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al method to study galvanomagneti
 e�e
ts in bounded semi
ondu
tors. The generalidea of this method is as follows. We 
onsider the ele
tron temperature distribution and the ele
tri
 potentialas 
onsisting of two terms, one of whi
h represents the regular solution of the energy balan
e equation obtainedfrom the Boltzaman transport equation at steady-state 
onditions and the Maxwell equation respe
tively, andthe other is the e�e
t of the spe
imen size that is signi�
ant near the 
onta
ts (the boundary layer fun
tion).With the distribution of the ele
tri
 potential at the 
onta
ts and the ele
tron temperature distribution at thesurfa
e of the sample taken into a

ount, we �nd that the magnetoresistan
e is di�erent from the one in thestandard theory of galvanomagneti
 e�e
ts in boundless media. We show that besides the usual quadrati
dependen
e on the applied magneti
 �eld B, the magnetoresistan
e 
an have a linear dependen
e on B under
ertain 
onditions. We obtain new formulas for the linear and quadrati
 terms of the magnetoresistan
e inbounded semi
ondu
tors. This linear 
ontribution of the magneti
 �eld to the magnetoresistan
e is essentialydue to the spatial dependen
e of the potential at the ele
tri
 
onta
ts. We also dis
uss the possibility to obtainthe distribution of the ele
tri
 potential at the 
onta
ts from standard magnetoresistan
e experiments. Be
ausethe applied magneti
 �eld a
ts di�erently on 
arriers of di�erent mobilities, a redistribution of the ele
tronenergy o

urs in the sample and thus, the Ettingshausen e�e
t on the magnetoresistan
e must be 
onsideredin bounded semi
ondu
tors.PACS: 02.30.Jr, 72.15.Gd, 75.70.Ak1. INTRODUCTIONPhysi
ally, the magnetoresistan
e phenomenon 
on-sists in an in
rease of the ele
tri
 resistan
e of a metalor semi
ondu
tor subje
t to an external magneti
 �eldapplied transversally to the ele
tri
 �eld dire
tion. Weobtain a 
omplete formula for the magnetoresistan
ein the bounded semi
ondu
tor involving several previ-ously unknown terms. Using the expression for themagnetoresistan
e in bounded semi
ondu
tors, it ispossible to obtain some information about the ele
tronenergy relaxation, the 
arrier density, and the ele
trontemperature distribution in the semi
ondu
tor. Cur-*E-mail: gurevi
h��s.
investav.mx

rently, the innovation of some sensitive magneti
 �elddete
tors is based on the magnetoresistan
e e�e
t insemi
ondu
tors. This means that the linear 
ontribu-tion of the magneti
 �eld to the magnetoresistan
e ob-tained in this paper, whi
h arises due to the spatialdependen
e of the potential at ele
tri
 
onta
ts, 
animprove the sensitivity of the devi
es. Furthermore,the experimental measurements of magnetoresistan
eallow one to des
ribe the homogeneity of the ele
tri
potential at the 
onta
ts and therefore also the homo-geneity of the 
urrent density in the sample, whi
h isvery important for semi
ondu
tor devi
es.Most of the theoreti
al works, as far as galvanomag-neti
 e�e
ts in bulk semi
ondu
tors are 
on
erned, havebeen addressed to boundless media where the ele
tri
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onstant in all dire
tions and the only 
ontri-bution to the magnetoresistan
e is related to the de-penden
e of the ele
tri
 
ondu
tivity on the magneti
�eld [1; 2℄. However, this assumption impli
itly involvesthe e�e
t of the sample surfa
e, be
ause the ele
tro-stati
 Hall �eld and thus the magnetoresistan
e 
annotbe found otherwise. It is worth mentioning that in real-ity, it is usual to �x some spe
i�
 boundary 
onditionsat the surfa
e of the sample; as a 
onsequen
e, in gen-eral, magnetoresitan
e depends on the ele
tri
 poten-tial, whi
h is a linear fun
tion of the 
oordinates [3℄.Moreover, this linear term 
an be only 
al
ulated ifthe surfa
e e�e
ts on the ele
tri
 potential are 
on-sidered through an additional fun
tion of 
oordinates.The 
oe�
ients 
hara
terizing the potential also de-pend strongly on these boundaries and as the result,they are di�erent from the 
oe�
ients obtained in thestandard magnetoresistan
e theory.Size-dependent 
ontributions to the magnetoresis-tan
e of an isotropi
 semi
ondu
tor in a uniform ele
-tri
 �eld Ex and a transverse magneti
 �eld B (in the y-dire
tion) have been dis
ussed in [4�7℄. The dis
ussionis given for systems bounded along only one dire
tion(the z-axis) and boundless in the dire
tion of the ele
-tri
 �eld. The 
urrent density is taken to vanish at thesurfa
e of the sample, whi
h is viewed as a boundary
ondition (i.e., jz = 0 at z = �b) in 
ontrast with thestandard magnetoresistan
e theory, where jz = 0 in thesemi
ondu
tor sample. In this 
ase, the ele
tron tem-perature gradient �Te=�z arises be
ause the magneti
�eld a
ts in a di�erent way on 
arriers of di�erent mo-bilities (the Ettingshausen e�e
t) [8℄, whi
h leads to alinear dependen
e of the ele
tron temperature distribu-tion on the ele
tri
 �eld. The experimental eviden
e ofthese theoreti
al results has shown a strong in�uen
e ofthe semi
ondu
tor thi
kness on the magnetoresistan
e.When the Ettingshausen e�e
t in bounded semi
on-du
tors is taken into a

