gain 61 due to
the onset of SDW is given by

SW =~ 2N (0)56, (16)

where g is the SDW gap determined by the formula [30]

4

o ( N(O)%&b) |
where vq is the coupling constant. As seen from Eq. (8),
the variation of the gap within some area produces
a variation of the gap over the entire occupied area
with the same order of magnitude. Therefore, elimi-
nation of A over a segment J¢ requires the energy
dEy ~ N(0)A2%(¢). We conclude that at T < Tyoqe, the
destruction of the gap on the interval d¢ eliminates A
over the entire region, because d E; is comparable with
the gain §E due to the superconducting state. A dif-
ferent situation occurs at the temperatures T > T},o4e,
when A is extremely small in €, and the correspon-
ding destruction energy satisfies inequality 6 F1 < 0E.
Equations (16) and (17) are very similar to the cor-
responding BCS equations and this similarity also re-
mains at finite temperatures [30]. Thus, the gain éW
and the gap ¢ vary with the temperature similarly to
the superconducting gain 0E and the gap A. We also
assume that the SDW transition temperature T, is suf-
ficiently high, namely, T,, > T.. We then come to the
conclusion that dE; < §W, and the region (2, is there-
fore occupied by the SDW at temperatures T > T},04e,
resulting in the destruction of the superconductivity
[24, 25]. We note that the Fermi surface angle d¢ must
be sufficiently large, because the gap g depends expo-
nentially on §¢ in accordance with Eq. (17). On the
other hand, because we are dealing with SDW, we have
§¢/m ~ 1072 [30]. We thus conclude that a strong vari-
ation of the superconductivity characteristics may be
observed in the vicinity of Ty ode-

It follows from the above considerations that A(#)
can be destroyed only locally within the region €2, be-
cause of the different reasons. It also follows that T},04e
is the temperature at which the superconductivity van-
ishes, that is, T, ~ Thode- As to the gap at T > Ty,
or more precisely, the pseudogap, it persists outside the

__ brdk
97 N(©0)

(17)
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Fig.2. Calculated angle 6., pulling apart the two

nodes, as a function of (T' — T.)/T.

2, region. In accordance with [4, 7], we see that the su-
perconducting gap A(f) smoothly transforms into the
pseudogap at T' > T.. We can therefore expect a dra-
matic reduction in the difference between the free en-
ergy of the normal and the superconducting state at
T = T, (the so-called condensation energy, which we
consider in some detail in the next section). It can then
be concluded that the temperature T has the physical
meaning of the BCS transition temperature between
the state with the order parameter xk # 0 and the nor-
mal state. Because T, & Vp /A1, we find from Eq. (13)
that 8, « /(T —T.)/T.. This result is in harmony
with our calculations of the function 6.([T — T.]/T.)
plotted in Fig. 2. Thus, we conclude that the pseudo-
gap «dies out» in UD samples as the temperature 7™ is
approached. Quite naturally, one has to recognize that
A1 must scale with T*.

A few remarks are in order at this point. On the
basis of the previous consideration, we conclude that
the BCS approach is fruitful in considering OD, OP,
and UD samples in the weak coupling regime. With
more underdoping, the antiferromagnetic correlations
become stronger, breaking down the gap over the range
Q,, at lower temperatures. Thus, one observes the de-
crease of T, with the decrease of doping. On the other
hand, the condensate volume Qg becomes larger with
the decrease of doping, leading to increase of the gap
A1 which is proportional to the volume and interaction
Vpp [11]. Consequently, the temperature T* becomes
higher with decreasing doping. All these results are
in agreement with the experimental findings [4, 7]. A
peak was observed at 41 meV &~ 2A; in inelastic neu-
tron scattering from single crystals of the OD, OP, and
UD samples YBasCuszQOgy, and BisSraCaCuyOgys at
temperatures below T,, while a broad maximum above
T. exists in underdoped samples only [31, 32]. The ex-
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planation of this peak given in [33] was based on the
ideas of the BCS theory. From the above discussion, it
appears that the same explanation holds for the broad
maximum in underdoped samples above T, because the
physics of the process is essentially the same.

