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QUASIPARTICLES IN A STRONGLY CORRELATED LIQUIDWITH THE FERMION CONDENSATE: APPLICATIONS TOHIGH-TEMPERATURE SUPERCONDUCTORSS. A. Artamonov, V. R. Shaginyan*Petersburg Nulear Physis Institute, Russian Aademy of Sienes188350, Gathina, Leningrad region, RussiaSubmitted 9 April 2000A model of a strongly orrelated eletron liquid based on the fermion ondensation (FC) is extended to high-temperature superondutors. Within our model, the appearane of FC presents a boundary separating theregion of a strongly interating eletron liquid from the region of a strongly orrelated eletron liquid. We studythe superondutivity of a strongly orrelated liquid and show that under ertain onditions, the superondu-tivity vanishes at temperatures T > T � Tnode, with the superonduting gap being smoothly transformedinto a pseudogap. As the result, the pseudogap oupies only a part of the Fermi surfae. The gapped areashrinks with inreasing the temperature and vanishes at T = T �. The single-partile exitation width is alsostudied. The quasipartile dispersion in systems with FC an be represented by two straight lines haraterizedby the respetive e�etive masses M�FC and M�L, and interseting near the binding energy that is of the orderof the superonduting gap. It is argued that this strong hange of the quasipartile dispersion at the bindingan be enhaned in underdoped samples beause of strengthening the FC in�uene. The FC phase transition inthe presene of the superondutivity is examined, and it is shown that this phase transition an be onsideredas kineti energy driven.PACS: 71.27.+a, 74.20.Fg, 74.25.Jb1. INTRODUCTIONUnusual properties of the normal state of high-tem-perature superondutors have been attrating atten-tion for a long time. In desribing these properties,whih are well beyond the standard Fermi liquid theory,the notion of a strongly orrelated liquid has emerged(see, e.g., [1, 2℄). Later on, angle-resolved photoemis-sion studies revealed unusual properties observed in un-derdoped samples, with the leading edge gap disoveredup to the temperature T � > T. This behavior is in-terpreted as oming from the pseudogap formation; itwas observed in a number of underdoped ompoundssuh as YBa2Cu3O6+x, Bi2Sr2CaCu2O8+Æ, et. As Tinreases above T �, the pseudogap loses, leading toa large Fermi surfae and an extremely �at dispersionin eletroni spetra, whih is alled the extended VanHove singularity [3�7℄. A break in the quasipartiledispersion observed near 50meV results in a drasti*E-mail: vrshag�thd.pnpi.spb.ru

hange of the quasipartile veloity [8�10℄. This behav-ior is de�nitely di�erent from what one would expetfrom a normal Fermi liquid.A orrelated liquid an be desribed in onventionalterms, assuming that the orrelated regime is relatedwith the noninterating Fermi gas by adiabati onti-nuity. This is done in the well-known Landau theoryof the normal Fermi liquid, but the question arisingat this point is whether this is possible. Most likely,the answer is negative. To takle the above-mentionedproblems, we onsider a model where a strongly orre-lated liquid is separated from the onventional Fermiliquid by a phase transition related to the onset of theFC [11, 12℄. The purpose of our paper is to show thatwithout any adjustable parameters, a number of fun-damental problems of strongly orrelated systems arenaturally explained within the model. The paper is or-ganized as follows. In Se. 2, we onsider the generalfeatures of Fermi systems with the FC. In Se. 3, weshow that the pseudogap behavior an be understoodwithin the standard BCS superondutivity mehanism331



S. A. Artamonov, V. R. Shaginyan ÆÝÒÔ, òîì 119, âûï. 2, 2001provided the appearane of FC is taken into aount.In Se. 4, we analyze the ondensation energy that isliberated when the system in question undergoes thesuperonduting phase transition superimposing on theFC phase transition. In Se. 5, we desribe the quasi-partile dispersion and lineshape. Finally, in Se. 6, wesummarize our main results.2. THE MAIN FEATURES OF LIQUIDSWITH FCWe �rst onsider the key points of the FC theory.The FC is related to a new lass of solutions of theFermi liquid theory equation [13℄Æ(F � �N)Æn(p; T ) = "(p; T )� �(T )�� T ln 1� n(p; T )n(p; T ) = 0 (1)for the quasipartile distribution funtion n(p; T ) de-pending on the momentum p and the temperature T .Here F is the free energy, � is the hemial potential,and "(p; T ) = ÆE=Æn(p; T ) is the quasipartile energy,whih is a funtional of n(p; T ) just like the energy Eand the other thermodynami funtions. Equation (1)is usually represented as the Fermi�Dira distributionn(p; T ) = �1 + exp� ("(p; T )� �)T ���1 : (2)In a homogeneous matter and at T = 0, oneobtains from Eq. (2) the standard solutionnF (p; T = 0) = �(pF � p), with "(p � pF ) � � == pF (p � pF )=M�L, where pF is the Fermi momentumand M�L is the ommonly used e�etive mass [13℄,1M�L = 1p d"(p; T = 0)dp ����p=pF : (3)It is assumed to be positive and �nite at the Fermi mo-mentum pF . This implies the T -dependent orretionsto M�L, the quasipartile energy "(p), and the otherquantities start with T 2-terms.But this solution of Eq. (1) is not the only one pos-sible. There exist �anomalous� solutions of Eq. (1)assoiated with the so-alled fermion ondensation [11,14, 15℄. Being ontinuous and satisfying the inequality0 < n(p) < 1 within some region in p, suh a solutionn(p) admits a �nite limit for the logarithm in Eq. (1)as T ! 0, yielding"(p) = ÆE[n(p)℄Æn(p) = �; pi � p � pf : (4)