ount, a size-dependent termappears in the magnetoresitan
e. However, when thetransverse dimensions of the semi
ondu
tor are verylarge 
ompared to the ele
tron�phonon energy relax-ation length (k�1) [9℄, the usual result of the 
onven-tional magnetoresistan
e theory is re
overed, with theEttingshausen e�e
t bieng important if kb � 1. Onthe other hand, the size-dependent 
ontribution to themagnetoresistan
e does not disappear in the limit askb ! 0 [10℄ and is in fa
t of the same order as thephysi
al magnetoresistan
e term in the standard the-ory.As 
an be seen, the surfa
es of the sample play animportant role in the theory of magnetoresistan
e inthin-�lm semi
ondu
tors. However, in real physi
al ex-

periments on magnetoresistan
e, besides the e�e
t ofthe size, the e�e
ts due to the inhomogeneity of thepotentials at the 
onta
ts must be 
onsidered.Magnetoresistan
e and the ele
tri
 potential distri-bution in a bounded metal (degenerate ele
tron gas)have been investigated in [11; 12℄; in [12℄, in parti
ular,it was studied using a 
onformal transformation in the
omplex plane. This approa
h is only valid when theele
tri
 potential is 
onstant at the 
onta
ts, i.e., is in-dependent of the 
oordinates; the approa
h 
annot beapplied to semi
ondu
tors where the 
urrent dependson the potential and the temperature and satis�es theHelmholtz equation.In the limit of small ele
tri
 and magneti
 �elds,size-dependent 
ontributions of the magnetoresistan
eof an isotropi
 semi
ondu
tor have been dis
ussedin [13; 14℄ using a perturbative method. The relevantdis
ussion is given for systems bounded in all dire
-tions, with the 
urrent density vanishing at z = �b.It is found that magnetoresistan
e exists even if therelaxation time is independent of the ele
tron energy.However, when the distan
e between the 
onta
ts isvery large, the perturbative approa
h of Refs. [13; 15℄looses its appli
ability.Re
ently, magnetoresitan
e in bulk semi
ondu
torsthat are bounded in all dire
tions was investigatedwithin a new mathemati
al approa
h [3℄ for a degener-ate ele
tron gas, the result being a simple analyti
al ex-pression. Moreover, it was shown in [7℄ that the 
arriertemperature distribution for a nondegenerate semi
on-du
tor (the Ettingshausen e�e
t) plays an importantrole in the study of galvanomagneti
 e�e
ts.In this work, we analyze the magnetoresistan
e inbounded isotropi
 nondegenertate semi
ondu
tors and
onsider the e�e
t of the inhomogeneous ele
tri
 poten-tials at the 
onta
ts and the thi
kness b and the lengtha of the thin-�lm semi
ondu
tor. This analysis is basedon representing the potential and the temperature asthe sum of a term that is regular (analyti
al) in thesmall parameters b=a and !H�0 and a term involvingthe boundary layer fun
tions 
orresponding to vortex
urrents. The boundary layer fun
tions are essentialnear the 
onta
ts. They vanish as the magneti
 �eldB ! 0 for a 
onstant potential at the 
onta
ts, areregular in the small parameter !H�0, and de
ay expo-nentially along the sample. The analysis shows that itshould be possible to observe an interesting ele
troni
transport phenomenon 
aused by the ele
tri
 �eld andthe ele
tron temperature distributions; moreover, themagnetoresistan
e that we �nd is di�erent from theone in the standard theory.322
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t e�e
t on the magnetoresistan
e : : :2. THEORETICAL MODELWe assume that the semi
ondu
tor has the shapeof a parallelepiped bounded by the x = 0; a; y = 0; 
and z = 0; b planes and the ele
tri
 
onta
ts with therespe
tive distributions '0(y; z) and 'a(y; z) are in thex = 0; a planes, while the applied uniform magneti
�eld is dire
ted along the y-axis. The normal 
ompo-nents of the 
urrent density vanish at the y = 0; 
 andz = 0; b planes of the sample (open 
ir
uit at thesesurfa
es). If the potential distributions '0(y; z) and'a(y; z) are only fun
tions of z, the transport prob-lem is obviously two dimensional (all the physi
al pa-rameters depend only on x and z). We 
onsider thee�e
t that the redistribution of 
arriers a

