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We propose a new theoretical method to study galvanomagnetic effects in bounded semiconductors. The general
idea of this method is as follows. We consider the electron temperature distribution and the electric potential
as consisting of two terms, one of which represents the regular solution of the energy balance equation obtained
from the Boltzaman transport equation at steady-state conditions and the Maxwell equation respectively, and
the other is the effect of the specimen size that is significant near the contacts (the boundary layer function).
With the distribution of the electric potential at the contacts and the electron temperature distribution at the
surface of the sample taken into account, we find that the magnetoresistance is different from the one in the
standard theory of galvanomagnetic effects in boundless media. We show that besides the usual quadratic
dependence on the applied magnetic field B, the magnetoresistance can have a linear dependence on B under
certain conditions. We obtain new formulas for the linear and quadratic terms of the magnetoresistance in
bounded semiconductors. This linear contribution of the magnetic field to the magnetoresistance is essentialy
due to the spatial dependence of the potential at the electric contacts. We also discuss the possibility to obtain
the distribution of the electric potential at the contacts from standard magnetoresistance experiments. Because
the applied magnetic field acts differently on carriers of different mobilities, a redistribution of the electron
energy occurs in the sample and thus, the Ettingshausen effect on the magnetoresistance must be considered

© 2001

in bounded semiconductors.

PACS: 02.30.Jr, 72.15.Gd, 75.70.Ak
1. INTRODUCTION

Physically, the magnetoresistance phenomenon con-
sists in an increase of the electric resistance of a metal
or semiconductor subject to an external magnetic field
applied transversally to the electric field direction. We
obtain a complete formula for the magnetoresistance
in the bounded semiconductor involving several previ-
ously unknown terms. Using the expression for the
magnetoresistance in bounded semiconductors, it is
possible to obtain some information about the electron
energy relaxation, the carrier density, and the electron
temperature distribution in the semiconductor. Cur-
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rently, the innovation of some sensitive magnetic field
detectors is based on the magnetoresistance effect in
semiconductors. This means that the linear contribu-
tion of the magnetic field to the magnetoresistance ob-
tained in this paper, which arises due to the spatial
dependence of the potential at electric contacts, can
improve the sensitivity of the devices. Furthermore,
the experimental measurements of magnetoresistance
allow one to describe the homogeneity of the electric
potential at the contacts and therefore also the homo-
geneity of the current density in the sample, which is
very important for semiconductor devices.

Most of the theoretical works, as far as galvanomag-
netic effects in bulk semiconductors are concerned, have
been addressed to boundless media where the electric
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field is constant in all directions and the only contri-
bution to the magnetoresistance is related to the de-
pendence of the electric conductivity on the magnetic
field [1, 2]. However, this assumption implicitly involves
the effect of the sample surface, because the electro-
static Hall field and thus the magnetoresistance cannot
be found otherwise. It is worth mentioning that in real-
ity, it is usual to fix some specific boundary conditions
at the surface of the sample; as a consequence, in gen-
eral, magnetoresitance depends on the electric poten-
tial, which is a linear function of the coordinates [3].
Moreover, this linear term can be only calculated if
the surface effects on the electric potential are con-
sidered through an additional function of coordinates.
The coefficients characterizing the potential also de-
pend strongly on these boundaries and as the result,
they are different from the coefficients obtained in the
standard magnetoresistance theory.

Size-dependent contributions to the magnetoresis-
tance of an isotropic semiconductor in a uniform elec-
tric field E, and a transverse magnetic field B (in the y-
direction) have been discussed in [4-7]. The discussion
is given for systems bounded along only one direction
(the z-axis) and boundless in the direction of the elec-
tric field. The current density is taken to vanish at the
surface of the sample, which is viewed as a boundary
condition (i.e., j, = 0 at z = £b) in contrast with the
standard magnetoresistance theory, where j, = 0 in the
semiconductor sample. In this case, the electron tem-
perature gradient 07T, /0z arises because the magnetic
field acts in a different way on carriers of different mo-
bilities (the Ettingshausen effect) [8], which leads to a
linear dependence of the electron temperature distribu-
tion on the electric field. The experimental evidence of
these theoretical results has shown a strong influence of
the semiconductor thickness on the magnetoresistance.
When the Ettingshausen effect in bounded semicon-
ductors is taken into account, a size-dependent term
appears in the magnetoresitance. However, when the
transverse dimensions of the semiconductor are very
large compared to the electron—phonon energy relax-
ation length (k1) [9], the usual result of the conven-
tional magnetoresistance theory is recovered, with the
Ettingshausen effect bieng important if kb < 1. On
the other hand, the size-dependent contribution to the
magnetoresistance does not disappear in the limit as
kb — 0 [10] and is in fact of the same order as the
physical magnetoresistance term in the standard the-
ory.

