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BIG ENTROPY FLUCTUATIONS IN THE NONEQUILIBRIUMSTEADY STATE: A SIMPLE MODEL WITH THE GAUSSHEAT BATHB. V. Chirikov*Budker Institute of Nu
lear Physi
sSiberian Bran
h of Russian A
ademy of S
ien
es630090, Novosibirsk, RussiaSubmitted 6 July 2000Large entropy �u
tuations in a nonequilibrium steady state of 
lassi
al me
hani
s are studied in extensive nu-meri
al experiments on a simple two-freedom model with the so-
alled Gauss time-reversible thermostat. Thelo
al �u
tuations (on a set of �xed traje
tory segments) from the average heat entropy absorbed in thermostatare found to be non-Gaussian. The �u
tuations 
an be approximately dis
ribed by a two-Gaussian distribu-tion with a 
rossover independent of the segment length and the number of traje
tories (�parti
les�). Thedistribution itself does depend on both, approa
hing the single standard Gaussian distribution as any of thoseparameters in
reases. The global time-dependent �u
tuations are qualitatively di�erent in that they have astri
t upper bound mu
h less than the average entropy produ
tion. Thus, unlike the equilibrium steady state,the re
overy of the initial low entropy be
omes impossible after a su�
iently long time, even in the largest�u
tuations. However, preliminary numeri
al experiments and the theoreti
al estimates in the spe
ial 
ase ofthe 
riti
al dynami
s with superdi�usion suggest the existen
e of in�nitely many Poin
aré re
urren
es to theinitial state and beyond. This is a new interesting phenomenon to be further studied together with some otheropen questions. The relation of this parti
ular example of a nonequilibrium steady state to the long-standingpersistent 
ontroversy over statisti
al �irreversibility�, or the notorious �time arrow�, is also dis
ussed. In
on
lusion, the unsolved problem of the origin of the 
ausality �prin
iple� is 
onsidered.PACS: 05.70.Ln, 05.40.+j1. INTRODUCTION: EQUILIBRIUM VS.NONEQUILIBRIUM STEADY STATEThe �u
tuations are an inseparable part of statisti-
al laws. This is well known sin
e Boltzmann. Whatis apparently less known are the pe
uliar properties ofrare big �u
tuations (BF) as di�erent from, and in asense even opposite to, those of small stationary �u
-tuations. In parti
ular, the former 
an be perfe
tlyregular on the average, symmetri
 in time with respe
tto the �u
tuation maximum, and 
an be des
ribed bysimple kineti
 equations rather than by a sheer proba-bility of irregular �noise�. Even though big �u
tuationsare very rare, they may be important in many vari-ous appli
ations (see, e.g., [1℄ and referen
es therein).In addition, the 
orre
t understanding and interpreta-tion of the properties and origin of big �u
tuations may*E-mail: 
hirikov�inp.nsk.su

help (at last!) to settle a strangely persistent 
ontro-versy over statisti
al �irreversibility� and the notorious�time arrow�.In the big �u
tuations problem, one must distin-guish at least two qualitatively di�erent 
lasses of thefundamental (Hamiltonian, nondissipative) dynami
alsystems: those with and without the statisti
al equi-librium, or the equilibrium steady state (ES).In the former (simpler) 
ase, a big �u
tuation 
on-sists of the two symmetri
 parts: the rise of a �u
-tuation followed by its return, or relaxation, ba
k toES (see Fig. 1 below). Both parts are des
ribed bythe same kineti
 (e.g., di�usion) equation, the onlydi�eren
e being in the sign of time. This relatesthe time-symmetri
 dynami
al equations to the time-antisymmetri
 kineti
 (but not statisti
al!) equations.The prin
ipal di�eren
e between the two, some timesoverlooked, is that the kineti
 equations are widely un-205
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Fig. 1. Boltzmann's di�usive �u
tuations in model (1.2) with the parameter C = 15: the square of the phase spa
e areao