ording totheir energy a
ross the sample has on the magnetore-sistan
e (the Ettingshausen e�e
t). Assuming that theele
tri
 and magneti
 �elds are weak, and therefore,Te � T0 � jB, where T0 is the ambient temperature,we 
an use the Maxwell and the thermal balan
e equa-tions to �nd the ele
tron temperature distribution andthe ele
trostati
 potential in the sample as fun
tionsof 
oordinates and the magneti
 �eld. At the steady-state 
onditions, the equations for the 
oupled ele
trontemperature and the ele
tri
 potential 
an be writtenas [7; 14℄r2'(x; z) + q + 1e r2Te(x; z) = 0;r2Te(x; z)+ eq+2r2'(x; z) = k2 (Te(x; z)�T0) ; (1)where k�1 is the s
ale length of the ele
tron�phononenergy relaxation, referred to as the 
ooling length(k�1 � 10�3�10�4 
m for nondegenerate semi
ondu
-tors), and q is the parameter 
hara
terizing the depen-den
e of the momentum relaxation time � on the energy" via �(") = �0("=T0)q . The values of q for various mo-mentum relaxation me
hanisms are given in [16℄ (it isimportant that jqj < 3=2). In this work, we assumethat the temperature of the phonon system is equal tothe ambient temperature T0.To arrive at Eqs. (1), we have assumed that the ele
-tron gas is nondegenerate (satis�es the Maxwell statis-ti
s), the energy�momentum relation is quadrati
 andisotropi
, and the 
urrent density is su�
iently smallfor the nonlinear e�e
ts to be negligible, i.e., the kineti

oe�
ients do not depend on the ele
tri
 �eld. We also
onsider a weak magneti
 �eld su
h that !H�0 � 1,where !H is the 
y
lotron frequen
y.The 
ontinuity and the energy balan
e equationsfor the potential '(x; z) and the ele
tron temperatureTe(x; z) must be supplemented by boundary 
onditions

des
ribing the distribution of the potential at the ele
-tri
 
onta
ts and the normal 
omponents of the 
urrentdensity at the lateral surfa
es:'(x; z)��x=0 = '0(z); '(x; z)��x=a = 'a(z);jz��z=0;b = 0: (2)The 
oupled equations for the potential and the ele
-tron temperature must be supplemented by boundary
onditions des
ribing the absorption of the 
arrier en-ergy at the surfa
e of the sample. These 
onditions 
anbe written as [17℄Qn��s = �s(Te � T0)��s; (3)where Qn is the ele
tron normal 
omponent of the heat�ux at the surfa
e of the sample and the parameter �srepresents the inelasti
 s
attering of ele
trons at theboundaries (surfa
e heat 
ondu
tivity), with �s = 0
orresponding to the absen
e of surfa
e me
hanisms,that is, Qz��z=0;b = 0 (4)in our geometry, and with the in�nite �s 
orrespondingto a good thermal 
ondu
tivity a
ross the surfa
e. We
onsider this latter boundary 
ondition for the ele
trontemperature at the 
onta
ts, i.e.,Te��x=0;a = T0: (5)Under the above assumptions, we see from the ex-pressions for j and Q given in [18℄ that the poten-tial and the temperature distributions satisfy the fol-lowing equations at the surfa
e of the sample, wherejz jz=0;b = Qzjz=0;b = 0:�'�z + q + 1e �Te�z + �(2q + 5=2)�(q + 5=2) �� (!H�0)��'�x + 2q + 1e �Te�x �����z=0;b = 0;�'�z + q + 2e �Te�z + �(2q + 7=2)�(q + 7=2) �� (!H�0)��'�x + 2q + 2e �Te�x �����z=0;b = 0; (6)
with �(x) being the Gamma fun
tion.Assuming the potential di�eren
e at the 
onta
tsto be small, whi
h means restri
ting to the trans-port e�e
ts that are linear in the ele
tri
 �eld, wesee from [14; 19℄ that in the theory of galvanomagneti
phenomena with the ele
tron temperature distribution323 7*
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herenko, E. Ramirez de Arellano ÆÝÒÔ, òîì 119, âûï. 2, 2001taken into a

ount, the x 
omponent of the 
urrentdensity is given byjx = ��0 �'�x � (q + 1)�0e �Te�x + �0(!H�0)�� �(2q + 5=2)�(q + 5=2) ��'�z + (2q + 1)e �Te�z �++ �0(!H�0)2�(3q + 5=2)�(q + 5=2) ��'�z + (3q + 1)e �Te�z � ; (7)where �0 = 4�(q + 5=2)3p� ne2�0m :The �rst term in (7) 
orresponds to the usual 
ur-rent; the se
ond term 
orresponds to the thermoele
tri

urrent; the third term 
orresponds to the Hall e�e
tand the transverse Nernst�Ettingshausen e�e
t. Thelast term in Eq. (7) des
ribes the longitudinal Nernst�Ettingshausen e�e
t.3. ASYMPTOTIC APPROXIMATION FORMAGNETORESISTANCEFor small magneti
 �elds su
h that (!H�0)2 � 1,we naturally seek solutions of Eqs. (1) in the form'(x; z) = '0(x; z) + '1(x; z)(!H�0) ++ '2(x; z)(!H�0)2 + : : : ;Te(x; z) = T0 + T1(x; z)(!H�0) ++ T2(x; z)(!H�0)2 + : : : (8)To 
al
ulate the terms 'j(x; z) and Tj(x; z), we proposea new nonstandard perturbation theory with respe
t tothe small magneti
 �eld. This theory is uniform withrespe
t to the small parameter b=a. Inserting Eqs. (8)in Eq. (7), we 
an write the x 
omponent of the 
urrentdensity to the se
ond order of the magneti
 �eld asjx(x; z) = j0(x; z) + j1(x; z)(!H�0) ++ j2(x; z)(!H�0)2 + : : : ; (9)wherej0(x; z) = ��0 �'0�x ;j1(x; z) = ��0��'1�x +q+1e �T1�x � �(2q+5=2)�(q+5=2) ;j2(x; z) = ��0��'2�x +q+1e �T2�x ��(2q+5=2)�(q+5=2) �� ��'1�z +2q + 1e �T1�z ���(3q+5=2)�(q+5=2) �'0�x � : (10)