Ag can be seen, the surfaces of the sample play an
important role in the theory of magnetoresistance in
thin-film semiconductors. However, in real physical ex-
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periments on magnetoresistance, besides the effect of
the size, the effects due to the inhomogeneity of the
potentials at the contacts must be considered.

Magnetoresistance and the electric potential distri-
bution in a bounded metal (degenerate electron gas)
have been investigated in [11,12]; in [12], in particular,
it was studied using a conformal transformation in the
complex plane. This approach is only valid when the
electric potential is constant at the contacts, i.e., is in-
dependent of the coordinates; the approach cannot be
applied to semiconductors where the current depends
on the potential and the temperature and satisfies the
Helmholtz equation.

In the limit of small electric and magnetic fields,
size-dependent contributions of the magnetoresistance
of an isotropic semiconductor have been discussed
in [13,14] using a perturbative method. The relevant
discussion is given for systems bounded in all direc-
tions, with the current density vanishing at z = =b.
It is found that magnetoresistance exists even if the
relaxation time is independent of the electron energy.
However, when the distance between the contacts is
very large, the perturbative approach of Refs. [13,15]
looses its applicability.

Recently, magnetoresitance in bulk semiconductors
that are bounded in all directions was investigated
within a new mathematical approach [3] for a degener-
ate electron gas, the result being a simple analytical ex-
pression. Moreover, it was shown in [7] that the carrier
temperature distribution for a nondegenerate semicon-
ductor (the Ettingshausen effect) plays an important
role in the study of galvanomagnetic effects.

In this work, we analyze the magnetoresistance in
bounded isotropic nondegenertate semiconductors and
consider the effect of the inhomogeneous electric poten-
tials at the contacts and the thickness b and the length
a of the thin-film semiconductor. This analysis is based
on representing the potential and the temperature as
the sum of a term that is regular (analytical) in the
small parameters b/a and wy Ty and a term involving
the boundary layer functions corresponding to vortex
currents. The boundary layer functions are essential
near the contacts. They vanish as the magnetic field
B — 0 for a constant potential at the contacts, are
regular in the small parameter wgy7y, and decay expo-
nentially along the sample. The analysis shows that it
should be possible to observe an interesting electronic
transport phenomenon caused by the electric field and
the electron temperature distributions; moreover, the
magnetoresistance that we find is different from the
one in the standard theory.
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2. THEORETICAL MODEL

We assume that the semiconductor has the shape
of a parallelepiped bounded by the =z = 0,a; y = 0,¢
and z = 0,b planes and the electric contacts with the
respective distributions ¢%(y, z) and ¢?(y, z) are in the
x = 0,a planes, while the applied uniform magnetic
field is directed along the y-axis. The normal compo-
nents of the current density vanish at the y = 0, ¢ and
2z = 0,b planes of the sample (open circuit at these
surfaces). If the potential distributions ¢°(y,z) and
©%(y, z) are only functions of z, the transport prob-
lem is obviously two dimensional (all the physical pa-
rameters depend only on x and z). We consider the
effect that the redistribution of carriers according to
their energy across the sample has on the magnetore-
sistance (the Ettingshausen effect). Assuming that the
electric and magnetic fields are weak, and therefore,
T, — Ty ~ jB, where Ty is the ambient temperature,
we can use the Maxwell and the thermal balance equa-
tions to find the electron temperature distribution and
the electrostatic potential in the sample as functions
of coordinates and the magnetic field. At the steady-
state conditions, the equations for the coupled electron
temperature and the electric potential can be written
as 7, 14]

1
Vip(z,z) + %V2Te(az,z) =0,

e (1)
V2T, (x, 2)—}—q+—2V2cp(x, 2) = k* (T.(x,2)=Tp),

where k~! is the scale length of the electron—phonon
energy relaxation, referred to as the cooling length
(k=" = 1073-10~" cm for nondegenerate semiconduc-
tors), and ¢ is the parameter characterizing the depen-
dence of the momentum relaxation time 7 on the energy
e via 7(¢) = 19(2/Tp)?. The values of ¢ for various mo-
mentum relaxation mechanisms are given in [16] (it is
important that |¢/ < 3/2). In this work, we assume
that the temperature of the phonon system is equal to
the ambient temperature Tj.