Equation (4) is used in searhing the minimum valueof E as a funtional of n(p) under the assumption thata strong rearrangement of the single-partile spetruman our. We see from Eq. (4) that the oupationnumbers n(p) beome variational parameters: the so-lution n(p) exists if the energy E is dereased by al-teration of the oupation numbers. Thus, within theregion pi < p < pf , the solution n(p) deviates fromthe Fermi step funtion nF (p) suh that the energy"(p) stays onstant, while n(p) oinides with nF (p)outside this region. As a result, the standard Kohn�Sham sheme for the single-partile equations is nolonger valid beyond the FC phase transition point [16℄.This behavior of systems with the FC is learly di�er-ent from what one expets from the well known loaldensity alulations; therefore, these alulations arenot appliable to systems with the FC. On the otherhand, the quasipartile formalism is appliable to thisproblem, beause as we see in what follows, the damp-ing of single-partile exitations is not large omparedto their energy [15℄. It is also seen from Eq. (4) that asystem with the FC has a well-de�ned Fermi surfae.It follows from Eq. (1) that at low T , new solutionswithin the interval oupied by the fermion ondensatehave the spetrum "(p; T ) that is linear in T [15, 17℄,"(p; T )� �(T ) � (p� pF )pFM�FC �� T [1� 2n(p)℄� Tf : (5)Here Tf is the quasi-FC phase transition temperatureabove whih FC e�ets beome insigni�ant [15℄,Tf"F � p2f � p2i2M"F � 
FC
F ; (6)where M is the bare eletron mass, 
FC is the on-densate volume, "F is the Fermi energy, and 
F is thevolume of the Fermi sphere. One an imagine thatthe dispersionless plateau "(p) = � given by Eq. (4) isslightly tilted ounter-lokwise about � and roundedo� at the end points. If T � Tf , it follows from Eqs. (1)and (5) that the e�etive mass M�FC related to the FCis temperature dependent,M�FCM � N(0)N0(0) � TfT ; (7)where N0(0) is the density of states of the noninter-ating eletron gas, and N(0) is the density of statesat the Fermi level. We note that outside the FC re-gion, the single-partile spetrum is not distintly af-feted by temperature, being determined by the e�e-tive mass M�L given by Eq. (3), whih is now evaluated332



ÆÝÒÔ, òîì 119, âûï. 2, 2001 Quasipartiles in a strongly orrelated liquid : : :at p � pi. Thus, we are led to the onlusion that sys-tems with a FC must be haraterized by two e�etivemasses: M�FC related to the single-partile spetrum ofa low-energy sale and M�L related to the spetrum ofa higher energy sale. The existene of these two ef-fetive masses an be observed as a break in the quasi-partile dispersion. This break is observed at temper-atures T � Tf , and also when the superondutingstate is superimposed on the FC state. In the formerase, the oupation numbers over the area oupiedby the fermion ondensate are slightly disturbed by thepairing orrelations suh that the e�etive mass M�FCbeomes large but �nite. We remark that at ompara-tively low temperatures, the FC and superondutivitygo together beause of the remarkable peuliarities ofthe FC phase transition. This transition is related to aspontaneous gauge symmetry breaking: the superon-dutivity order parameter�(p) =pn(p)[1� n(p)℄has a nonzero value over the region oupied by thefermion ondensate, while the gap � an vanish [15,16℄.It is seen from Eq. (4) that at the FC phase tran-sition point, pf ! pi ! pF , while the e�etive massand the density of states tend to the in�nity as fol-lows from Eqs. (4) and (7). One an onlude thatthe beginning of the FC phase transition is related tothe absolute growth of M�FC . The onset of the har-ge-density wave instability in an eletron system, whihours as soon as the e�etive eletron�eletron inter-ation onstant rs reahes its ritial value rdw, mustbe preeded by the unbounded growth of the e�etivemass [18℄. For a simple eletron liquid, the e�etiveonstant is proportional to the dimensionless averagedistane rs � r0=aB between partiles of the system inquestion, with r0 being the average distane and aB theBohr radius. The physial reason for this growth is theontribution of the virtual harge density �utuationsto the e�etive mass. The exitation energy of these�utuations beomes very small if rs � rdw. Thus, aFC an our when rs � rdw. The standard Fermi liq-uid behavior an therefore be broken by strong harge�utuations when the insulator regime is approahed ina ontinuous fashion. We reall that the harge-densitywave instability ours in three-dimensional [19℄ andtwo-dimensional (2D) eletron liquids [20℄ at a su�-iently high rs. As soon as rs reahes its ritial valuerFC < rdw, the FC phase transition ours. There-after, the ondensate volume is proportional to rs�rFCand also Tf="F � rs�rFC [15, 18℄. In fat, the e�etiveoupling onstant rs inreases with dereasing doping.