upied by N independent traje
tories (�parti
les�) vs. the time (the number of map iterations t� ti) 
ounted from theinstant ti of �u
tuation maximum, or of minimal �fl, for ea
h of the Nfl superimposed big �u
tuations separated by theaverage period P = h(ti � ti�1)i. Straight lines show the expe
ted dependen
e for anti-di�usion and di�usion (see text).Two slightly di�erent 
urves 
orrespond to N = 1 (grey) and N = 4 (bla
k) with �fl = 0.0001 and 0.1; Nfl = 3352 and2851; P = 29863 and 35110, respe
tivelyderstood as des
ribing the relaxation only, i.e., the in-
rease of the entropy in a 
losed system, whereas theya
tually do so for the rise of the big �u
tuations as well,i.e., for the entropy de
rease. All this was qualitativelyknown already to Boltzmann [2℄. The �rst simple ex-ample of a symmetri
 big �u
tuation was 
onsidered byS
hrödinger [3℄. A rigorous mathemati
al theorem forthe di�usive (slow) kineti
s was proved by Kolmogorovin 1937 in the paper entitled �Zur Umkehrbarkeit derstatistis
hen Naturgesetze� (�Con
erning reversibilityof statisti
al laws in nature�) [4℄ (see also [5℄). Re-grettably, the prin
ipal Kolmogorov theorem still re-mains unknown to the parti
ipants of the heated debateover �irreversibility� (see, e.g., �Round Table on Irre-versibility� in [6℄) and to the physi
ists a
tually study-ing su
h big �u
tuations [1℄.By now, there exists the well developed ergodi
 the-ory of dynami
al systems (see, e.g., [7℄). In parti
ular,it proves that the relaxation (
orrelation de
ay, or mix-ing) pro
eeds eventually in both dire
tions of time foralmost any initial 
onditions of a 
haoti
 dynami
alsystem. However, the relaxation must not be alwaysmonotoni
, whi
h simply means a big �u
tuation onthe way, depending on the initial 
onditions. To elim-inate this apparently 
onfusing (to many) �freedom�,one 
an take a di�erent approa
h to the problem: tostart at arbitrary initial 
onditions (most likely 
orre-

sponding to ES) and see the big �u
tuation dynami
sand statisti
s.At this point, it is essential to re
all that the sys-tems with ES allow for very simple models in boththe theoreti
al analysis and numeri
al experiments (ofwhi
h the latter are even more important). In this pa-per, we use one of the most simple and popular modelsspe
i�ed by the so-
alled Arnold 
at map (see [8, 9℄)p = p+ x mod 1;x = x+ p mod 1; (1:1)that is a linear 
anoni
al map on the unit torus. It hasno parameters and is 
haoti
 and even ergodi
. Therate of the lo
al exponential instability, the Lyapunovexponent � = ln�3=2 +p5=2� = 0:96;implies a fast (ballisti
) kineti
s with the relaxationtime tr � 1=� � 1.A minor modi�
ation of this map,p = p+ x� 12 mod C;x = x+ p mod 1; (1:2)where C � 1 is the 
ir
umferen
e of the phase spa
etorus admits a slow (di�usive) relaxation withtr � C2=4Dp;206