4. CONDENSATION ENERGY

We now consider the energy gain or condensation
energy E.,nq liberated when the system in question un-
dergoes the superconducting phase transition involved
in the FC phase transition. We set T' = 0 for simplicity.
The energy E.onq can be schematically broken into two
parts related to the kinetic and the potential energy.
The condensation energy was considered in [34], where
it was argued that the main contribution to the conden-
sation energy comes from the kinetic energy, i.e., the
superconducting phase transition of high-temperature
superconductors is kinetic energy driven. Here, we give
a possible interpretation of the situation. It is known
[35] that in the superconducting phase transition, the
positive contribution comes from the potential energy,
while the gain in the kinetic energy is negative. In the
other words, the superconducting phase transition is
driven by the gain in the potential energy. This result
is rather obvious because the ground state energy Eg,
is given by

Eygs [k(p)] = En(p)] + Esc [5(P)], (18)

with the occupation numbers n(p) determined by

k(p) = v/n(p)[l —n(p)]. The second term E.[k(p)]

on the right-hand side of Eq. (18) is defined by the su-
perconducting contribution, which in the simplest case
is of the form

Es. [’i(p)] =
— 2 [ Vip(orope)storelon) DB (19)
The first term E [n(p)] can be taken as
En(e) = [ Lono) 15
+ 2 [ Viowponteonen B, 20

with the second integral playing the role of the
exchange-correlation contribution to the ground state
energy. If the effective mass M given by Eq. (3) is
positive and finite, E [n(p)] reaches its minimum at
n(p) = np(p) and increases with the deviation of n(p)
from the Fermi distribution, as it occurs in the presence
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of superconducting correlations. Thus, the standard
situation is that the superconducting phase transition
is driven by a decrease of the potential energy [35]. The
situation can be different if the system undergoes the
FC phase transition. To see this we temporarily assume
that go» — 0 and rewrite Eq. (20) as

Ewmzfdwmﬂg—

with the single particle energy

() = S (22)

The energy E[n(p)] can be lowered by alteration of
n(p) if Eq. (4) has solutions. As the result, we can
write the inequality [11]

Econd = EN - EFC’ >

> [ o) - ionte) 5 2 0. (23)
™

with Exn being the energy of system in its normal state,
Erc the energy with FC, and the integral taken over
the region occupied by FC. The chemical potential pu
preserves the conservation of the particle number un-
der the variation dn(p). We assume that the kinetic
energy is given by the first term on the right-hand
side of Eq. (21). Tt then follows from Eq. (23) that
the kinetic energy can be lowered, and this lowering
is driven by the FC phase transition. It is instruc-
tive to illustrate this by a simple example. We take
V(p1,p2) = g10(p1 —P2), then E ppq given by Eq. (23)
becomes

Econd = /[Eo(p)np(p) —e(p)n(p)] d_p +

2 [ ) -] 2 (2
™

with eg(p) being the single particle energy of the nor-

mal ground state. It is easily verified that the second

term on the right-hand side of Eq. (24), which is related

to the potential energy gain, is negative. This term can

be written as

L[ ) - )] 12 =

= % / [n(p) — nr(p)] [n(p) + nr(p)] f%-

8 ZKIOT®, Boim. 2

Observing that

dp
_ L
[ ) = nr ) 1
because of the particle number conservation and taking
into account that

