ZKQT®, 2001, rom 119, BoIm. 2, cTp. 236-242 © 2001

QED RADIATIVE CORRECTIONS TO IMPACT FACTORS
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We consider radiative corrections to the electron and photon impact factors. The generalized eikonal representa-
tion for the e™e™ scattering amplitude at high energies and fixed momentum transfers is violated by non-planar
diagrams. The additional contribution to the two-loop approximation appears from the Bethe—Heitler mecha-
nism of the fermion pair production with the identity of the fermions in the final state taken into account. The
violation of the generalized eikonal representation is also related to the charge parity conservation in QED. The
one-loop correction to the photon impact factor for small virtualities of the exchanged photon is obtained using
the known results for the cross-section of the ete™ production at photon—nuclei interactions.
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1. INTRODUCTION where the indices i, j enumerate the electron polariza-
tion states. The expression for the impact factors of

It is well known (see [1]) that the QED scattering ¢ photon on its mass shell can be written as [1]

amplitude for the process

a+b—a +1 1 1
oy =8a2/dy/dx+dx_ X
in the Regge kinematics ) )
A(pa,a) + B(pg,b) = A(ply,a’) + B(pp, '), X 8(xy + 2 —1)(Aij — Bij), (3)

;o (M)

s=(pa+pp)®>—t=—(pa—py)?ocm

with
has the impact factor representation
1
is &’k 74k, r) B (k,r) Aij = 828 a_y(l —y)rir; —
A(s, t) = @) / (SIS X 4r222 y(1 —y) + m?

(+0(L)). =0 @ ~rt (1msmn (3-3) ).

that is valid in the first non-trivial order of the per-
turbation theory. Here, A is the photon mass and the

two-dimensional vectors r and £ are orthogonal to the Bjj = — 1 > 8y y(1—y)QiQ;—
initial particle momenta p4 and pp. The impact fac- 4Q%y(1 —y) +m?
tors T describe the inner structure of colliding particles. 1\2
For the electron, we have —Q* (1 -8z x_ <y — 5) dij |
|7¢] = dmady;,
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where i, j refer to the photon polarization states.

According to the Regge theory, the impact factor is
proportional to the residue of the pole o (j — 1)~ ! of
the t-channel partial wave f;', with the positive signa-
ture describing the ¢-channel transition of two particles
into a nonsense state of two virtual photons [1],

oo

ds' .
A 7 . ol
A= tim G- 1) [ S B0, k) x
Sth
H1 o 2
P P
X TB ?BQ]‘_Q(Z,), 8, = —QkpA, (4)
where z' = cosf is the cosine of the scattering an-

gle 6 in the t-channel. Tt is a linear function of s'.
Here and below s;;, means the threshold value of s'.
Higher orders of perturbation theory involve the poles
fj < 1/(j —1)™ that must be subtracted from 7 to pro-
vide sums of all the logarithmic cotributions o log™(s)
using the Bethe—Salpeter equation [1].

For t = 0, the impact factor is proportional to the
s' integral of the total cross-section for the scattering
of the photon with the virtuality —k> off the target a
with the mass m,

oo
ds' og- (s, k>
e [L T g
Sth (5)
VI T
fisf, ) = VS AR

S

where f(s', k?) accounts for the virtual photon flux fac-
tor. This multiplier equals unity in the limit as k% — 0,
which corresponds to the Weizsicker—Williams ap-
proximation:

oo

]

Sth

T

im — d—SI LW(SI) .
k20 k2

(6)

by s!

The motivation for our calculation of radiative cor-
rections to impact factors is the high-precision exper-
iments performed on colliders where some interesting
physical quantities (for example, the BFKL pomeron
intercept) are measured [2]. In this case, one must know
the impact factors of the virtual photon [2]. Generally,
impact factors describe the coupling of particles with
the pomeron in QED or in QCD. For colliders with
electron (positron) beams, radiative corrections to im-
pact factors can be used to calculate the QED-part of
cross-sections with a good accuracy.