It is assumed that both Tf and ondensate volume 
FCbuild up with dereasing doping. The FC then serves asa stimulating soure of new phase transitions lifting thedegeneray of the spetrum. The FC an produe, forinstane, the spin density wave (SDW) phase transitionor the antiferromagneti one, thereby promoting a va-riety of the system properties. We note that the SDWphase transition, the antiferromagneti transition, andthe harge density one also depend on rs and our ata su�iently large value of rs even if the FC is absent.The superonduting phase transition is also aided bythe FC. We analyze the situation where the superon-dutivity wins the ompetition with the other phasetransitions up to a temperature T. Above the temper-ature T � � Tf , the system under onsideration is in itsanomalous normal state, Eq. (7) is valid, and one anobserve smooth non-dispersive segments of the spetraat the Fermi surfae [6℄.3. SUPERCONDUCTIVITY IN THEPRESENCE OF FCWe fous our attention on investigating the pseu-dogap that is formed above T in underdoped (UD)high-temperature superondutors [4�8℄. As we see inwhat follows, the existene of the pseudogap is loselyallied with the presene of the FC haraterized bya su�iently high temperature Tf given by Eq. (6).Thus, the pseudogap is peuliar to UD samples, whileoptimally doped (OP) and overdoped (OD) samplesmay not exhibit this feature. We onsider a 2D liquidon a simple square lattie that has a superondutingstate with the d-wave symmetry of the order parameter�. We assume that the long-range omponent Vlr(q) ofthe partile�partile interation Vpp(q) is repulsive andhas the radius qlr in the momentum spae suh thatpF =qlr � 1. The short-range omponent Vsr(q) is rela-tively large and attrative, with its radius pF =qsr � 1.In agreement with the d-symmetry requirements thelow temperature gap � is then given by the expres-sion [21�23℄�(�) = 2�(�)E(�) � �1 os(2�) = �1(x2 � y2);where E(�) =p"2(�) + �2(�) and �1 is the maximalgap. At �nite temperatures, the equation for the gapan be written as�(p; �) = � 2�Z0 Z Vpp(p; �; p1; �1)�(p1; �1)�� th E(p1; �1)2T p1dp1d�14�2 ; (8)333



S. A. Artamonov, V. R. Shaginyan ÆÝÒÔ, òîì 119, âûï. 2, 2001where p is the absolute value of the momentum and �is the angle. It is also assumed that the FC arisesnear the Van Hove singularities, leading to a largedensity of states at these points in aordane withEq. (7). We note that the di�erent FC areas overlaponly slightly [17℄. �(�) obeys the following equationthat is determined by the hosen interation Vpp,���4 + �� = ����4 � �� : (9)It vanishes at �=4 and an therefore be expanded inthe Taylor series around �=4, with p � pF :�(p; �) = �a� �3b+ : : : ; (10)where � = � � �=4. Hereafter, we onsider solutionsof Eq. (8) on the interval 0 < � < �=4. We trans-form Eq. (8) by setting p � pF and separating theontribution Ilr oming from Vlr , with the ontribu-tion related to Vsr denoted by Isr . At small angles,Ilr an be approximated in aordane with (10) byIlr = �A + �3B, with the parameters A and B in-dependent of T if T � T � � Tf , beause they arede�ned by the integral over the regions oupied bythe FC. This theoretial observation is onsistent withthe experimental results showing that �1 is essentiallyT -independent at the temperatures T < T � [6℄. Theoe�ients of the expansion of Isr in powers of � de-pend on T . It is therefore more onvenient to use theintegral representation for Isr following from (8). We,thus, have�(�) = Isr + Ilr = � 2�Z0 Z Vsr(�; p1; �1)�(p1; �1)�� th E(p1; �1)2T p1dp1d�14�2 + �A+ �3B: (11)In Eq. (11), the variable p was omitted sine p � pF .It is seen from this equation that the FC produes thefree term �A + �3B. In what follows, we show that atT � Tnode, the solution of Eq. (11) has the seond nodeat �(T ) in the viinity of the �rst node at �=4. Wealso demonstrate that the temperature Tnode has themeaning of the temperature T at whih the superon-dutivity vanishes. To show this, we simplify Eq. (11)to an algebrai equation. We have Isr � (V0=T )� be-ause th(E=2T ) � E=2T for E � T and T � Tnode,as is the ase in the viinity of the gap node at � = 0.The integration in Eq. (11) runs over a small area lo-ated at the gap node beause of the small radius ofVsr . Dividing both parts of Eq. (11) by �(�), we obtainE(�) = ��V0T � A1 � �2B1� j�j; (12)
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Fig. 1. The gap � as a funtion of � alulatedat three di�erent temperatures expressed in terms ofTnode � T, while � is presented in terms of T �. Curve1, solid line, shows the gap alulated at temperature0:9Tnode. In urve 2, dashed line, the gap is given atTnode. Note the important di�erene in urve 2 om-pared with urve 1 due to a �attening of the urve 2over the region 
n. Calulated �(�) at 1:2Tnode isshown by urve 3, dotted line. The arrows indiate thetwo nodes restriting area 
n and emerged at Tnodewhere A1 and B1 are new onstants and V0 � Vsr(0)is a onstant. Imposing the ondition that Eq. (8) hasthe only solution � � 0 when Vsr = 0, we see thatA1 is negative and B1 is positive. The fator in thebrakets on the right-hand side of Eq. (12) hanges itssign at some temperature Tnode � V0=A1; on the otherhand, the exitation energy must be E(�) > 0. There-fore, we have two possibilities [24, 25℄. The �rst followsfrom the assumption that �(�) � 0 if � belongs to theinterval 
n [0 < � < �℄. In this ase, for T > Tnode wemust solve Eq. (8) with the ondition�(�) � 0; 0 < � < �; Tnode < T:This resembles Eq. (4) with the parameter � beingequal to zero. The similarity is not oinidental, be-ause we are searhing for new solutions in both ases.Suh solutions do exist beause the points � = 0 and� = � represent the branhing points of the solutions.The seond possibility an our if the above solutiondoes not lead to a minimum value of the free energy.Beause the exitation energy must be positive for astable state, the sign of � must be reversed at the point� = �. Then the gap�(�) has the same sign within theinterval 
n and hanges its sign one more at the point� = 0, with �(�) = �(0) = 0. Thus, we onlude thatthe gap � possesses new nodes at T > Tnode [25℄, seeFig. 1. It an be seen from Eq. (12) that the angle �is related to T > Tnode by334