[n(p) + nr(P)l,cp, > () + 07 (D)), <

we arrive at the conclusion. The first term is positive
because of inequality (23). Thus, we are led to the con-
clusion that the FC phase transition can be considered
as driven by the kinetic energy. We now let the cou-
pling constant go be small, then the gap A is propor-
tional to g2 [11]. The optimum values of the occupation
numbers given by Eq. (4) are disturbed, leading to an
increase of the energy E [n(p)]. The positive gain in the
potential energy given by Eq. (19) is driving the forma-
tion of the superconducting ground state. Because the
coupling constant gs is sufficiently small, the structure
of the system ground state is defined by the FC, and
the superconducting state is a «shadow» of the FC un-
der these conditions [15]. Then, the main contribution
to E.ong comes from the FC phase transition, and the
complex transition (FC plus superconductivity) is ki-
netic energy driven [36]. On the other hand, in the case
where FC is weak compared to the superconductivity
(or is absent), we are dealing with a pure supercon-
ducting phase transition, which is obviously potential
energy driven.

5. QUASIPARTICLE DISPERSION AND
LINESHAPE

We now discuss the origin of two effective masses
Mj; and Mp occurring in the superconducting state
and leading to a nontrivial quasiparticle dispersion and
a change of the quasiparticle velocity. As we see in what
follows, our results are in a reasonably good agreement
with the experimentally deduced data [8-10]. For sim-
plicity, we set ' = 0. Varying Ey, given by Eq. (18)
with respect to ap, we find

Eyslap] _

5o [e(p) — p]th(2ap) + A(p) =0,  (25)

with n(p) = cos? ap, k(p) = sin ap cos ap, and e(p) de-

fined by Eq. (22). As go — 0, we have that A(p) — 0,
and Eq. (25) becomes

[£(p) — 1] th(2ap) = 0. (26)
Equation (26) requires that
e(p) — =0, if th(2ap)#0 (0<n(p)<1), (27)
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which leads to the FC solutions defined by Eq. (4) [16, P P—q P P P—q
25].  As soon as the coupling constant g» becomes
finite but small, such that g»/¢91 < 1, the plateau
e(p) — pu = 0 is slightly tilted and rounded off at the k+q
end points. This implies that ‘
e(p) =~ A, (28) : :
a b

which allows us to estimate the effective mass as

M. Ty Fig.3. Diagram a depicts a process contributing to

v " A_l (29) the imaginary part. Diagram b shows a real process

Outside the condensate area, the quasiparticle disper-
sion is determined by the effective mass M given
by Eq. (3). We note that calculations in the con-
text of a simple model support the above considera-
tion [15]. In that case, putting V(p1,p2) = d(pP1,P2)
and Vp,(p1,p2) = 0(p1,p2) in Egs. (19) and (20) and
carrying out direct calculations, we obtain at 7' =0

Eq =c(py) —e(pi) = ~2A. (30)
On the other hand, at T' > T, taking into account that
n(p;) = 1 and n(ps) = 0, we obtain from Eq. (5) with
the same accuracy,

(py — pi)pF
Fy~ —— =~ 2T. 31
ox P (31)
Equations (30) and (31) allow us to estimate the effec-
tive mass My related to the region occupied by the
FC at temperatures 7" < Ty. Outside the region, the
effective mass is M;. When Egs. (28) and (29) are
compared with Eqgs. (5) and (7), it is apparent that the
gap A; plays the role of the effective temperature that
defines the slope of the plateau. On the other hand,
at T = T, in OD or OP samples, the gap vanishes
and Eqgs. (5) and (31) define the quasiparticle disper-
sion and the effective mass. Taking into account that
Ay ~ T, we are led to the conclusion that Eqs. (28)
and (29) derived at T = 0 match Eqs. (5) and (7) at
T.. Thus, Eqgs. (28) and (29) are approximately valid
over the range 0 < T < T,. Tt follows from Eq. (30)
that at T < T,, the quasiparticle dispersion can be
presented with two straight lines characterized by the
respective effective masses M} and M} and intersect-
ing near the binding energy Ey ~ 2A;. Equation (31)
implies above T, the lines intersect near the binding
energy ~ 27. The break separating the faster dispers-
ing high-energy part related to M from the slower
dispersing low-energy part defined by M7 is likely
to be enhanced in UD samples at least because of the
rise of the temperature Ty, which grows with the de-
crease of doping. We recall that in accordance with
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contributing to the imaginary part, observe that quasi-
particles p — q, k + q, and k are on the mass shell