The average value of the 
urrent density over the semi-
ondu
tor 
ross-se
tion that is signi�
ant for the mag-netoresistan
e is given byj = 1b bZ0 jx(x; z)dz: (11)Be
ause div j = 0, j is x-independent.It is 
lear from the above that a detailed analysisof j is a very 
ompli
ated problem. As we see in whatfollows, however, an analyti
al expression for the aver-age 
urrent density 
an be obtained in the limit whereb=a �1. This 
ondition allows us to study galvano-magneti
 e�e
ts in semi
ondu
tors; depending on theresults, we 
an de
ide whether it is possible to talkabout the e�e
ts of the �nite dimension of the sampleon the magnetoresistan
e.We now restri
t ourselves to thin-�lm semi
ondu
-tors with a � b. Be
ause the 
ooling length is of theorder 1 �m, we 
an use the relationa� k�1; b: (12)Alternatively, if the geometry of the sample is su
h thata� b, the distribution of the 
urrent density jz 
orre-sponds to the 
losed Hall 
onta
ts [19℄.We introdu
e the average potential at the 
onta
tsx = 0 and x = a as'0 = 1b bZ0 '0(z)dz; 'a = 1b bZ0 'a(z)dz: (13)We note that if the distribution of the potential is 
on-stant at the 
onta
ts of the sample, we have '0(z) = '0and 'a(z) = 'a, otherwise it depends on the z-
oordi-nate.For a 
onstant potential at the 
onta
ts and in thepresen
e of a weak magneti
 �eld, the magnetoresis-tan
e 
an be de�ned asÆ = �j � j0� a�'a � '0��0 :In the 
ase where '0(z) = '0 and 'a(z) = 'a, themagnetoresistan
e is given byÆ = �Æ0 � ba (K + F (kb))� (!H�0)2 (14)324
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t e�e
t on the magnetoresistan
e : : :(the proof of this formula is given in Se
. 6). It followsthatÆ0 = �(5=2 + q)�(5=2 + 3q)� �2(5=2 + 2q)�2(5=2 + q) �� q25=2 + q �2(2q + 5=2)kb2 (q + 2)1=2�2(q + 5=2) th h(q + 2)1=2kb=2iis the magnetoresistan
e for samples su
h that the di-mension along the x dire
tion is in�nite (a ! 1) andthe transverse dimension b is �nite. The formulas forthe 
oe�
ient K and the fun
tion F (kb) have not beenknown previously. We obtain thatK = �2(2q + 5=2)�2(q + 5=2) 16�3 1Xl=0 1(2l + 1)3 ; (15)F (kb) = 8q2q + 5=2 �2(2q + 5=2)�2(q + 5=2) �� 1Xl=0 ��2(2l + 1)2 + (kb)2(q + 2)��3=2 : (16)It follows from Eqs. (14)�(16) that when the distribu-tion of the potential is uniform at the 
onta
ts, the
orre
tion term to the magnetoresistan
e depends onthe ratio b=a � 1 linearly rather than exponentiallyvia exp(�a=b), as is assumed in the standard theoryof galvanomagneti
 e�e
ts in semi
ondu
tors. On theother hand, if the ele
tri
 potential is inhomogeneousat the 
onta
ts, the magnetoresistan
e is given byÆ = � 4�b �'a�'0� 8<: bZ0 �'0(z)+'a(z)�'0�'a� �� 1Xl=0 
os [(2l+1)�z=b℄2l+1 dz) �(2q+5=2)�(q+5=2) (!H�0) (17)(the proof of this formula is given in Se
. 5). In this
ase, the magnetoresistan
e depends on the magneti
�eld linearly rather than quadrati
ally as in the usualtheory of galvanomagneti
 e�e
ts in semi
ondu
tors.In addition, it 
hanges sign when the magneti
 �eld isreversed. Thus, the resistan
e in the sample de
reaseswith the magneti
 �eld before reversing its sign. Wenote that the sign in Eq. (17) strongly depends on thepotential distribution at the 
onta
ts and is indepen-dent of the length a of the sample in the �rst approx-imation with respe
t to the magneti
 �eld. Size ef-fe
ts on the magnetoresistan
e o