For small-angle eTe™ scattering, the amplitude for
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the diagrams with the multi-photon exchange has the
eikonal representation

A(Sv t) = A0(57 t)eia(t)a

2 .
Ao(s,t) = 4m§ﬂ(p’1)p2U(pl) X

2 7
X B(p2)prv(py) = 47ra78N1Nz-, (7)

t>7

IN;| =1, §(t) = —ialn <)\2

where we used that only the longitudinal (nonsense)
polarizations of the ¢-channel virtual photons are es-
sential at high energies,

a(ph)vuu(p1)o(p2) v (Ph)G* (),

1 2pupu
GMV - 21 )
(q) Z s

(8)

The radiative corrections to Ay appear from the so-
called «decorated boxes». These Feynman diagrams
were assumed to lead to a generalized eikonal represen-
tation

A= Ag(s, t)[[1 ()2, (9)

where I'; (t) is the Dirac form-factor of electron,

"’ qy
Ts(t
m 2( )a

() =1+TF@) + ...,

VE(t) = T (t) +

We note that §(¢) must also include corrections to the
virtual photon Green function, leading in particular to
the electric charge renormalization.

In the next section, we verify the generalized eikonal
representation for the decorated boxes.

2. ONE-LOOP CORRECTION TO THE
ELECTRON IMPACT FACTOR

Keeping in mind that the amplitude for the
near-forward scattering with the two-photon exchange
is purely imaginary (with the corrections of the order
m? /s omitted), we can calculate its s-channel discon-
tinuity. The radiative corrections to this discontinuity
originate from the virtual photons and from the emis-
sion of the real photon in the intermediate state. We
split the last contribution into two parts corresponding
to the emission of soft and hard photons.

The virtual photon contribution contains the elec-
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tron vertex function for the on-shell initial and final
electrons,

=7 (0) [FP (1) + FP (=k)]

virt __
AT =

FP(t) = -G(t)In % —Gi(t) = T(t),

1 2
a(t) = ;“ Inb—1,
a
14 2a2
Gi(t) =1 Ty,
1)
1+ a? 1., (
T(t) = 5 {—Zln b+ Inbln(1+b)—
rd
—/—xln(l-l-x)},
X
1
am? 1
a= 1= ot )

a—1’

The contribution from the emission of a soft photon
has the classical form

_%(pl _L><p1 B {9’1 >r§°)x
472 \p1k1  pka pikr Pk
Py
w1

X

)

SE< E = £7 (12)
wi1<dE 2

where p and p| are the momenta of the initial and fi-
nal electrons and p; is the electron momentum in the
intermediate state. Because the energies of these par-
ticles are approximately equal (but large compared to
the electron mass), we can use the relations

1 A3k 2
/ LM op

% w1 (pikl)Q_

3 ;" 2
I L TR S P
2 ) wi (pik1)(pjk1) a

(13)

1 d
-’ b+1nbln(1+b)—/—xln(1+x) ,
X
1

L. :lnA-I—ln%, t = (pi — ;)

oFE
A_f<<1’

with the quantities a and b defined above. Thus, we
obtain

Arsolt — % [(G(=K) + G(—=K"?) — G(t)) Le +
+T(=k%) + T(=k") = T()], (14)

where T'(t) was defined above.

We next consider the hard photon emission. Its con-
tribution to the imaginary part of the electron—electron
scattering amplitude can be written as

ao? a2k Pl dz
Im, A(s,t) = —SW BT N1N2x(1 —)
x I(x, ki1, k), A<z<l1, (15)

where 2 is the energy fraction of the hard photon. We
obtain

I(z, Ky, k) (—4m? + 2t 2) +

" dids
1
+ ad (=4m*2®(1 —z) + 2tz(1 — 2)) +
+ (—4m?* + 2t z)—QZi—4zi+
dayd] ? dy dy
8m? 1
where
1
dy=(p—Fk)?—m?=-=[m*2* +kJ],
x
1
do= k 2 2:7 2,2 k—k 2
2 (p1+ 1) m x(l—x) [m z +(l‘ 1) ]7

= it =Lt str] (D

1
2pp1 =t = 12 [m?z + (k —ki)?],

1
2p1pll =1y = m [mQZ + (xq + k1 — k)2] .
The subsequent integration is straightforward and gives
the result

ATehard — Te(O)E [(G(_k2)+G(_k'2)_G(t)) ln% +

™

+Gmw%+a«%%—amﬂ,<w>

where G(t) and G (t) were defined above.