our assumption, the condensate volume Qrc and T
are growing with underdoping, see Eq. (6) and Sec. 3.
It was also suggested that the FC arises near the Van
Hove singularities, while the FC different areas overlap
only slightly. Therefore, as one moves from (0,0) to-
wards (m,0) the ratio Mj/M; grows in magnitude,
developing into the distinct break. In fact, assuming
that the temperature Ty depends on the angle ¢ along
the Fermi surface and taking Eq. (29) into account,
one can arrive at the same conclusion. The disper-
sions above T, exhibit the same structure except that
the effective mass M. is governed by Eq. (31) rather
than (30) and both the dispersion and the break are
partly «covered» by the quasiparticle width. Thus,
one concludes that there also exists a new energy scale
at T < Ty defined by Ey and intimately related to
Ty [36]. We turn to the quasiparticle excitations with
the energy E(¢) = 1/e2(¢) + A2(¢p). At temperatures
T < T, they are typical excitations of the supercon-
ducting state. We now qualitatively analyze the pro-
cesses contributing to the width v. Within the limits
of the analysis, we can take A ~ 0, which corresponds
to considering excitations at the node. Our treatment
is then valid for both 7' < T, and T, < T. For defi-
niteness, we consider the decay of a particle with the
momentum p > pgr. Then v(p,w) is given by the imag-
inary part of the diagram shown in Fig. 3a, where the
wiggly lines stand for the effective interaction. Because
of the unitarity, diagram 3b which represents the real
events can be used to calculate the width [37] as

2

V(g) "

G(Qa _qu)

v(pw) = 27?/

dqdk

x n(k)[1—n(k + q)] 5(wpg + Wiq) @)t

(32)

with €(g, —wpq) being the complex dielectric constant
and V(q)/e the effective interaction. Here, q and
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wry = €(k + q) — (k) are the transferred momentum
and energy, respectively, and wp, = w —e(p — q) is the
decrease in the quasiparticle energy as the result of the
rescattering processes: the quasiparticle with the en-
ergy w decays into a quasihole ¢(k) and two quasipar-
ticles e(p—q) and e(k+q). The transferred momentum
¢ must satisfy the condition

p>|p—al>pr. (33)

Equation (32) gives the width as a function of p and
w; the width of a quasiparticle with the energy e(p)
is given by v(p,w = &(p)). Estimating the width in
Eq. (32) with the constraint (33) and wp, ~ T, we find
that

V(p.w =e(p) ~ (Mp)°T?, (34)

for normal Fermi liquids. In the case of the FC one
could estimate v ~ 1/T upon using Eqs. (9) and (34).
This estimate were correct if the dielectric constant is
small, but € ~ M#~. As the result, for the FC we have

_MpyT Ty

M "o

v(p,w = e(p))
where ep is the Fermi energy [38]. Calculating v(p,w)
as a function of p at constant w, we obtain the same
result for the width given by Eq. (35) when w = &(p).
The calculated function can be fitted with a simple
Lorentzian form, because quasiparticles and quasiholes
involved in the process are also located in the vicin-
ity of the Fermi level provided w — ep ~ T. It then
follows from Eq. (35) that the well-defined excitations
exist at the Fermi surface even in the normal state [38].
This result is in line with the experimental findings de-
termined from the scans at a constant binding energy
(momentum distribution curves or MDCs) [8, 39]. On
the other hand, considering v(p,w) as a function of
w at constant p, we can check that the quasiparticles
and quasiholes contributing to the function can have
the energy of the same order of the magnitude. For
w — ép ~ T, the function is of the same Lorentzian
form, otherwise the shape of the function is disturbed
at high w by high-energy excitations. In that case the
special form of the quasiparticle dispersion character-
ized by the two effective masses must be taken into
account. As the result, the lineshape of the quasiparti-
cle peak as a function of the binding energy possesses a
complex peak—dip—hump structure [9, 10, 40] directly
defined by the existence of the effective masses My
and M7. Our consideration shows that it is the spec-
tral peak obtained from MDCs that provides important
information on the existence of well-defined excitations

at the Fermi level and their width [36]. The detailed
numerical results will be presented elsewhere.