To arrive at Eqs. (1), we have assumed that the elec-
tron gas is nondegenerate (satisfies the Maxwell statis-
tics), the energy—momentum relation is quadratic and
isotropic, and the current density is sufficiently small
for the nonlinear effects to be negligible, i.e., the kinetic
coefficients do not depend on the electric field. We also
consider a weak magnetic field such that wyry < 1,
where wy is the cyclotron frequency.

The continuity and the energy balance equations
for the potential p(z, z) and the electron temperature
T.(z, z) must be supplemented by boundary conditions
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describing the distribution of the potential at the elec-
tric contacts and the normal components of the current
density at the lateral surfaces:

Qp(x'/z)b:o = 300(2)7 QD(I.,Z)LC:LI = ¢"(2),

jz 2=0,b =0.

(2)

The coupled equations for the potential and the elec-
tron temperature must be supplemented by boundary
conditions describing the absorption of the carrier en-
ergy at the surface of the sample. These conditions can
be written as [17]

Qn‘s:ns(Te_To)‘sv (3)

where (), is the electron normal component of the heat
flux at the surface of the sample and the parameter 7,
represents the inelastic scattering of electrons at the
boundaries (surface heat conductivity), with ns = 0
corresponding to the absence of surface mechanisms,
that is,

Q-

0 (4)

2=0,b =

in our geometry, and with the infinite 1, corresponding
to a good thermal conductivity across the surface. We
consider this latter boundary condition for the electron
temperature at the contacts, i.e.,

T.| =Tp. (5)

z=0,a
Under the above assumptions, we see from the ex-
pressions for j and Q given in [18] that the poten-
tial and the temperature distributions satisfy the fol-
lowing equations at the surface of the sample, where

jz|z:07b = Qz|z:07b =0:

dp  q+10T. T(2q+5/2)
0z e 0z T(g+5/2)
0 2 1 0T,
X (wHTO) _99 + ¢+ 9 = 0,
ox e Oz )|,_g, o
dp q+20T. T(2¢+7/2) (6)
= — X
0z e 0z T(g+7/2)
dp  2q+2 9T, _
X (wmTo) <% 0 ) o 0,

with T'(z) being the Gamma function.

Assuming the potential difference at the contacts
to be small, which means restricting to the trans-
port effects that are linear in the electric field, we
see from [14, 19] that in the theory of galvanomagnetic
phenomena with the electron temperature distribution
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taken into account, the x component of the current
density is given by

. 3_<p_(q-|—1)008T
o= 00850 e 850 oo(wn
['(2q+5/2) [9¢ (2q—|—1
T(¢g+5/2) |0z
> T(3¢+5/2) 8_99 (3q+1)
+ oo(wn o) T(g+5/2) 6z+ e z |’ (™)
where
4T (q + 5/2) ne? wy
gg =

3T
The first term in (7) corresponds to the usual cur-
rent; the second term corresponds to the thermoelectric
current; the third term corresponds to the Hall effect
and the transverse Nernst—Ettingshausen effect. The
last term in Eq. (7) describes the longitudinal Nernst—
Ettingshausen effect.

m

3. ASYMPTOTIC APPROXIMATION FOR
MAGNETORESISTANCE

For small magnetic fields such that (wy7o)? < 1,
we naturally seek solutions of Egs. (1) in the form

e(@,2) = po(x, 2) + ¢1(z,2)(wHTo) +
+ @a(z,2)(whTo)? + ...,

Te(z,z) =Ty + Ty (z, 2)(wETo) +
+ To(z, 2)(wgTo)® + ...

(8)

To calculate the terms ¢, (z, z) and Tj(z, z), we propose
a new nonstandard perturbation theory with respect to
the small magnetic field. This theory is uniform with
respect to the small parameter b/a. Inserting Eqs. (8)
in Eq. (7), we can write the  component of the current
density to the second order of the magnetic field as

jz(x'/z) = jU(xaz) +j1(x72)(wHT0) +

+jo(2, 2)(wrme)? + ..., (9)
where
) 0
Jjo(z,2) = _0'0%7
o (Bpy g1 0Ty T(20+5/2)
@ 2) = <8x + e 833) [(g+5/2)
(. 2) = —0 %+q+1 oT> T'(2¢+5/2) (10)
J20,2) =700 | By e dx T(g+5/2)
" % 2+ 1 @ 3 (3q+5/2)%
0z e Oz [(¢+5/2) ox )~
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The average value of the current density over the semi-
conductor cross-section that is significant for the mag-
netoresistance is given by

b
1
= g/]z(ac z)dz
0

Because divj = 0, j is 2-independent.