ur in the se
ond-or-der approximation with respe
t to B. For example, if

'0(z) + 'a(z)� '0 � 'a = C(z � b=2), it follows fromEq. (17) thatÆ = 8C!H�0�3 �'a � '0� �(2q + 5=2)�(q + 5=2) 1Xl=0(2l + 1)�3:We note that Eq. (14) gives the magnetoresis-tan
e with the pre
ision [(!H�0)3 + e(��a=2b)(!H�0)2℄,and Eq. (17) with the pre
ision (!H�0)2. There-fore, Eq. (14) gives the 
orre
t results in 
ase where!H�0 � 1 and b=a� e(��a=2b); this does not ne
essar-ily imply the 
onstraint b=a� 1. Equation (17) is ap-pli
able in the 
ases where !H�0 � 1 and !H�0 � jÆj.We see that for the potential that is homogeneous atthe 
onta
ts, we have Æ0 = 0 for the degenerate ele
-tron gas, that is, for q = 0. This implies that thestandard me
hanisms of 
reating magnetoresistan
e donot work and the magnetoresistan
e is the result onlyof the me
hanism proposed in this paper. However, ifthe linear part of magnetoresistan
e in the magneti
�eld does not vanish, it does not vanish for all valuesof q. This means that inhomogeneity of the potentialat the 
onta
t plane is a new me
hanism of 
reatingmagnetoresistan
e. The linear dependen
e 
oe�
ientin (17) is a produ
t of two fa
tors. The �rst fa
tor de-pends only on the potential distributions at the 
onta
tplanes. The se
ond fa
tor results in the Ettingshausene�e
t and is independent of the potential distribution.It follows from Eq. (17) that if we know the potentialdistributions at the 
onta
ts, we 
an 
al
ulate the pa-rameter q of the relaxation me
hanism using the mag-netoresistan
e.It is worth mentioning that if the magnetoresistan
eis 
al
ulated in all orders in the magneti
 �eld, the po-tential distribution at the 
onta
ts 
an be evaluatedexpli
itly. The solution in the form of a Taylor expan-sion has been exa
tly obtained only for the degenerateele
tron gas (metals) [15; 20℄. Thus, experimental mea-surements of magnetoresistan
e allow one to shed somelight on the distribution of the potential at the 
onta
ts.4. MAGNETORESISTANCE CALCULATIONFOR RECTANGULAR SAMPLESWe now pro
eed to des
ribe a method of solvingthe two-dimensional potential and ele
tron tempera-ture distribution for magnetoresistan
e in the presen
eof a weak magneti
 �eld. The geometry 
onsidered isagain that of a re
tangular semi
ondu
tor. We intro-du
e a new fun
tion � depending on the potential andthe ele
tron temperature distribution su
h that the 
ur-325
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h, V. V. Ku
herenko, E. Ramirez de Arellano ÆÝÒÔ, òîì 119, âûï. 2, 2001rent Jx is expressed through this fun
tion up to theorder (!H�0)2 (see Eq. (7)) as� = '+ q + 1e Te; T = Te � T0 (18)and the dimensionless variables x0 = x=b and z0 = z=bare su
h that 0 < x0 < ��1 and 0 < z0 < 1, where� = b=a. With these new fun
tions, Eq. (1) 
an bewritten as (we omit the prime on the variables)r2� = 0; r2T � (q + 2)(kb)2T = 0 (19)and the boundary 
onditions in Eqs. (4)�(6) be
ome���x=��1;0 = 'a(z) + q + 1e T0; T ��x=0;��1 = 0;���z + �(!H�0)���x + �qe (!H�0) �T�x ����z=0;1 = 0;�T�z + �(!H�0)�T�x + 
(!H�0) ���x ����z=0;1 = 0; (20)
� = �(2q + 5=2)�(q + 5=2) ;� = (q + 1)�(2q + 5=2)�(q + 7=2) � q�(2q + 5=2)�(q + 5=2) ;
 = e ��(2q + 7=2)�(q + 7=2) � �(2q + 5=2)�(q + 5=2) � : (21)In most of the theoreti
al works related to galvano-magneti
 e�e
ts in bulk semi
ondu
tors, solutions ofEqs. (19) are represented as in�nite series in !H�0for weak magneti
 �elds; to obtain approximations forthe 
oe�
ients �k and Tk of the orders k = 0; 1; : : : ,the authors negle
t the terms (!H�0)��k=�x and(!H�0)�Tk=�x in boundary 
onditions (20). However,the exa
t solutions for the degenerate ele
tron gas [15℄demonstrate that this series diverges for large samples,i.e., for a � b. For this reason, we now seek solutionsof Eqs. (19) in the form� = �0(x; z; !H�0) + �1(x; z; !H�0)(!H�0)1 ++�2(x; z; !H�0)(!H�0)2 +O �(!H�0)3� ;T = T1(x; z; !H�0)(!H�0)1 ++ T2(x; z; !H�0)(!H�0)2 +O �(!H�0)3� : (22)The fun
tions �j and Tj with j = 0; 1; : : : satisfyEqs. (19). The boundary 
onditions for �0 and T0 inthe planes x = 0; ��1 are the same as for the fun
tions� and T , and we have �j jx=0;��1 = 0, Tj jx=0;��1 = 0for j � 1. The boundary 
onditions for �j(x; z; !H�0)