ÆÝÒÔ, òîì 119, âûï. 1, 2001 Big entropy �u
tuations : : :where Dp = 1=12 is the di�usion rate in p. A 
onve-nient 
hara
teristi
 of the big �u
tuation size is the rmsphase spa
e volume (area) �(t) = �p ��x for a group ofN traje
tories. In the ergodi
 motion at equilibrium,we have � = �0 = C=12:In what follows, we use the dimensionless measure~� = �=�0 ! �and omit the tilde.The entropy S 
an be de�ned by the relationS(t) = ln �(t); (1:3)with S = 0 at equilibrium. This de�nition is not iden-ti
al to the standard one (via the (
oarse-grained) dis-tribution fun
tion) but it is quite 
lose to the latter if�� 1, i.e., for a big �u
tuation, whi
h is what we needin the problem under 
onsideration. A great advantageof de�nition (1.3) is that the 
omputation of S does notrequire very many traje
tories as does the distributionfun
tion. In fa
t, even a single traje
tory is su�
ient!A �nite number of traje
tories used for 
al
ulatingthe phase-spa
e volume � is a sort of the 
oarse-graineddistribution, as required in relation (1.3), but with afree bin size that 
an be arbitrarily small. The detailedstudy of big �u
tuations in this 
lass of ES models willbe published elsewhere [10℄. Here, we brie�y 
onsiderthe example shown in Fig. 1.The data were obtained from running 4 and only 1(!) traje
tories for a su�
iently long time in order to
olle
t su�
iently many big �u
tuations; they are su-perimposed in Fig. 1 to 
lean up the regular big �u
tua-tion from a �podlike trash� of stationary �u
tuations.The size of big �u
tuation 
hosen was approximately�xed by the 
ondition �(t) � �fl. In spite of the in-equality, the mean values h�(ti)i = 0:000033 and 0.069are 
lose (by the order of magnitude) to the �xed �flvalues in Fig. 1. We note that for a slow di�usive ki-neti
s, we have exp (2S) / �2p / hp2iand �x remains 
onstant.The probability of big �u
tuation 
an be 
hara
ter-ized by the average period between them, for whi
h avery simple estimateP � 3��Nfl � 3 exp (�NSfl) (1:4)is in a good agreement with data in Fig. 1 (upon in-
luding the empiri
al fa
tor 3).

In the example presented here, the position of allbig �u
tuations in the phase spa
e is �xed as xfl = 1=2and pfl = C=2. If one lifts this restri
tion, the proba-bility of big �u
tuation in
reases by the fa
tor 1=�fl,or by de
reasing N by one (N ! N � 1), due to anarbitrary position of big �u
tuation in phase spa
e. Inthe former 
ase, a 
hain of big �u
tuations is pre
iselythe well known Poin
aré re
urren
e. It is less knownthat the latter are a parti
ular and spe
i�
 
ase of big�u
tuations, and the re
urren
e of a traje
tory in a
haoti
 system is determined by the kineti
s of the sys-tem. Re
urren
e of several (N > 1) traje
tories 
analso be interpreted as the re
urren
e of a single traje
-tory in N un
oupled freedoms.As 
an be seen from Fig. 1, irregular deviations froma regular big �u
tuation are rapidly de
reasing withthe entropy S ! Sfl. It may seem that the motionbe
omes regular near big �u
tuation maximum, hen
ethe term �optimal �u
tuational path� [1℄. In fa
t, themotion remains di�usive down to the dynami
al s
alethat is j�pj � 1 independently of the parameter C inmodel (1.2).Big �u
tuations are not only perfe
tly regular bythemselves but also surprisingly stable against any per-turbations, both regular and 
haoti
. Moreover, theperturbations do not need to be small. At �rst glan
e,this looks very strange in a 
haoti
, highly unstable dy-nami
s. The resolution of this apparent paradox is thatthe dynami
al instability of motion a�e
ts the big �u
-tuation time instant ti only. The big �u
tuation shapeis determined by the kineti
s that 
an have an arbitraryme
hanism, ranging from a purely dynami
al one, as inmodel (1.2), to a 
ompletely noisy (sto
hasti
, 
f. Fig. 1above and Fig. 4 in [1℄). As a matter of fa
t, the funda-mental Kolmogorov theorem [4℄ is spe
i�
ally related tothe latter 
ase but remains valid in a mu
h more gen-eral situation. Surprising stability of big �u
tuationsis similar to the full (less known) robustness propertyof the Anosov (strongly 
haoti
) systems [11℄, whosetraje
tories are only slightly deformed under a smallperturbation (for dis
ussion, see [12℄). From a di�erentperspe
tive, this stability 
an be interpreted as a fun-damental property of the �ma
ros
opi
� des
ription ofbig �u
tuations. In su
h a simple few-freedom systemsimilar to (1.2), the term �ma
ros
opi
� refers to theaveraged quantities �, �, S, and similar ones. However,a somewhat 
onfusing result is that the �ma
ros
opi
�stability 
omprises not only the relaxation of big �u
-tuations but also its rise, be
ause both parts of big�u
tuation always appear together. This may lead toanother misunderstanding that the �u
tuation and re-laxation probabilities are the same, whi
h is 
ertainly207