ÆÝÒÔ, òîì 119, âûï. 2, 2001 Quasipartiles in a strongly orrelated liquid : : :T � V0A1 +B1�2 : (13)It follows from the above onsideration and Eq. (12)that even below Tnode, the order parameter � annotbe approximated by a simple d-wave form; a more so-phistiated expression must be used to �t the �atteningof the gap� around the node. The following expressionan be used for this purpose,�(�) = �1 [B os(2�) + (1�B) os(6�)℄ : (14)Here 0 < B < 1 in aordane with the experimentalresults [7℄ and the term involving os(6�) is the nextompatible with the d-symmetry of the gap. It also fol-lows from Eq. (12) that the parameter B is a dereas-ing funtion of the temperature. At the temperaturesT > Tnode, the value of 1 � B is su�iently large toprodue new nodes of � given by Eq. (14).As an example of the solutions of Eqs. (8) and (11),we show, in Fig. 1 the gap �(�) alulated at threedi�erent temperatures 0:9Tnode, Tnode, and 1:2Tnode.An important di�erene between urves 2 and 1 is the�attening of urve 2 at the nodes loalized within theregion 
n ontaining the interval �� � � � �: Asseen from Fig. 1, the �attening ours as the result ofthe new nodes restriting the area 
n. It is also seenfrom Fig. 1 that the gap � is extremely small over therange 
n. It was reently shown in a number of pa-pers (see, e.g., [26, 27℄) that there exists an interplaybetween the magnetism and the superondutivity or-der parameters, leading to the damping of the mag-netism order parameter below T. Conversely, one anantiipate the damping of the superondutivity orderparameter by magnetism. Thus, we onlude that thegap in the range 
n an be destroyed by strong anti-ferromagneti orrelations (or by spin density waves)existing in underdoped superondutors [28, 29℄. It isbelieved that impurities an easily destroy� in the on-sidered area. As a result, one is led to the onlusionthat T � Tnode, with the exat value of T de�ned bythe ompetition between the antiferromagneti orrela-tions (or spin density waves) and the superondutingorrelations over the range 
n.We now onsider the possibility for two quite di�er-ent properties, the superondutivity and stati spindensity wave (SDW), to oexist. We start by brie�youtlining the main features of the SDW [30℄. A simpleexample is given by the linear SDW, with the net spinpolarization P(r)P(r) = P0e os(Qx); (15)