and Tj(x; z; !H�0) on the planes z = 1; 0 were obtainedfrom boundary 
onditions (20) using perturbation the-ory with one ex
eption. For �j , we keep the term(!H�0)�Tj=�x in boundary 
ondition (20) and omit theterm (!H�0)��j=�x. For Tj , on the 
ontrary, we keepthe term (!H�0)�Tj=�x in boundary 
ondition (20) andomit the term (!H�0)��j=�x. The terms �Tj�1=�xand ��j�1=�x enter the boundary 
onditions for therespe
tive fun
tions Tj and �j and make them het-erogeneous. We then see that the zero-order term T0satis�es Eq. (19) and zero boundary 
onditions in theplanes x = 0; ��1; z = 0; 1. Therefore, T0 = 0, whi
h iswhy we started with the term T1 in Eq. (22). The fun
-tions �j and Tj are analyti
al in !H�0 and 
an also beexpressed in terms of the natural low-�eld expansion for!H�0 � 1. Within this approximation, we 
an obtainthe solution of Eq. (19) and, thus, the magnetoresis-tan
e. The equations and boundary 
onditions for the
oe�
ients in Eq. (22) are formulated in what follows.Sin
e the average 
urrent in Eqs. (7), (9), and (10) de-pends on �0, �1, �2, and T1 and is independent of T2with the a

ura
y up to the (!H�0)3 terms, it is notne
essary to 
al
ulate it. We then 
onsider the bound-ary problems for �0, �1, �2, and T1. Similarly to theabove, we obtain the following boundary problem for�0 and T1:r�0 = 0; �0��x=0 = '0(z) + q + 1e T0;�0��x=��1 = 'a(z) + q + 1e T0;��0�z + �!H�0 ��0�x ����z=0;1 = 0; (23)
r2T1 � (q + 2)(kb)2T1 = 0; T1��x=0;��1 = 0;�T1�z + �!H�0 �T1�x + 
 ��0�x ����z=0;1 = 0: (24)With T0 = 0, the fun
tion �1 satis�es Eq. (19) withzero boundary 
onditions, and hen
e, �1 = 0. Thefun
tion �2 satis�es the boundary problemr2�2 = 0; �2��x=0;��1 = 0;��2�z + �!H�0 ��2�x + �qe �T1�x ����z=0;1 = 0: (25)5. THE WEAK-FIELD �0 SOLUTIONTo derive the �rst term of the expansion of (23) for aweak magneti
 �eld, we represent the solution �0 with326
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t e�e
t on the magnetoresistan
e : : :the pre
ision O(e��=�) as the sum of a regular and aboundary layer fun
tions�0 = �reg +�0 +�1 +O(e����1); (26)where �reg = C0 + (x� �!H�0z)C1 (27)satis�es the boundary 
ondition��reg�z + �!H�0 ��reg�x ����z=0;1 = 0;and �i (with i = 0; 1) are two boundary layer fun
tionsthat are exa
t solutions of the problemr2�i = 0 and ��i�z + �!H�0 ��i�x ����z=0;1 = 0su
h that �0 and �i exponentially de
rease as x!1and x ! �1 respe
tively. Separating the variables,we 
an write solutions for the last equations as�0 = p2 1Xn=1An(
os�nz+�!H�0 sin�nz)�� e��nx;�1 = p2 1Xn=1Bn(
os�nz��!H�0 sin�nz)�� e��n(��1�x): (28)
As noted above, the boundary layer fun
tions �0 and�1 
orrespond to the vortex 
urrent, and therefore,do not 
ontribute to the magnetoresistan
e. We nowdemonstrate this. We know that average 
urrent (11)is x-independent. Therefore, we 
an 
al
ulate it at thepoint x = ��1=2. But the exponentials in the bound-ary layer fun
tions (28) are less than or equal to e��=2�at that point. We also havebZ0 
os(�nz)dz = 0; n = 1; 2; : : :Hen
e, the boundary layer 
ontributions to average 
ur-rent (7) and to the magnetoresistan
e have the order!H�0e��=2� . We 
an sharp this estimate and demon-strate that this 
ontribution is smaller and has the or-der (!H�0)2e��=2� . Indeed, it follows from (7) that the
ontribution of �i (with i = 0; 1) to the average 
ur-rent with the pre
ision (!H�0)2e��=2� is equal to theintegral�0 bZ0 �� ��x�i(x; z) + �!H�0 ��z�i(x; z)� �z����x=1=2� :