B. V. Chirikov ÆÝÒÔ, òîì 119, âûï. 1, 2001wrong. The point is that the ratio of both (unequal!)probabilities is determined by the 
rossover parameterR
ro(Sfl) = Ptr � 3 exp (�NSfl)C2 � 1; (1:5)where the latter expression refers to model (1.2) andthe inequality determines the region of big �u
tuationwhere its waiting time is mu
h longer than that of itsimmediate relaxation from a nonequilibrium �ma
ro-s
opi
� state (for further dis
ussion, see Se
. 6 in whatfollows).2. A NEW CLASS OF DYNAMICAL MODELS:WHAT ARE THEY FOR?A relatively simple pi
ture of big �u
tuations insystems with the equilibrium steady state is well un-derstood by now, although not yet well known. ToBoltzmann, this pi
ture was the basis of his �u
tuationhypothesis for our Universe. Again, as is well under-stood by now, this hypothesis is entirely in
ompatiblewith the present stru
ture of the Universe, be
ause itwould immediately imply the notorious �heat death�(see, e.g., [13℄). For this reason, one may even termsu
h systems the heat death models. Nevertheless, they
an be and a
tually are widely used in the des
riptionand study of lo
al statisti
al pro
esses in thermody-nami
ally 
losed systems. The latter term means theabsen
e of any heat ex
hange with the environment.We note, however, that for the exponentially unsta-ble motion, the only dynami
ally 
losed system is thewhole Universe. In parti
ular, this ex
ludes the hypo-theti
al �velo
ity reversal�, whi
h is still popular in de-bates over �irreversibility� o

urring sin
e Los
hmidt(for dis
ussion, see, e.g., [12, 14℄ and Se
. 6 in whatfollows).In any event, dynami
al models with ES do not tellus the whole story of either the Universe or even a typ-i
al ma
ros
opi
 pro
ess therein. The prin
ipal solu-tion of this problem, unknown to Boltzmann, is quite
lear by now, namely, the �equilibrium-free� modelsare wanted. Various 
lasses of su
h models are in-tensively studied today. Moreover, the 
elebrated 
os-mi
 mi
rowave ba
kground tells us that our Universewas born already in the state of a heat death; for-tunately to us, however, it be
ame unstable be
auseof the well-known Jeans gravitational instability [15℄.This resulted in developing a ri
h variety of 
olle
tivepro
esses, or synergeti
s, the term re
ently introdu
edor, better to say, put in use by Haken [16℄. The mostimportant pe
uliarity of this 
olle
tive instability is in

that the total overall relaxation (to somewhere?) withever in
reasing total entropy is a