The interference of two amplitudes with the pho-
ton emitted by two initial particles is small ~ O(t/s).
This fact is known in the literature as the up-down
cancellation. The contribution of the diagrams with
the two-photon exchange is purely imaginary and, con-
sequently, does not interfere with the real Born ampli-
tude. Adding all the contributions, we obtain the final
result for one-loop radiative corrections to the electron
impact factor,

AT, = E7'6(0)F1(2)(t), 70 = 4ra. (19)
T
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This result agrees with the generalized eikonal form of
the small-angle scattering amplitude. But in the higher
orders, the eikonal representation is violated, as shown
below.

3. GENERALIZED EIKONAL
REPRESENTATION

The above result for the radiative corrections to the
electron impact factor can be obtained in a simple way.
We consider again the decorated box with the positron
block corresponding to the Born diagram and the elec-
tron one containing the set of four Feynman graphs
with a virtual photon. We express the components
of the exchanged photon momentum in terms of the
squared invariant energies s; and s» for the electron
and positron blocks using the Sudakov parameters

k=aps+ pp1 + k1,

1
d'k = Q—Sdsldsz)d?ki, k= -k,

s1= (k—p1)? = —sa— k% +m?,

sy = (k+p2)? =5s8—-k*>+m?.

Performing the so-integration by taking the residue
of the intermediate positron propagator (which also
takes the diagram with crossed photon lines into ac-
count), we obtain the total radiative corrections

d?k
/ 2+ 22)((q-K2+ 1) "

x / dsy plpba(p) Ayu(pr),  (20)
C

4o
s (2m)?

where @(p}) A, u(pr) is the Compton scattering ampli-
tude corresponding to the Feynman diagrams with only
the s-channel singularities and the contour C' is situ-
ated above these singularities. The amplitude has the
pole at s; = m?, which corresponds to the electron in-
termediate state, and the right-hand cut starting from
51 = (m + \)?, which corresponds to the one-electron
and one-photon intermediate state.

Using the Sudakov parametrization for the pho-
ton momentum k& and omitting the small contribution
o 1/s proportional to 3p;, we can represent ph as

S

H -
p2 S1 +k2

1
= —(k—ki—fp)" ~ - (k— k)" (21)
We now consider the product of two terms in the
right-hand side of this equation with the Compton am-
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plitude A,,. The contribution of the term oc %k, is
7ero,

dslk“
k v iR
| Sp2/(31+k2)k| X
C

X a(pll)A,uV(Slaka k,)u(pl) = 0

This follows from the convergence of the integral over
the large circle in the s; plane and the absence of
the left cut. The second property is valid for planar
Feynman graphs. The integral converges because for
the physical (transverse) polarizations of the virtual
photon, the quantity e#p5A,,,e = k, /|k| behaves as
m?/s; at large s1.

Applying the Ward identity for the first contribu-
tion  k*, we obtain

(22)

apsU(ph) Ay (51)u(pr) =
—;p?ﬂ(p'l)F”(q)U(pl),

p

S1 >>m2.

(23)

The integral over the large semi-circle gives the gener-
alized eikonal result o I',,, which means, in particular,
that the total contribution of the various intermediate
states is not zero for physical ¢ < 0. In particular,
we see that radiative corrections to the impact factor
of the electron contain infrared divergences cancelled
only in the total cross-section with the contribution of
the inelastic process (the photon emission).