where Qx is the angle between the vetors Q and x.For onveniene, the diretion of the SDW is takenalong the x axis, and e is the unit polarization vetor,whih in general an have any orientation with respetto Q. In ontrast to the superondutivity, SDW anoupy only a part of the Fermi sphere with the vol-ume ÆS � pF Æ�Æk, where Æ� is the Fermi surfae angleand Æk is the �penetration depth� of the SDW into theFermi sphere. At T = 0, the energy gain ÆW due tothe onset of SDW is given byÆW � g2N(0)Æ�; (16)where g is the SDW gap determined by the formula [30℄g � pF ÆkN(0) exp�� 4N(0)0Æ�� ; (17)where 0 is the oupling onstant. As seen from Eq. (8),the variation of the gap within some area produesa variation of the gap over the entire oupied areawith the same order of magnitude. Therefore, elimi-nation of � over a segment Æ� requires the energyÆE1 � N(0)�2(�). We onlude that at T < Tnode, thedestrution of the gap on the interval Æ� eliminates �over the entire region, beause ÆE1 is omparable withthe gain ÆE due to the superonduting state. A dif-ferent situation ours at the temperatures T > Tnode,when � is extremely small in 
n and the orrespon-ding destrution energy satis�es inequality ÆE1 � ÆE.Equations (16) and (17) are very similar to the or-responding BCS equations and this similarity also re-mains at �nite temperatures [30℄. Thus, the gain ÆWand the gap g vary with the temperature similarly tothe superonduting gain ÆE and the gap �. We alsoassume that the SDW transition temperature Tn is suf-�iently high, namely, Tn � T. We then ome to theonlusion that ÆE1 < ÆW , and the region 
n is there-fore oupied by the SDW at temperatures T � Tnode,resulting in the destrution of the superondutivity[24, 25℄. We note that the Fermi surfae angle Æ� mustbe su�iently large, beause the gap g depends expo-nentially on Æ� in aordane with Eq. (17). On theother hand, beause we are dealing with SDW, we haveÆ�=� � 10�2 [30℄. We thus onlude that a strong vari-ation of the superondutivity harateristis may beobserved in the viinity of Tnode.It follows from the above onsiderations that �(�)an be destroyed only loally within the region 
n be-ause of the di�erent reasons. It also follows that Tnodeis the temperature at whih the superondutivity van-ishes, that is, T � Tnode. As to the gap at T > T,or more preisely, the pseudogap, it persists outside the335
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(T � T)=TFig. 2. Calulated angle �, pulling apart the twonodes, as a funtion of (T � T)=T
n region. In aordane with [4, 7℄, we see that the su-peronduting gap �(�) smoothly transforms into thepseudogap at T > T. We an therefore expet a dra-mati redution in the di�erene between the free en-ergy of the normal and the superonduting state atT = T (the so-alled ondensation energy, whih weonsider in some detail in the next setion). It an thenbe onluded that the temperature T � has the physialmeaning of the BCS transition temperature betweenthe state with the order parameter � 6= 0 and the nor-mal state. Beause T � V0=A1, we �nd from Eq. (13)that � / p(T � T)=T. This result is in harmonywith our alulations of the funtion �([T � T℄=T)plotted in Fig. 2. Thus, we onlude that the pseudo-gap �dies out� in UD samples as the temperature T � isapproahed. Quite naturally, one has to reognize that�1 must sale with T �.A few remarks are in order at this point. On thebasis of the previous onsideration, we onlude thatthe BCS approah is fruitful in onsidering OD, OP,and UD samples in the weak oupling regime. Withmore underdoping, the antiferromagneti orrelationsbeome stronger, breaking down the gap over the range
n at lower temperatures. Thus, one observes the de-rease of T with the derease of doping. On the otherhand, the ondensate volume 
FC beomes larger withthe derease of doping, leading to inrease of the gap�1 whih is proportional to the volume and interationVpp [11℄. Consequently, the temperature T � beomeshigher with dereasing doping. All these results arein agreement with the experimental �ndings [4, 7℄. Apeak was observed at 41 meV� 2�1 in inelasti neu-tron sattering from single rystals of the OD, OP, andUD samples YBa2Cu3O6+x and Bi2Sr2CaCu2O8+Æ attemperatures below T, while a broad maximum aboveT exists in underdoped samples only [31, 32℄. The ex-

planation of this peak given in [33℄ was based on theideas of the BCS theory. From the above disussion, itappears that the same explanation holds for the broadmaximum in underdoped samples above T beause thephysis of the proess is essentially the same.4. CONDENSATION ENERGYWe now onsider the energy gain or ondensationenergy Eond liberated when the system in question un-dergoes the superonduting phase transition involvedin the FC phase transition. We set T = 0 for simpliity.The energy Eond an be shematially broken into twoparts related to the kineti and the potential energy.The ondensation energy was onsidered in [34℄, whereit was argued that the main ontribution to the onden-sation energy omes from the kineti energy, i.e., thesuperonduting phase transition of high-temperaturesuperondutors is kineti energy driven. Here, we givea possible interpretation of the situation. It is known[35℄ that in the superonduting phase transition, thepositive ontribution omes from the potential energy,while the gain in the kineti energy is negative. In theother words, the superonduting phase transition isdriven by the gain in the potential energy. This resultis rather obvious beause the ground state energy Egsis given byEgs [�(p)℄ = E [n(p)℄ +Es [�(p)℄ ; (18)with the oupation numbers n(p) determined by�(p) = pn(p)[1� n(p)℄. The seond term Es [�(p)℄on the right-hand side of Eq. (18) is de�ned by the su-peronduting ontribution, whih in the simplest aseis of the formEs [�(p)℄ == g2 Z Vpp(p1;p2)�(p1)�(p2)dp1dp2(2�)4 : (19)The �rst term E [n(p)℄ an be taken asE [n(p)℄ = Z p22Mn(p) dp4�2 ++ g12 Z V (p1;p2)n(p1)n(p2)dp1dp2(2�)4 ; (20)with the seond integral playing the role of theexhange-orrelation ontribution to the ground stateenergy. If the e�etive mass M�L given by Eq. (3) ispositive and �nite, E [n(p)℄ reahes its minimum atn(p) = nF (p) and inreases with the deviation of n(p)from the Fermi distribution, as it ours in the presene336