ompanied by an alsoin
reasing phase spa
e inhomogeneity of the system,parti
ularly in temperature. In other words, the wholesystem as well as its lo
al parts be
ome more and morenonequilibrium to the extent of the birth of a se
ondarydynami
s that 
an be, and sometimes is, as perfe
t as,for example, the 
elestial me
hani
s (for general dis
us-sion see, e.g., [17, 18, 12℄).We stress that all these inhomogeneous nonequilib-rium stru
tures are not big �u
tuations as in ES sys-tems, but are a result of regular 
olle
tive instability,and therefore, they are immediately formed under a
ertain 
ondition. In addition, they are typi
ally dis-sipative stru
tures in Prigogine's terms [19℄ be
ause ofthe energy and entropy ex
hange with the in�nite en-vironment. The latter is the most important featureof su
h pro
esses, and at the same time the main dif-�
ulty in studying the dynami
s of those models boththeoreti
ally and in numeri
al experiments, whi
h areso mu
h simpler for the ES systems. Usually, the in-vestigations in this �eld are based upon statisti
al lawsomitting the underlying dynami
s from the beginning.Re
ently, however, a new 
lass of dynami
al modelshas been developed by Evans, Hoover, Morriss, Nosé,and others [20, 21℄. Some resear
hers still hope thatthese new models will help to resolve the �paradoxof irreversibility�. A more serious reason for studyingthese models is that they allow one to relatively sim-ply in
lude the in�nitely dimensional �thermostat�, or�heat bath� into a model with a few degrees of free-dom. This greatly fa
ilitates both numeri
al experi-ments and the theoreti
al analysis. In parti
ular, thederivation of Ohm's law within this model was pre-sented in [22℄, thereby solving �one of the outstandingproblems of modern physi
s� [23℄ (for this pe
uliar dy-nami
al model only!). The authors of [22℄ 
laim that�At present, no general statisti
al me
hani
al theory
an predi
t whi
h mi
ros
opi
 dynami
s will yield su
htransport laws...� In our opinion, it would be more 
or-re
t to inquire whi
h of many relevant models 
ould betreated theoreti
ally, and espe
ially in a rigorous wayas was a
tually done in [22℄.The zest of new models is the so-
alled Gauss ther-mostat, or heat bath (GHB). In the simplest 
ase, themotion equations of a parti
le in this bath are [20�22℄:dpdt = F� �p; � = F � pp2 ; (2:1)where F is a given external for
e and � stands for the�fri
tion 
oe�
ient�. The �rst pe
uliarity of this �fri
-tion� is in its expli
it time reversibility 
ontrary to the208
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tuations : : :�standard fri
tion�. The pri
e for reversibility is thestri
t 
onne
tion between the two for
es, the fri
tionand the external for
e F. Moreover, and this is mostimportant, the 
onne
tion is su
h thatjpj2 = p20 = 
onstis the exa
t motion invariant,ddt jpj22 = p � dpdt = p � F�F � p: (2:2)The �rst of the two identi
al terms represents the me-
hani
al work of the external regular for
e F, the springof the external energy, and the se
ond one des
ribesthe sink of energy into GHB. Thus, asymptoti
ally ast!1, the model des
ribes a steady state only. This isthe main restri
tion of su
h models. The parti
le itselfdoes only immediately transfer the energy without any
hange of its own one be
ause of the above 
onstraintjpj2 = 
onst:For one degree of freedom, the latter would lead to thetrivial solution p = 
onst. Therefore, at least two de-grees of freedom are required to allow for a variationof the ve
tor p in spite of the 
onstraint. For manyintera
ting parti
les, the 
onstraintX jpij2 = 
onstis less stringent, hen
e the referen
e to the Gauss �Prin-
iple of Least Constraint� [24℄ for deriving the re-versible fri
tion in Eq. (2.1). In the present paper, thesimplest 
ase of N nonitera
ting parti
les with two de-grees of freedom is 
onsidered only as in [22℄.The next important point is a spe
ial form of theenergy in GHB, whi
h is the heat. In true heat bath itis given by the 
haoti
 motion of in�nitely many par-ti
les. This is not the 
ase in GHB, and one needs anadditional for
e in Eq. (2.1) to make the parti
le motion
haoti
, at the same time maintaining the 
onstraint.Whether su
h an external to GHB 
haos is equivalentto the 
haos inside the true heat bath, at least statisti-
ally, remains an open question, but it seems plausiblefrom the physi
al viewpoint [22℄ (see also Ref. [25℄).If so, the model des
ribes the dire
t 
onversion of me-
hani
al work into heat Q, and hen
e the permanententropy produ
tion. The 
al
ulation of the latter is nota trivial question (for dis
ussion, see [20�22℄). In ouropinion, the simplest way is to use the thermodynami
relation dSdt = 1T dQdt ; dQdt = p �F; (2:3)