J (11)

It is clear from the above that a detailed analysis
of j is a very complicated problem. As we see in what
follows, however, an analytical expression for the aver-
age current density can be obtained in the limit where
b/a <«1. This condition allows us to study galvano-
magnetic effects in semiconductors; depending on the
results, we can decide whether it is possible to talk
about the effects of the finite dimension of the sample
on the magnetoresistance.

We now restrict ourselves to thin-film semiconduc-
tors with a > b. Because the cooling length is of the
order 1 ym, we can use the relation

a> kb (12)
Alternatively, if the geometry of the sample is such that

a < b, the distribution of the current density j, corre-
sponds to the closed Hall contacts [19].

We introduce the average potential at the contacts

r=0and z = a as
b
0

b
=5 s
0

We note that if the distribution of the potential is con-
stant at the contacts of the sample, we have ¢°(z) = @°
and ¢%(z) = p*, otherwise it depends on the z-coordi-
nate.

( (13)

e-l»—\
@I»—n

For a constant potential at the contacts and in the
presence of a weak magnetic field, the magnetoresis-
tance can be defined as

SE
(90 - ) 00
In the case where ¢%(z) = @" and ¢?(z) = P°, the
magnetoresistance is given by
b )
0= (50 - E ([ﬁ + F(kb)) (OJHT()) (14)
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(the proof of this formula is given in Sec. 6). It follows
that

5 D(3/2+9)0(5/2 +3q) I2(5/2 + 2q)
0= I2(5/2 + q) a
I?(2¢+5/2)
kb5/2+ th [(q +2)!/2kb/2

5 (g +2)Y?T%(q+5/2)

is the magnetoresistance for samples such that the di-
mension along the x direction is infinite (¢ — o0) and
the transverse dimension b is finite. The formulas for
the coefficient K and the function F(kb) have not been
known previously. We obtain that

. T2(2¢+5/2) 16 % 1
h= I'(q+5/2) Fl:o 20+ 1)3 (15)
_ 8¢ T*(2¢+5/2)
F(kb) = +5/2 TP
XZ @1+ 12 + (k0)2(q+2)] 2. (10)

Tt follows from Eqs. (14)—(16) that when the distribu-
tion of the potential is uniform at the contacts, the
correction term to the magnetoresistance depends on
the ratio b/a < 1 linearly rather than exponentially
via exp(—a/b), as is assumed in the standard theory
of galvanomagnetic effects in semiconductors. On the
other hand, if the electric potential is inhomogeneous
at the contacts, the magnetoresistance is given by

b

4 L
7= 0/[990(2)+s0 (2)—2"—9"] x
dz}

cos [(2l+1)7z /D]
2l+1
(the proof of this formula is given in Sec. 5). In this
case, the magnetoresistance depends on the magnetic
field linearly rather than quadratically as in the usual
theory of galvanomagnetic effects in semiconductors.
In addition, it changes sign when the magnetic field is
reversed. Thus, the resistance in the sample decreases
with the magnetic field before reversing its sign. We
note that the sign in Eq. (17) strongly depends on the
potential distribution at the contacts and is indepen-
dent of the length a of the sample in the first approx-
imation with respect to the magnetic field. Size ef-
fects on the magnetoresistance occur in the second-or-
der approximation with respect to B. For example, if

§=—

['(2¢+5/2)
T(g+5/2)

2>

=0

(waTo) (17)
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WO(2) + ¢2(2) = 2° —§" = C(z — b/2), it follows from
Eq. (17) that
5 8Cwno 2q+5/2 i 2 1)
(7" -9°) T(a+5/2) =