ÆÝÒÔ, òîì 119, âûï. 2, 2001 Quasipartiles in a strongly orrelated liquid : : :of superonduting orrelations. Thus, the standardsituation is that the superonduting phase transitionis driven by a derease of the potential energy [35℄. Thesituation an be di�erent if the system undergoes theFC phase transition. To see this we temporarily assumethat g2 ! 0 and rewrite Eq. (20) asE [n(p)℄ = Z "(p)n(p) dp4�2 �� g12 Z V (p1;p2)n(p1)n(p2)dp1dp2(2�)4 ; (21)with the single partile energy"(p) = ÆE [n(p)℄Æn(p) : (22)The energy E [n(p)℄ an be lowered by alteration ofn(p) if Eq. (4) has solutions. As the result, we anwrite the inequality [11℄Eond = EN �EFC �� Z ["(p)� �℄ Æn(p) dp4�2 � 0; (23)with EN being the energy of system in its normal state,EFC the energy with FC, and the integral taken overthe region oupied by FC. The hemial potential �preserves the onservation of the partile number un-der the variation Æn(p). We assume that the kinetienergy is given by the �rst term on the right-handside of Eq. (21). It then follows from Eq. (23) thatthe kineti energy an be lowered, and this loweringis driven by the FC phase transition. It is instru-tive to illustrate this by a simple example. We takeV (p1;p2) = g1Æ(p1�p2), then Eond given by Eq. (23)beomesEond = Z ["0(p)nF (p)� "(p)n(p)℄ dp4�2 ++ g12 Z �n2(p)� n2F (p)� dp4�2 ; (24)with "0(p) being the single partile energy of the nor-mal ground state. It is easily veri�ed that the seondterm on the right-hand side of Eq. (24), whih is relatedto the potential energy gain, is negative. This term anbe written asg12 Z �n2(p)� n2F (p)� dp4�2 == g12 Z [n(p)� nF (p)℄ [n(p) + nF (p)℄ dp4�2 :

Observing thatZ [n(p)� nF (p)℄ dp4�2 = 0beause of the partile number onservation and takinginto aount that[n(p) + nF (p)℄p�pF > [n(p) + nF (p)℄pF�p ;we arrive at the onlusion. The �rst term is positivebeause of inequality (23). Thus, we are led to the on-lusion that the FC phase transition an be onsideredas driven by the kineti energy. We now let the ou-pling onstant g2 be small, then the gap � is propor-tional to g2 [11℄. The optimum values of the oupationnumbers given by Eq. (4) are disturbed, leading to aninrease of the energy E [n(p)℄. The positive gain in thepotential energy given by Eq. (19) is driving the forma-tion of the superonduting ground state. Beause theoupling onstant g2 is su�iently small, the strutureof the system ground state is de�ned by the FC, andthe superonduting state is a �shadow� of the FC un-der these onditions [15℄. Then, the main ontributionto Eond omes from the FC phase transition, and theomplex transition (FC plus superondutivity) is ki-neti energy driven [36℄. On the other hand, in the asewhere FC is weak ompared to the superondutivity(or is absent), we are dealing with a pure superon-duting phase transition, whih is obviously potentialenergy driven.5. QUASIPARTICLE DISPERSION ANDLINESHAPEWe now disuss the origin of two e�etive massesM�L and M�FC ourring in the superonduting stateand leading to a nontrivial quasipartile dispersion anda hange of the quasipartile veloity. As we see in whatfollows, our results are in a reasonably good agreementwith the experimentally dedued data [8�10℄. For sim-pliity, we set T = 0. Varying Egs given by Eq. (18)with respet to �p, we �ndEgs[�p℄Æ�p = ["(p)� �℄ th(2�p) + �(p) = 0; (25)with n(p) = os2 �p, �(p) = sin�p os�p, and "(p) de-�ned by Eq. (22). As g2 ! 0, we have that �(p)! 0,and Eq. (25) beomes["(p)� �℄ th(2�p) = 0: (26)Equation (26) requires that"(p)� � = 0; if th(2�p) 6= 0 (0 < n(p) < 1); (27)8 ÆÝÒÔ, âûï. 2 337