where T = p20 is the e�e
tive temperature [22℄. Be
ausethe input energy is of zero entropy (the formal temper-ature Tin = 1), relation (2.3) determines the entropyprodu
tion in the whole system (parti
les + GHB). Wenote that in Eq. (2.3), as well as throughout this paper,the entropy S is understood to be determined in thestandard way via a 
oarse-grained distribution fun
-tion.On the other hand, the usual interpretation of GHBmodels is quite di�erent [20�22℄. Namely, the entropyprodu
tion in Eq. (2.3) is expressed via the Lyapunovexponents �i of the parti
le motion,dSdt � dSGHBdt � �dSpdt = �Xi �i; (2:4)where SGHB and Sp are the respe
tive entropy of GHBand of the ensemble of parti
les. An unpleasant featureof this relation is in that the latter equality holds for theGibbs entropy only, whi
h is 
onserved in the Hamil-tonian system modeled by the GHB. As a result, theentropy of the total system (parti
les + GHB) remains
onstant (the se
ond equality in Eq. (2.4)), whi
h liter-ally means no entropy produ
tion at all! Even thoughthis interpretation 
an be formally justi�ed, it seemsto us to be physi
ally misleading. In our opinion, theappli
ation of Lyapunov exponents would be better re-stri
ted to 
hara
terization of the phase-spa
e fra
talmi
rostru
ture of the parti
le motion (whi
h is reallyinteresting), retaining the universal 
oarse-grained def-inition of the entropy (
f. ES models in Se
. 1).As mentioned above, the GHB models des
ribe thenonequilibrium steady states only. Moreover, any 
ol-le
tive pro
esses of intera
ting parti
les are also ex-
luded, among them those responsible for the very ex-isten
e of regular nonequilibrium pro
esses, in parti
-ular, of the �eld F in model (2.1). In a more 
om-pli
ated Nosé�Hoover version of GHB models, thesesevere restri
tions 
an be partly, but not 
ompletely,lifted. Whether this is su�
ient for the in
lusion of
olle
tive pro
esses remains, to our knowledge, an openquestion.In any event, even the simplest GHB model like(2.1) represents a qualitatively di�erent type of statis-ti
al behavior 
ompared to that in the ES models. Theorigin of this prin
ipal di�eren
e is twofold: (i) the ex-ternal �inexhaustible� spring of energy, if only intro-du
ed �by hand�, and (ii) a heat sink of in�nite 
apa
-ity that ex
ludes any equilibrium.In 
on
lusion of this se
tion, we pre
isely formulatethe model 
onsidered in the main part of the paper.Choosing the model for numeri
al experiments, we fol-low the �golden rule�: 
onstru
t the model as simple as14 ÆÝÒÔ, âûï. 1 209



B. V. Chirikov ÆÝÒÔ, òîì 119, âûï. 1, 2001possible but not simpler. In the problem under 
onsid-eration, the models already studied are mainly basedon the well-known and well-studied �Lorentz gas� thatis a parti
le (or many parti
les) moving through a setof �xed s
atterers. A new element is a 
onstant �elda

elerating the parti
les. A
tually, the Lorentz modelbe
omes the famous Galton Board [26℄, the very �rstmodel of 
haoti
 motion, whi
h was invented by Galtonfor another purpose, and whi
h has not been studied indetail until re
ently [20�22℄. Our model is still simpler,and is spe
i�ed by the two maps: (i) the 2D Arnold
at map (1.1) to 
haotize parti
les, and (ii) the 1Dmap version of Eq. (2.1),p1 = p1 + F � 4Fp21; (2:5)where p1 = p � p0 and the parameter in Eq. (2.1) isp0 = 1=2. For jF j < 1=4, the momentum p remainswithin the unit interval (0 � p < 1) as in map (1.1).The prin
ipal relation (2.3) for the entropy redu
es alsoto the additional 1D map,S = S + (p1 + F )2 � p21 = S + 2p1F + F 2; (2:6)where the entropy unit is 
hanged by the fa
tor 2 forsimpli
ity. Be
ause S is the entropy produ
ed in GHB,the latter map impli
itly in
ludes also the motion inthe se
ond degree of freedom for ea
h of the noninter-a
ting parti
les be
ause of the Gauss 
onstraint thatguarantes the immediate transfer of energy to GHB.In numeri
al experiments 
onsidered below, an ar-bitrary number N of nonintera
ting parti
les (traje
-tories) with random initial 
onditions was used. In this
ase, the Gauss 
onstraint remains un
hanged, and allthe traje
tories are run simultaneously.3. NONMONOTONIC ENTROPYPRODUCTION: LOCAL FLUCTUATIONSStatisti
al properties of the entropy growth in themodel 
hosen are determined by the �rst two momentsof the p1 distribution fun
tion. In the limit as t ! 1and/or N ! 1, they are given by (per iteration andper traje
tory) hp1i = 0; hp21i = 112 ; (3:1)where averaging is done over both the motion time t(now the number of the iterations of the map) and Nnonintera
ting parti
les (parti
le traje
tories). In 
om-bination with Eq. (2.6), the �rst moment in Eq. (3.1)implies the linear growth of the average entropy (pertraje
tory), hS(t)i = t F 2: (3:2)