We note that Eq. (14) gives the magnetoresis-
tance with the precision [(wgTo)? + e~ ™/2) (W H)?],
and Eq. (17) with the precision (wg79)?.  There-
fore, Eq. (14) gives the correct results in case where
wpTo < land b/a K e(’”“/%); this does not necessar-
ily imply the constraint b/a < 1. Equation (17) is ap-
plicable in the cases where wymy < 1 and wyTy < |4
We see that for the potential that is homogeneous at
the contacts, we have §g = 0 for the degenerate elec-
tron gas, that is, for ¢ 0. This implies that the
standard mechanisms of creating magnetoresistance do
not work and the magnetoresistance is the result only
of the mechanism proposed in this paper. However, if
the linear part of magnetoresistance in the magnetic
field does not vanish, it does not vanish for all values
of ¢q. This means that inhomogeneity of the potential
at the contact plane is a new mechanism of creating
magnetoresistance. The linear dependence coefficient
in (17) is a product of two factors. The first factor de-
pends only on the potential distributions at the contact
planes. The second factor results in the Ettingshausen
effect and is independent of the potential distribution.
It follows from Eq. (17) that if we know the potential
distributions at the contacts, we can calculate the pa-
rameter ¢ of the relaxation mechanism using the mag-
netoresistance.

It is worth mentioning that if the magnetoresistance
is calculated in all orders in the magnetic field, the po-
tential distribution at the contacts can be evaluated
explicitly. The solution in the form of a Taylor expan-
sion has been exactly obtained only for the degenerate
electron gas (metals) [15,20]. Thus, experimental mea-
surements of magnetoresistance allow one to shed some
light on the distribution of the potential at the contacts.

4. MAGNETORESISTANCE CALCULATION
FOR RECTANGULAR SAMPLES

We now proceed to describe a method of solving
the two-dimensional potential and electron tempera-
ture distribution for magnetoresistance in the presence
of a weak magnetic field. The geometry considered is
again that of a rectangular semiconductor. We intro-
duce a new function ® depending on the potential and
the electron temperature distribution such that the cur-
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rent J, is expressed through this function up to the
order (wpTo)? (see Eq. (7)) as

1
b=+t o7 _71, (18)
e

and the dimensionless variables 2’ = z/b and z' = z/b
are such that 0 < 2/ < 87! and 0 < 2’ < 1, where
B = b/a. With these new functions, Eq. (1) can be
written as (we omit the prime on the variables)

V2 =0, VT - (q+2)(kb)’T=0  (19)

and the boundary conditions in Eqs. (4)—(6) become

a g+1
¢‘$237170 =@ (2) + . T(], T|CE:07B*1 = 07
0P 0P aq oT _
e + a(wHTO)ﬁ_x + ?(OJHT(]) s o =0, 2
T o oo 2 o
ER X(wHTo or Y(wHTo o o =0,
. F(2q+5/2)
= TG+5/9)
['(2¢+5/2) I'(2¢+5/2)
= 1 - 21
[(2¢+7/2) T(2¢+5/2)
T(g+7/2) L(g+5/2) |

In most of the theoretical works related to galvano-
magnetic effects in bulk semiconductors, solutions of
Eqs. (19) are represented as infinite series in wpyy
for weak magnetic fields; to obtain approximations for
the coefficients ®; and T}, of the orders £k = 0,1, ...,
the authors neglect the terms (wp7)d®P;/dx and
(wpT9)IT)/Ox in boundary conditions (20). However,
the exact solutions for the degenerate electron gas [15]
demonstrate that this series diverges for large samples,
i.e., for a > b. For this reason, we now seek solutions
of Egs. (19) in the form

® = ®y(x,2,wyTo) + D1 (2, 2, wiTo) (WHTO) +

+ Oy (2, 2, wpTo) (wWaT)? + O ((wHTg)B) ,

\ (22)
T =Ti(v,z,wgmo)(wuTe) +
+ To(2, z,wnmo)(wrTo)? + O ((wrTo)?) -
The functions ®; and T; with j = 0,1,... satisfy

Eqs. (19). The boundary conditions for ®; and Ty in
the planes = 0, 37" are the same as for the functions
® and T', and we have ®;|,— 5-1 =0, Tj[—03-1 =0
for j > 1. The boundary conditions for ®;(x, 2, wn )