S. A. Artamonov, V. R. Shaginyan ÆÝÒÔ, òîì 119, âûï. 2, 2001whih leads to the FC solutions de�ned by Eq. (4) [16,25℄. As soon as the oupling onstant g2 beomes�nite but small, suh that g2=g1 � 1, the plateau"(p) � � = 0 is slightly tilted and rounded o� at theend points. This implies that"(p)� � � �1; (28)whih allows us to estimate the e�etive mass asM�FCM � Tf�1 : (29)Outside the ondensate area, the quasipartile disper-sion is determined by the e�etive mass M�L givenby Eq. (3). We note that alulations in the on-text of a simple model support the above onsidera-tion [15℄. In that ase, putting V (p1;p2) = Æ(p1;p2)and Vpp(p1;p2) = Æ(p1;p2) in Eqs. (19) and (20) andarrying out diret alulations, we obtain at T = 0E0 = "(pf )� "(pi) � (pf � pi)pFM�FC � 2�1: (30)On the other hand, at T � T, taking into aount thatn(pi) � 1 and n(pf ) � 0, we obtain from Eq. (5) withthe same auray,E0 � (pf � pi)pFM�FC � 2T: (31)Equations (30) and (31) allow us to estimate the e�e-tive mass M�FC related to the region oupied by theFC at temperatures T � Tf . Outside the region, thee�etive mass is M�L. When Eqs. (28) and (29) areompared with Eqs. (5) and (7), it is apparent that thegap �1 plays the role of the e�etive temperature thatde�nes the slope of the plateau. On the other hand,at T = T in OD or OP samples, the gap vanishesand Eqs. (5) and (31) de�ne the quasipartile disper-sion and the e�etive mass. Taking into aount that�1 � T, we are led to the onlusion that Eqs. (28)and (29) derived at T = 0 math Eqs. (5) and (7) atT. Thus, Eqs. (28) and (29) are approximately validover the range 0 � T � T. It follows from Eq. (30)that at T � T, the quasipartile dispersion an bepresented with two straight lines haraterized by therespetive e�etive massesM�FC andM�L and interset-ing near the binding energy E0 � 2�1. Equation (31)implies above T, the lines interset near the bindingenergy � 2T . The break separating the faster dispers-ing high-energy part related to M�L from the slowerdispersing low-energy part de�ned by M�FC is likelyto be enhaned in UD samples at least beause of therise of the temperature Tf , whih grows with the de-rease of doping. We reall that in aordane with

k+ qk+ qk k
p pp� qp p� q

a bFig. 3. Diagram a depits a proess ontributing tothe imaginary part. Diagram b shows a real proessontributing to the imaginary part, observe that quasi-partiles p� q, k+ q, and k are on the mass shellour assumption, the ondensate volume 
FC and Tfare growing with underdoping, see Eq. (6) and Se. 3.It was also suggested that the FC arises near the VanHove singularities, while the FC di�erent areas overlaponly slightly. Therefore, as one moves from (0; 0) to-wards (�; 0) the ratio M�FC=M�L grows in magnitude,developing into the distint break. In fat, assumingthat the temperature Tf depends on the angle � alongthe Fermi surfae and taking Eq. (29) into aount,one an arrive at the same onlusion. The disper-sions above T exhibit the same struture exept thatthe e�etive mass M�FC is governed by Eq. (31) ratherthan (30) and both the dispersion and the break arepartly �overed� by the quasipartile width. Thus,one onludes that there also exists a new energy saleat T � Tf de�ned by E0 and intimately related toTf [36℄. We turn to the quasipartile exitations withthe energy E(�) = p"2(�) + �2(�): At temperaturesT < T, they are typial exitations of the superon-duting state. We now qualitatively analyze the pro-esses ontributing to the width . Within the limitsof the analysis, we an take � � 0, whih orrespondsto onsidering exitations at the node. Our treatmentis then valid for both T � T and T � T . For de�-niteness, we onsider the deay of a partile with themomentum p > pF . Then (p; !) is given by the imag-inary part of the diagram shown in Fig. 3a, where thewiggly lines stand for the e�etive interation. Beauseof the unitarity, diagram 3b whih represents the realevents an be used to alulate the width [37℄ as(p; !) = 2� Z ���� V (q)�(q;�!pq) ����2 �� n(k) [1� n(k+ q)℄ Æ(!pq + !kq) dqdk(2�)4 ; (32)with �(q;�!pq) being the omplex dieletri onstantand V (q)=� the e�etive interation. Here, q and338



ÆÝÒÔ, òîì 119, âûï. 2, 2001 Quasipartiles in a strongly orrelated liquid : : :!kq = "(k + q) � "(k) are the transferred momentumand energy, respetively, and !pq = !� "(p�q) is thederease in the quasipartile energy as the result of theresattering proesses: the quasipartile with the en-ergy ! deays into a quasihole "(k) and two quasipar-tiles "(p�q) and "(k+q). The transferred momentumq must satisfy the onditionp > jp� qj > pF : (33)Equation (32) gives the width as a funtion of p and!; the width of a quasipartile with the energy "(p)is given by (p; ! = "(p)). Estimating the width inEq. (32) with the onstraint (33) and !pq � T , we �ndthat (p; ! = "(p)) � (M�L)3T 2; (34)for normal Fermi liquids. In the ase of the FC oneould estimate  � 1=T upon using Eqs. (9) and (34).This estimate were orret if the dieletri onstant issmall, but � �M�FC . As the result, for the FC we have(p; ! = "(p)) � (M�FC)3T 2(M�FC)2 � T Tf"F ; (35)where "F is the Fermi energy [38℄. Calulating (p; !)as a funtion of p at onstant !, we obtain the sameresult for the width given by Eq. (35) when ! = "(p).The alulated funtion an be �tted with a simpleLorentzian form, beause quasipartiles and quasiholesinvolved in the proess are also loated in the viin-ity of the Fermi level provided ! � "F � T . It thenfollows from Eq. (35) that the well-de�ned exitationsexist at the Fermi surfae even in the normal state [38℄.This result is in line with the experimental �ndings de-termined from the sans at a onstant binding energy(momentum distribution urves or MDCs) [8, 39℄. Onthe other hand, onsidering (p; !) as a funtion of! at onstant p, we an hek that the quasipartilesand quasiholes ontributing to the funtion an havethe energy of the same order of the magnitude. For! � "F � T , the funtion is of the same Lorentzianform, otherwise the shape of the funtion is disturbedat high ! by high-energy exitations. In that ase thespeial form of the quasipartile dispersion harater-ized by the two e�etive masses must be taken intoaount. As the result, the lineshape of the quasiparti-le peak as a funtion of the binding energy possesses aomplex peak�dip�hump struture [9, 10, 40℄ diretlyde�ned by the existene of the e�etive masses M�FCand M�L. Our onsideration shows that it is the spe-tral peak obtained from MDCs that provides importantinformation on the existene of well-de�ned exitations