This is easy to verify for the fun
tionse��x=b �
os �nzb � �!H�0 sin �nzb � ;in view of de
ompositions (28) for �i, the above in-tegral is zero for all x. The boundary layer 
ontri-butions to the average 
urrent and the magnetoresis-tan
e is therefore of the order (!H�0)2e��=2�. InsertingEqs. (26)�(28) in boundary 
onditions (23) and negle
t-ing terms of the order exp(����1), we obtainp2 1Xn=1An(
os�nz + �!H�0 sin�nz) == '0(z) + �!H�0zC1 � C0;p2 1Xn=1Bn(
os�nz � �!H�0 sin�nz) == 'a(z)� (��1 � �!H�0z)C1 � C0: (29)
Equation (29) 
an be solved using the expansion in!H�0 � 1. A solution in the zero- and �rst-order ap-proximation for An and Bn exists only if both C0 andC1, whi
h depend on !H�0, satisfy spe
ial 
onditionswith respe
t to the potential distribution at the 
on-ta
ts. We, thus, assume thatAn = A0n+A1n!H�0+ : : : ; Bn = B0n+B1n!H�0+ : : : ;C0 = C00+C10!H�0+ : : : ; C1 = C01+C11!H�0+ : : :Inserting these series in Eq. (29) and keeping the termsof the zero order in !H�0, we obtainp2 1Xn=1A0n 
os�nz = '0(z)� C00 ;p2 1Xn=1B0n 
os�nz = '1(z)� (C00 + ��1C01 ):It is well known that the system of fun
tions 1,p2 
os�nz, n = 1; 2; : : : , is 
omplete and orthogonalon the segment [0; 1℄. Therefore, every fun
tion thatis orthogonal to the 
onstant on [0; 1℄ 
an be uniquelyexpanded in the Fourier series with respe
t to the fun
-tionsp2 
os�nz, n = 1; 2; : : : Hen
e, to solve the abovesystem for A0n and B0n, it is ne
essary and su�
ient thatC00 = 1Z0 '0(z)dz = '0;��1C01 + C00 = 1Z0 'a(z)dz = 'a:327
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h, V. V. Ku
herenko, E. Ramirez de Arellano ÆÝÒÔ, òîì 119, âûï. 2, 2001That is, C00 = '0 and C01 = �('a � '0), and therefore,A0n = p2 1Z0 �'0(z)� '0� 
os(�nz) dz;B0n = 1Z0 ('a(z)� 'a) 
os(�nz) dz: (30)Keeping the �rst-order terms in the magneti
 �eld !H�0in Eq. (28), we then obtain the equations for the 
oef-�
ients A1n and B1n,p2 1Xn=1A1n 
os�nz == �p2� 1Xn=1A0n sin�nz � C10 + �zC01 ;p2 1Xn=1B1n 
os�nz == �p2� 1Xn=1B1n sin�nz+�zC01�(C10+��1C11 ): (31)
It follows that system (31) has a solution if and onlyif the average of its right-hand side on [0; 1℄ is equal tozero. These 
onditions give C10 , C11 and A1n, B1n. As
an be seen from Eqs. (9)�(11), the magnetoresistan
edepends only on the parameter C1 given byC1 = C01 + C11�!H�0 + C21 (�!H�0)2 +O �(�!H�0)3� ;where C01 = � �'a � '0� ;C11 = � 1Z0 �'0(z) + 'a(z)� '0 � 'a	 I1(z)dz;I1(z) = 4� 1Xm=0 
os [(2m+ 1)�z℄(2m+ 1)� ;I2(z) = 2 1Xn=1 
os�nz 1Z0 sin(�n�)I1(�)d�; (32)
C21 = �� 1Z0 �'0(z)� 'a(z)� '0 + 'a	 I2(z)dz �� 16�2�3 1Xm=0 1(2m+ 1)3 :

Using Eqs. (26)�(28) and re
alling Eqs. (32), we nowwrite the solution for as a power series expansion in!H�0 � 1, i.e.,�0 = �00 +�10�!H�0 +�20(�!H�0)2 ++O �(�!H�0)3� ; (33)with�00 = q + 1e T0 + '0 + � �'a � '0�x+�00 +�01; (34)where �00 and �01 are the zero-order approximations in!H�0 of the respe
tive fun
tions �0 and �1 given byEqs. (28) and�10 = �C11x+� �'0�'a� (z�1=2)�+�10+�11+
te; (35)where �10 and �11 are the �rst-order approximationsof �0 and �1. The 
orresponding solutions are notgiven here be
ause the magnetoresistan
e equations donot depend on them. Finally, the 
oe�
ient in the se-
ond-order approximation to �0 in the magneti
 �eldis written as�20 = C21 (x� z + 1=2) + �20 +�21 + 
te;where �20 and �21 represent the se
ond-order approxi-mations of the fun
tions in Eqs. (28) in the magneteti
�eld; in this 
ase, the magnetoresistan
e is also inde-pendent of them. Using all these approximations inEqs. (10), we obtain the magnetoresistan
e given byEq. (17), whi
h depends linearly on the magneti
 �eldas a 
onsequen
e of the z-dependen
e of the potentialat the 
onta
ts. It is important to note that when thepotential distribution is 
onstant at the 
onta
ts, thelinear term vanishes. In this 
ase, the se
ond-order 
on-tribution in the magneti
 �eld must be 
onsidered in Æ(see Eq. (14)).6. MAGNETORESISTANCE AND THEHOMOGENEOUS POTENTIALDISTRIBUTION AT THE CONTACTSPro
eeding to the 
al
ulation of the 
oe�
ientT1(x; z; !H�0), we begin with the expli
it equationsthat determine this quantity in the approximation of a
onstant potential at the 
onta
ts, i.e., for '0(z) = '0and 'a(z) = 'a. As 
an be seen, Eqs. (24) dependon the magneti
 �eld, and hen
e, T1(x; z; !H�0) also isa fun
tion of this parameter. It follows from Eqs. (10)that the magnetoresistan
e depends only on T1(x; z; 0),whi
h implies that it is only ne
essary to 
onsiderT1(x; z; !H�0) in the zero-order approximation in the328
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t e�e
t on the magnetoresistan
e : : :magneti
 �eld in Eqs. (25) and (10). With these ap-proximations, we write the zero-order term of the po-tential �00 instead of �0 in Eqs. (24). We 
an thenwrite T1(x; z; !H�0) as a regular term and two bound-ary layer terms similar to �0 in Eq. (26). In this spe
i�

ase, it is possible to obtain the exa
t expression forT1(x; z; !H�0) if the term �!H�0�T1=�x is taken intoa

ount in the boundary 
onditions. We 
an then ex-press T1(x; z; !H�0) as a series in !H�0 � 1; however,the only signi�
ant term is T 01 (the zero-order approx-imation) that is given byT 01 = �
 �'a � '0�kbpq + 2 sh �kbpq + 2 (z � 1=2)�
h�12kbpq + 2� ++ 1Xn=1A0n 
os�nz hexpn�p�2n2 + k2b2(q + 2)xo++ expn�p�2n2 + k2b2(q + 2)(��1 � x)oi ; (36)whereA0n = 8><>: �2�
 �'a � '0��2n2 + k2b2(q + 2) if n = 2m+ 1;0 if n = 2m;m = 1; 2; 3; : : :We now derive the se
ond-order approximation inthe magneti
 �eld for �2, see Eqs. (25). We set�2 =  1 +  2, where the fun
tion 	2 satis�es the het-erogeneous boundary 
onditions� 2�z + �!H�0 � 2�x = � �qe �T 01�x ����z=0;1and � 2 = 0. It is therefore equal to 2 = �qe 1Xn=1 hexpn�p�2n2 + k2b2(q + 2)xo �� expn�p�2n2 + k2b2(q + 2) (��1 � x)oi�� �D1n sinn��2n2 + k2b2(q + 2)�1=2 zo++ D2n 
osn��2n2 + k2b2(q + 2)�1=2 zo� ; (37)whereD1n =8><>: �2�
 �'a � '0��2n2 + k2b2(q + 2) if n = 2m+ 1;0 if n = 2m;m = 1; 2; 3; : : : ;

D2n ==8>><>>:D1n 1+
os ��2n2+k2b2(q+2)�1=2sin [�2n2+k2b2(q+2)℄1=2 if n = 2m+1;0 if n = 2m;m = 1; 2; 3; : : :For  1, we obtainr2 1 = 0;  1��x=0;��1 = � 2��x=0;��1 ;� 1�z + �!H�0 � 1�x ����z=0;1 = 0: (38)The latter system of equations 
an be solved in thezero-order approximation in the magneti
 �eld simi-larly to what was done in Se
. 5. The solution for �2in the zero-order approximation in the magneti
 �eldis then�02 = �8�q
�2xe �'a � '0���( 1Xl=0 ��2(2l + 1)2 + k2b2(q + 2)��3=2)++�20 +�01 + 
te;where the fun
tions �00 and �01 are the de
reasing expo-nential fun
tions of the distan
e � 1 from the 
onta
tsat x = 0 and x = ��1 � 1. It is important to note thatthe sum �00 + �01 + 
te gives a negligible 
ontributionto the magnetoresistan
e of the order e��=2�(!H�0)2.However, these fun
tions must be 
onsidered, otherwisethe regular fun
tion in �02 
annot be 
al
ulated. Insert-ing �02 in Eq. (10) and taking Eqs. (20) for � and 
 intoa

ount, we obtain expression (16).7. CONCLUSIONSWe have shown that when the ele
tri
 potential isinhomogeneous at the 
onta
ts, the magnetoresistan
ehas a linear dependen
e on the magneti
 �eld and itis possible to mathemati
ally derive the ele
tri
 poten-tial distribution on the 
onta
ts from the experimentalmeasurements of the magnetoresistan
e. The magne-toresistan
e 
hanges its sign when the magneti
 �eldis reversed, i.e., the resistan
e in the sample de
reaseswith the magneti
 �eld before it 
hanges its dire
tion.It is important to note that the sign in Eq. (17) stronglydepends on the potential distribution at the 
onta
tsand is independent of the length of the sample in the�rst-order approximation in the magneti
 �eld.We emphasize that the 
orre
t evaluation of the 
ur-rent 
onta
ts for the 
onstant potentials at the 
onta
ts329
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h, V. V. Ku
herenko, E. Ramirez de Arellano ÆÝÒÔ, òîì 119, âûï. 2, 2001leads to the e�e
ts of the order b=a but not to the ex-ponential terms e��a=b as was expe
ted from the tra-ditional theory of magnetoresistan
e.Finally, it is worth mentioning that the solutionof the problems in Eqs. (19) and (20) studied inthis paper gives a �nite total energy for the systemunder 
onsideration. This problems 
an also have anonphysi
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