At T > T,, the gap is absent in OD or OP samples,
and the width v of excitations close to the Fermi sur-
face is given by Eq. (35). For UD samples, A(f) = 0
in the range 2, and we have normal quasiparticle ex-
citations with the width ~. Outside the range (,,
the Fermi level is occupied by the BCS-type excita-
tions with finite excitation energy given by the gap
A(f). Both types of excitations have widths of the
same order of magnitude. We now estimate . For
the entire Fermi level occupied by the normal state,
the width is equal to v ~ N3(0)T?%/3%, with the den-
sity of states N(0) ~ 1/T and the dielectric constant
B ~ N(0). Thus, ¥ ~ T [15]. In our case, howe-
ver, only a part of the Fermi level within ,, belongs
to the normal excitations. Therefore, the number of
states allowed for quasiparticles and for quasiholes is
proportional to 6., the factor T? is therefore replaced
by T26?. Taking these factors into account, we ob-
tain y ~ 02T ~ T(T — T,)/T. ~ T — T,, because only
small angles are considered. Here, we have omitted the
small contribution coming from the BCS-type excita-
tions. That is why the width v vanishes at T' = T,.
Thus, the foregoing analysis shows that in UD sam-
ples at T > T., the superconducting gap smoothly
transforms into the pseudogap. The excitations of the
gapped area of the Fermi surface have the same width
v ~ T — T, and the region occupied by the pseudogap
is shrinking with increasing temperature. These results
are in good qualitative agreement with the experimen-
tal facts [4-7].

6. CONCLUDING REMARKS

We have discussed the model of a strongly corre-
lated electron liquid based on the FC phase transition
and extended it to high-temperature superconductors.
The FC transition plays the role of a boundary
separating the region of a strongly interacting electron
liquid from the region of a strongly correlated electron
liquid. On the basis of the BCS theory ideas we have
also considered the superconductivity with the d-wave
symmetry of the order parameter in the presence of
the FC. We can conclude that the BCS-type approach
is fruitful for OD, OP, and UD samples. We have
shown that in UD samples, the gap becomes flatter
near the nodes at temperatures T < T, and the
superconducting gap smoothly transforms into a
pseudogap above T,. The pseudogap occupies only a
part of the Fermi surface, which eventually shrinks

8*
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with increasing temperature, vanishing at 7' = 7™, and
the maximum gap A; scales with the temperature T*.
We have also shown that the general dependence of T,
T*, and A; on the underdoping level fits naturally into
the considered model. At temperatures T* > T > T,,
the single-particle excitations of the gapped area of
the Fermi surface have the width v ~ T — T,. The
quasiparticle dispersion in systems with FC can be
represented by two straight lines characterized by the
respective effective masses My and M;. At T < T,
these lines intersect near the point Ey ~ 2A;, while
above T,., we have Fy ~ 2T. It is argued that this
strong change of the quasiparticle dispersion at Fy can
be enhanced in UD samples because of strengthening
the FC influence. The single-particle excitations and
their width ~ are also studied. We have shown that
well-defined excitations with v ~ T exist at the Fermi
level even in the normal state. This result is in line
with the experimental findings determined from the
scans at a constant binding energy, or MDCs. We have
also treated the FC phase transition in the presence
of the superconductivity and shown that this phase
transition can be considered as kinetic energy driven.
Thus, without any adjustable parameters, a number
of the fundamental problems of strongly correlated
systems are naturally explained within the proposed
model.

This research was supported in part by the Russian
Foundation for Basic Research under Grant Ne98-02-
16170.
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