at the Fermi level and their width [36℄. The detailednumerial results will be presented elsewhere.At T > T, the gap is absent in OD or OP samples,and the width  of exitations lose to the Fermi sur-fae is given by Eq. (35). For UD samples, �(�) � 0in the range 
n and we have normal quasipartile ex-itations with the width . Outside the range 
n,the Fermi level is oupied by the BCS-type exita-tions with �nite exitation energy given by the gap�(�). Both types of exitations have widths of thesame order of magnitude. We now estimate . Forthe entire Fermi level oupied by the normal state,the width is equal to  � N3(0)T 2=�2, with the den-sity of states N(0) � 1=T and the dieletri onstant� � N(0). Thus,  � T [15℄. In our ase, howe-ver, only a part of the Fermi level within 
n belongsto the normal exitations. Therefore, the number ofstates allowed for quasipartiles and for quasiholes isproportional to �, the fator T 2 is therefore replaedby T 2�2 . Taking these fators into aount, we ob-tain  � �2T � T (T � T)=T � T � T, beause onlysmall angles are onsidered. Here, we have omitted thesmall ontribution oming from the BCS-type exita-tions. That is why the width  vanishes at T = T.Thus, the foregoing analysis shows that in UD sam-ples at T > T, the superonduting gap smoothlytransforms into the pseudogap. The exitations of thegapped area of the Fermi surfae have the same width � T � T and the region oupied by the pseudogapis shrinking with inreasing temperature. These resultsare in good qualitative agreement with the experimen-tal fats [4�7℄.6. CONCLUDING REMARKSWe have disussed the model of a strongly orre-lated eletron liquid based on the FC phase transitionand extended it to high-temperature superondutors.The FC transition plays the role of a boundaryseparating the region of a strongly interating eletronliquid from the region of a strongly orrelated eletronliquid. On the basis of the BCS theory ideas we havealso onsidered the superondutivity with the d-wavesymmetry of the order parameter in the presene ofthe FC. We an onlude that the BCS-type approahis fruitful for OD, OP, and UD samples. We haveshown that in UD samples, the gap beomes �atternear the nodes at temperatures T < T, and thesuperonduting gap smoothly transforms into apseudogap above T. The pseudogap oupies only apart of the Fermi surfae, whih eventually shrinks339 8*



S. A. Artamonov, V. R. Shaginyan ÆÝÒÔ, òîì 119, âûï. 2, 2001with inreasing temperature, vanishing at T = T �, andthe maximum gap �1 sales with the temperature T �.We have also shown that the general dependene of T,T �, and �1 on the underdoping level �ts naturally intothe onsidered model. At temperatures T � > T > T,the single-partile exitations of the gapped area ofthe Fermi surfae have the width  � T � T. Thequasipartile dispersion in systems with FC an berepresented by two straight lines haraterized by therespetive e�etive masses M�FC and M�L. At T < T,these lines interset near the point E0 � 2�1, whileabove T, we have E0 � 2T . It is argued that thisstrong hange of the quasipartile dispersion at E0 anbe enhaned in UD samples beause of strengtheningthe FC in�uene. The single-partile exitations andtheir width  are also studied. We have shown thatwell-de�ned exitations with  � T exist at the Fermilevel even in the normal state. This result is in linewith the experimental �ndings determined from thesans at a onstant binding energy, or MDCs. We havealso treated the FC phase transition in the preseneof the superondutivity and shown that this phasetransition an be onsidered as kineti energy driven.Thus, without any adjustable parameters, a numberof the fundamental problems of strongly orrelatedsystems are naturally explained within the proposedmodel.This researh was supported in part by the RussianFoundation for Basi Researh under Grant � 98-02-16170. REFERENCES1. Z.-X. Shen and D. S. Dessau, Phys. Rep. 253, 1 (1995).2. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod.Phys. 70, 1059 (1998).3. H. Ding, J. C. Campuzano, M. R. Norman et al., Na-ture 382, 51 (1996).4. H. Ding, J. C. Campuzano, M. R. Norman et al.,E-print arhive, ond-mat/9712100 (1997).5. M.R. Norman, H. Ding, M. Randeria et al., E-printarhive, ond-mat/9710163 (1997).6. M.R. Norman, M. Randeria, H. Ding, and J. Cam-puzano, E-print arhive, ond-mat/9711232 (1997).7. J. Mesot, M. R. Norman, H. Ding et al., E-printarhive, ond-mat/9812377 (1998).8. T. Valla, A. V. Fedorov, P. D. Johnson et al., Siene285, 2110 (1999).
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