and Tj(z, z,wnTo) on the planes z = 1,0 were obtained
from boundary conditions (20) using perturbation the-
ory with one exception. For ®;, we keep the term
(waTH)0T;/Ox in boundary condition (20) and omit the
term (wpT)0®;/0x. For T;, on the contrary, we keep
the term (wp79)0T;/Ox in boundary condition (20) and
omit the term (wpm9)0®;/0x. The terms 0T;_1/0x
and 0®;_,/0x enter the boundary conditions for the
respective functions 7; and ®; and make them het-
erogeneous. We then see that the zero-order term T
satisfies Eq. (19) and zero boundary conditions in the
planes 2 = 0,3~ 2z = 0, 1. Therefore, Ty = 0, which is
why we started with the term T} in Eq. (22). The func-
tions ®; and T} are analytical in wg T and can also be
expressed in terms of the natural low-field expansion for
wyTy < 1. Within this approximation, we can obtain
the solution of Eq. (19) and, thus, the magnetoresis-
tance. The equations and boundary conditions for the
coefficients in Eq. (22) are formulated in what follows.
Since the average current in Eqs. (7), (9), and (10) de-
pends on ®q, &1, 5, and T and is independent of T5
with the accuracy up to the (wp7)? terms, it is not
necessary to calculate it. We then consider the bound-
ary problems for ®y, ®;, ®5, and 7. Similarly to the
above, we obtain the following boundary problem for
q’o and Tli

+1
V<I>0 :0, @0‘1‘:0:@0(3)_}_ a - TO,
q+1

(I)0|z:571 = ¢(2) + To, (23)

3‘1’0 8@0

- i) =0

ER + awyTo O o R
v2Tl - (q + 2)(kb)2Tl = 01 T1|z:0 5-1 = 01
T, oT, 9%, (24)
— Ly Y=o
0z + XWHTo ox Y O |,_o,

With Ty, = 0, the function ®; satisfies Eq. (19) with
zero boundary conditions, and hence, ®; = 0. The
function ®, satisfies the boundary problem

VEBy =0, Bf,_g 40 =0,
®, 8%y aq 0Ty B (25)
92 + awgTo B + e Ox =0.

z=0,1

5. THE WEAK-FIELD &, SOLUTION

To derive the first term of the expansion of (23) for a
weak magnetic field, we represent the solution ®, with
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the precision O(e~™/8) as the sum of a regular and a
boundary layer functions
By =By + Mg+, +O(e ™), (26)
where
D, = Co+ (2 — awpTy2)Ch (27)

satisfies the boundary condition

a‘“breg
0z

reg

ox =0

z=0,1

+ awgTo

and II; (with ¢ = 0, 1) are two boundary layer functions
that are exact solutions of the problem

o1l
Ox

i

V2II; =0 and =0

z=0,1

such that Iy and II; exponentially decrease as © — oo
and * — —oo respectively. Separating the variables,
we can write solutions for the last equations as

o0
My =2 Z Ap(cosmnz+awnte sinmnz) x
n=1

X e*Tl'nIl/

s (28)
I =2 Z B, (cosmnz—awytosin mnz) x
n=1

x e~ =2),

As noted above, the boundary layer functions Il and
IT; correspond to the vortex current, and therefore,
do not contribute to the magnetoresistance. We now
demonstrate this. We know that average current (11)
is z-independent. Therefore, we can calculate it at the
point z = 371/2. But the exponentials in the bound-
ary layer functions (28) are less than or equal to e~7/27
at that point. We also have

b

/

Hence, the boundary layer contributions to average cur-

rent (7) and to the magnetoresistance have the order

wpToe ™. We can sharp this estimate and demon-

strate that this contribution is smaller and has the or-

der (wrrmo)?e~™/?8 . Indeed, it follows from (7) that the

contribution of II; (with i = 0,1) to the average cur-

rent with the precision (wymo)%e /%8 is equal to the
integral

cos(mnz)dz =0, n=1,2,...

b
0'0/ {——H x,z) +awHTOaEHi(x,z)}az .
) z z=1/28
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This is easy to verify for the functions
™z ™mz
e/ (cos 5 F awg Ty Sin T) :

in view of decompositions (28) for II;, the above in-
tegral is zero for all . The boundary layer contri-
butions to the average current and the magnetoresis-
tance is therefore of the order (wgrmo)2e~"/?2. Inserting
Eqs. (26)—(28) in boundary conditions (23) and neglect-
ing terms of the order exp(—7/3~!), we obtain

o0
V2 Z Ap(cosmnz + awp T sinnz) =

n=1

= ¢°(2) + awpm2C1 — Co,

- (29)
V2 Z B, (cosmnz — awgTosintnz) =
n=1
= ¢%z) — (B_l —awyToz)C1 — Cy.