For the n-photon exchange, the eikonal result for
the scattering amplitude corresponds to the classical
picture where all the intermediate fermions are on their
mass shell. This is so because the Born amplitude for
the t-channel photon interactions with external parti-
cles tends to zero as (pa k;) =2 for (pa k;) — oo, which
allows us to calculate all the integrals over (pa k;) by
taking residues. For the radiative corrections corre-
sponding to the decorated diagrams with one additional
virtual photon, we can use the arguments similar to
those applicable in the two-photon case. The phys-
ical reason for the generalized eikonal result for the
total contribution is that the integration over the in-
variant s; (corresponding to the virtuality of the inner
fermion line to which the virtual gluon line is attached)
gives zero because after the cancellation of the renor-
malization effects in accordance with the Ward iden-
tity, the amplitude behaves as 1/s? at large s;. The
non-vanishing result is obtained only from the diagrams
where the virtual gluon line is attached to the exter-
nal fermion lines, but we then obtain the generalized
eikonal result. This argument is not valid for nonplanar
diagrams because they have left and right singularities
in the s; planes [6].
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4. IMPACT FACTORS IN THE TWO-LOOP
APPROXIMATION

In the radiative corrections to the photon impact
factor, the infrared divergences are cancelled in the sum
of contributions from the ete~v and ete™ intermedi-
ate states. Using the crossing relations for t = 0 [7], one
can express the contribution of the ete™v intermedi-
ate state to 77 in terms of the contribution of the ey~
intermediate state to 7¢, which is investigated better
(see [4-6]). We here estimate the radiative corrections
for ¢ = 0 only at small virtualities of the exchanged
photon k. Their value can be extracted from the re-
sults of [3], where the one-loop correction to the cross-
section of pair production by photon on the Coulomb
field of nuclei was calculated as

=2
28k2 0>
D IrHAT) (R, 0) = W[l‘ﬂs l, Kr<m?®,
i=1 (24)
a9 (1128 6971
ey <¥<<3> - m) = 0.009.

The radiative corrections to the photon impact factor
can be easily found also in the region k? > m?, where
one can use the DGLAP evolution equations [10].

We now consider the radiative corrections to the
electron impact factor. The generalized eikonal hy-
pothesis is violated in the two-loop approximation.
(This fact was verified explicitly for ¢ = 0 [6].)
deed, if the generalized eikonal hypothesis were valid,
the complete compensation of contributions from the
transition of the initial electron to the intermediate
states e, ey, and eyy would occur.
shown that the total contribution is not zero and is
equal to the interference term for the eTe™ pair pro-
duction amplitudes.

To clarify this result, we write the impact factor as

TA_/dSI 1 (A)

omi §2° M
C

In-

However, it was

PBPE; (25)

where the quantity (1/s? ) uv poB is expressed in
terms of the amplitudes J(4) for the scattering of the
virtual photon off the initial particles and does not de-
pend on s as s — 0.

In contrast to the planar amplitude A, discussed in
the previous section, Jj, corresponds to contributions
of all possible diagrams. The integration contour C is
displaced in accordance with the Feynman prescription
between the right- and left-hand side singularities of
the amplitude. The right singularities are the poles at
s1 = m? and the cuts at

51> (m+ N2 s> (m 4202 s > 9mP
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There also exist left singularities at the same points for
the crossing variable

up = —s1 —t —2m> + k> + (q — k)%

The additional eTe™ pair can be produced in ac-
cordance with the Bethe—Heitler or bremsstrahlung
mechanisms. There also exist interference terms tak-
ing the identity of the final electrons into account.
The most important contribution is from the Bethe—
Heitler mechanism corresponding to the eTe™ pair pro-
duction by two virtual photons. The corresponding
impact factor contains the divergence in s; related
to the presence of two-photon intermediate states in
the crossing channel. (For ¢ = 0, this contribution
was calculated in [11].) We write it here only in the
Weizsécker—Williams approximation, where it has the
form of the sum rule for the Borselino formulas for the
total cross-section o (s1) of the ete™ pair production
in the electron—photon collisions through the Bethe—
Heitler mechanism,

Ej
d
o, = 42 [ L7
Sth
a’k? 9
"wm2< aln ;ﬁ~+Mn;7-k0 (26)
14 218 418 13
-2 p=_=2 22 Pre). @
““9 27 7 2@ @D

As discussed above, the logarithmic dependence on the
upper limit s in the integral over s; must be subtracted
in a self-consistent way to avoid the double counting,
because the logarithmic contributions are summed by
the Bethe—Salpeter equation for the pomeron in QED
(cf. a similar procedure for the BFKL pomeron in the
next-to-leading approximation [12]). For the muon pro-
duction, we have

k>
TBH, = I (aln e —l—blnM +c), (28)
14 218 28 M
a=—, =—— 1
oo B, )_ﬁln%
324 9 m’

where m and M are the respective masses of electron
and muon.