Equation (29) can be solved using the expansion in
whTy) < 1. A solution in the zero- and first-order ap-
proximation for A, and B, exists only if both Cy and
C1, which depend on wpyTy, satisfy special conditions
with respect to the potential distribution at the con-
tacts. We, thus, assume that

A, = A%-}—A}leTo-}— R

B, = Bg—}—B,,lszTo—F R

Co = Cg-l—c’éwHTo-l-... ; Cy = C?-I—OlleT0+...

Inserting these series in Eq. (29) and keeping the terms
of the zero order in wy Ty, we obtain

oo
V2 Z A% cosmnz = ©°(2) — CY;
n=1

oo
V2 Z BY cosmnz = ¢ (2) — (C§ + B~1CY).

n=1
It is well known that the system of functions 1,
V2cosmnz, n = 1,2,..., is complete and orthogonal
on the segment [0,1]. Therefore, every function that
is orthogonal to the constant on [0, 1] can be uniquely
expanded in the Fourier series with respect to the func-
tions V2 cosmnz, n = 1,2,... Hence, to solve the above
system for A% and B, it is necessary and sufficient that

1

Y = /cpo(z)dz

0

¢,

1

sich+0f = [ ()
0

—a
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That is, CJ = 7" and CY = B(p" — %), and therefore,

A) = \/5/ (¢°(z) = @°) cos(mnz) dz;
1° (30)
B) = /((,9“(2) — ") cos(mnz) dz.
0

Keeping the first-order terms in the magnetic field wg g
in Eq. (28), we then obtain the equations for the coef-
ficients AL and B},

V2 Z Al cosmnz =
n=1

o0
QaZA%sinﬂnz — Cy + az0?,

n=1

~ (31)
V2 Z B} cosmnz =
n=1

o0
—V2a Z B} sintnz+azCV—(Ca+51CH).

n=1

It follows that system (31) has a solution if and only
if the average of its right-hand side on [0, 1] is equal to
zero. These conditions give C¢, C] and AL, Bl. As
can be seen from Eqgs. (9)-(11), the magnetoresistance
depends only on the parameter C given by

C1 =CY + Clawpmy + C}awnm)? + O ((aWHTO)S) ;
where
C? :B(WI—@O)-,
1
€l =5 [ {#°() +9°() -7 =7} D (2)ds
0
_4 = cos[(2m + 1)77]
hi(z) = s mZ:o (2m + 1)m
- 1 (32)
L(z) = 22 coswnz/sin(n-nf)]l(f)df,
n=1 0
1
CF =—8 [ {¢°(2) = ¢"(2) - ° + "} Ia(2)dz —
0
1632 — 1
I mZ::O (2m +1)3

328

Using Eqs. (26)—(28) and recalling Eqgs. (32), we now
write the solution for as a power series expansion in
wpTy K 1, ie.,

g = D) + dhawy o + B (awp ) +

+ O ((awnm)?®), (33)

with

+1
W=L—0+2+5 (7 -7 2+ M+ 107, (34)
where TI9 and TI? are the zero-order approximations in
wyTe of the respective functions Iy and II; given by

Eqs. (28) and
3! = [Cla+p (7°—97) (-1/2)] +IE+IT +cte, (35)

where TI} and TI1 are the first-order approximations
of Tly and II;. The corresponding solutions are not
given here because the magnetoresistance equations do
not depend on them. Finally, the coefficient in the se-
cond-order approximation to ®q in the magnetic field
is written as

B2 = CO%(x — 24+ 1/2) + T2 + 12 + cte,

where IIZ and II? represent the second-order approxi-
mations of the functions in Egs. (28) in the magnetetic
field; in this case, the magnetoresistance is also inde-
pendent of them. Using all these approximations in
Egs. (10), we obtain the magnetoresistance given by
Eq. (17), which depends linearly on the magnetic field
as a consequence of the z-dependence of the potential
at the contacts. It is important to note that when the
potential distribution is constant at the contacts, the
linear term vanishes. In this case, the second-order con-
tribution in the magnetic field must be considered in §
(see Eq. (14)).

6. MAGNETORESISTANCE AND THE
HOMOGENEOUS POTENTIAL
DISTRIBUTION AT THE CONTACTS

Proceeding to the calculation of the coefficient
Ty (x,z,wnTe), we begin with the explicit equations
that determine this quantity in the approximation of a
constant potential at the contacts, i.e., for ¢°(z) = @°
and ¢%(z) = $*. As can be seen, Eqs. (24) depend
on the magnetic field, and hence, T} (z, z,wyTy) also is
a function of this parameter. It follows from Eqgs. (10)
that the magnetoresistance depends only on T (z, z, 0),
which implies that it is only necessary to consider
Ty (z,z,wyTo) in the zero-order approximation in the
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magnetic field in Eqs. (25) and (10). With these ap-
proximations, we write the zero-order term of the po-
tential ®) instead of ®y in Eqs. (24). We can then
write T (2, z,wy 7o) as a regular term and two bound-
ary layer terms similar to @ in Eq. (26). In this specific
case, it is possible to obtain the exact expression for
Ty (z,z,wyTo) if the term xywyTodT) /0 is taken into
account in the boundary conditions. We can then ex-
press T (x,z,wyTo) as a series in wyTy < 1; however,
the only significant term is 7} (the zero-order approx-
imation) that is given by

By (@ —°) sh[kbVa+2(=~1/2)]
kby/q +2 { ) }

+iA2cos7rnz [exp{ VTn2 + k202(q + 2)x }
n=1

T =

+ exp {—\/7r2n2 +k202(q +2)(B7" — x)}] ,  (36)

where
-28y (7" - 9°)
if =2 1
U Byl ) B
0 if n=2m,
m=1,2,3,...

We now derive the second-order approximation in
the magnetic field for ®,, see Eqs. (25). We set
®y = 11 + 1, where the function ¥, satisfies the het-
erogeneous boundary conditions

o 0o ag 0T

=t awpmgae = — — &

0z ox e Ox

2=0,1

and Ay = 0. It is therefore equal to

¢2=%i[exp{ Vr2n? + k202(q + 2) x}

n=1
—exp{ V22 + k202 (g +2) (B! — } X

« (Dhoin ([ + 2000+ 2] ) ¢

+ D2 cos { [r2n? + k*b%(q + 2)]1/2 z}) . (37)
where
—26y (7 —2°)
if =2 1,
pl = P r(gr2 © PTImTE
0 if n=2m,
m=1,2,3,...,

D2 =
14 cos [r2n2+k%b? (q+2)] 12
Dy, T ifn=2ml,
= sin [72n2+k2b%(q+2)]
0 if n = 2m,
m=1,2,3,...
For v, we obtain
2 _ -
Vo =0, ¢1‘x:075_1 = —¢2‘x:0ﬂ_1,
Yy O (38)
= T =o.
0z + QWHTO ox =01

The latter system of equations can be solved in the
zero-order approximation in the magnetic field simi-
larly to what was done in Sec. 5. The solution for ®,
in the zero-order approximation in the magnetic field
is then

agyfPr _,
29 = 82077 (20 x
X {Z [72(21 + 1) + K26% (g + 2)]_3/2} +
1=0
+ 103 + 109 + cte,

where the functions IIJ and I1{ are the decreasing expo-
nential functions of the distance ~ 1 from the contacts
atz =0and z =~ > 1. It is important to note that
the sum II§ + 1Y + cte gives a negligible contribution
to the magnetoresistance of the order e=™/?5 (wy ).
However, these functions must be considered, otherwise
the regular function in ) cannot be calculated. Insert-
ing 9 in Eq. (10) and taking Eqs. (20) for a and 7 into
account, we obtain expression (16).

7. CONCLUSIONS

We have shown that when the electric potential is
inhomogeneous at the contacts, the magnetoresistance
has a linear dependence on the magnetic field and it
is possible to mathematically derive the electric poten-
tial distribution on the contacts from the experimental
measurements of the magnetoresistance. The magne-
toresistance changes its sign when the magnetic field
is reversed, i.e., the resistance in the sample decreases
with the magnetic field before it changes its direction.
It is important to note that the sign in Eq. (17) strongly
depends on the potential distribution at the contacts
and is independent of the length of the sample in the
first-order approximation in the magnetic field.

We emphasize that the correct evaluation of the cur-
rent contacts for the constant potentials at the contacts
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leads to the effects of the order b/a but not to the ex-
ponential terms e~"/? as was expected from the tra-
ditional theory of magnetoresistance.

Finally, it is worth mentioning that the solution
of the problems in Eqs. (19) and (20) studied in
this paper gives a finite total energy for the system
under consideration. This problems can also have a
nonphysical solution with an infinite total energy.

This work is partially supported by CONACYT,
IPN, and CINVESTAV.
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