The contribution of the bremsstrahlung mecha-
nism to eTe~ pair production must be added with
the corresponding two-loop radiative corrections to the
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electron form-factor for the elastic intermediate state;
the resulting expression corresponds to the generalized
eikonal approximation because the corresponding dia-
grams are planar [6].

Among many Feynman graphs obtained from the
interference between the various amplitudes for the pair
production, there are only four non-planar diagrams
corresponding to the identity of electrons in the fi-
nal state in the Bethe—Heitler mechanism. Only they
give a non-vanishing result for 7¢ at ¢ = 0. In the
Weizsdcker—Williams approximation, the correspond-
ing contribution was calculated in [7],

2 3
(0 _ k2 o (221 41549
o — — | — + —((2)—
Tint X2 g <315 " 300 <
216 792 1 o
— ((3) - —=£(2)n2) & — T (=3.57).
o) - em2) & L asn. @)

It leads to the sum rules for the integrals of the one-
and two-photon bremsstrahlung cross-sections and the
slope of the Dirac form-factor at ¢ = 0 [6].

Finally, the total two-loop contribution to the elec-
tron impact factor can be written as

2

T¢ = %TE F1(4) + TR, (31)
where F1(4) is the full two-loop correction to the Dirac
form-factor (including the non-planar diagrams and
the diagrams with the inner fermion loop). The
term Tgjy is the total contribution of the imaginary
part corresponding to the Bethe—Heitler mechanism
of the pair production including the interference ef-
fects related to the identity of the produced electrons
(Tr = Thu. + Thu, + 7ot for t = k2 = 0),

The physical meaning of this formula is obvious:
the non-trivial corrections to impact factors are related
only to the charge particle production in the interme-
diate states.

5. CONCLUSION

In the three-loop approximation, the most impor-
tant contribution to the photon impact factor corre-
sponds to the diagram with two fermionic loops con-
nected in the #-channel by two photons. It contains the
logarithmic divergence o< Ins because the imaginary
part of the corresponding amplitude is proportional to
sp for large s;. In particular, for ¢t = k®> = 0, the
impact factor can be expressed as the integral of the
cross-section for the transition of two real photons into
two ete™ pairs. Again, the ultraviolet divergence in

2 ZKIT®, Boim. 2

s1 is compensated by the infrared divergence in the
relative rapidities of the produced pairs in the Bethe—
Salpeter equation for the pomeron in QED. The virtual
photon actually interacts with the electric dipoles in-
side the initial photon [13]. The growth of the impact
factor o< Ins is related to the logarithmic increase of
the number of dipoles at large energies. The fermion
identity effects in the intermediate state do not have
any influence on this growth. The contribution of the
diagrams with one eTe™ pair and several photons gives
a finite contribution to the photon impact factor.

We now consider three-loop corrections to the elec-
tron impact factor. The most important contribution
 In? s comes from the one-loop radiative corrections to
the Bethe—Heitler mechanism of the eTe™ production.
Other diagrams lead to finite terms. The generalized
eikonal representation is violated by non-planar dia-
grams related to the eTe™ pair production, but there
is another reason for its violation. It is related to the
charge parity conservation in QED. Indeed, two ex-
ternal photons with the momenta k£ and ¢ — k cannot
pass through the fermion loop to the three-photon in-
termediate state in the ¢-channel. Therefore, the gen-
eralized eikonal representation, containing in particu-
lar the form-factor corresponding to the transition of
the external photon through the fermion loop into the
three-photon state, cannot be valid in the three-loop
approximation.

The methods developed above for QED can also be
used in QCD, where we urgently need to calculate the
radiative corrections to impact factors of the virtual
photon and other particles to find the energy region of
applicability of the BFKL theory in the next-to-leading
approximation [11].
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