10�610�510�410�310�210�1100
S�

(2�)1=2f(S�)
�6 �4 �2 0 2 4 6Fig. 2. Distribution fun
tion f(S�) of lo
al �u
tua-tions in the nonequilibrium steady state with F = 0.01.Dashed line is the standard Gauss law (3.5); pointsrepresent the results of numeri
al experiments withN = 1, and t1 = 10, 25, 100In this se
tion, the statisti
s of lo
al �u
tuations is
onsidered. A similar problem was studied in [27℄ fora more realisti
 model with many intera
ting parti
les.In the present model, the lo
al �u
tuation is de�nedas follows. The total motion time tf is subdivided intomany segments of equal duration t1. On ea
h segmenti = 1; : : : ; tf=t1, the total 
hange of the entropy Sifor all N traje
tories is 
al
ulated using Eq. (2.6) andrepresented as the dimensionless random variableS� = Si � hSii� = Si � �� ; (3:3)where hSii = Nt1F 2 = �(see Eq. (3.2)), and the rms �u
tuation � is given by asimple relation (see Eqs. (2.6) and (3.1))�2 = �3 : (3:4)This relation negle
ts all the 
orrelations, whi
h impliesthe standard Gaussian distributionG(S�) = exp ��S2�=2�p2� : (3:5)An example of the a
tual distribution fun
tion isshown in Fig. 2 for a single traje
tory with the segmentlength t1 = 10; 25; 100 iterations, and the number ofsegments up to 107. The 
ap of the distribution is 
loseto the standard Gauss form (3.5) (see also Fig. 3) butboth tails 
learly show a 
onsiderable enhan
ement of�u
tuations depending on both t1 and N (in other ex-amples, see below).210
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101

0 2 4 6 8 10
f(S�)=G(S�)

S2�=2Fig. 3. The ratio of the distribution f(S�) to thestandard Gauss law (3.5) (broken lines). The valu-es of the parameter N=t1 from top to bottom are:1/5 (S2�=2 < 7.5, see text); 1/10; 1/100; 10/10, and100/1. The oblique dotted straight line demonstratesthe Gaussian shape of the tailsThe shape of the tails is also Gaussian but the widthis the larger the smaller t1 and N . This is espe
ially
lear in a di�erent representation of the data in Fig. 3,where the ratio of the empiri
al distribution to the stan-dard Gauss one is plotted as a fun
tion of the Gaussianvariable SG = S2�=2. Ea
h run with parti
ular val-ues of N and t1 is represented by two slightly di�erentlines for both signs of S�. In addition to �u
tuations,the di�eren
e apparently involves some asymmetry ofthe distribution with respe
t to S� = 0. The originof this asymmetry is not 
ompletely 
lear as yet. Asharp 
rossover between the two Gaussian distributionsat SG � 3 is nearly independent of the parameters Nand t1, as is the top distribution below 
rossover. Onthe 
ontrary, the tail distribution essentially dependson both parameters in a rather 
ompli
ated way. Theorigin of the di�eren
e between the two Gaussian dis-tributions apparently lies in dynami
al 
orrelations. Inspite of a fast de
ay (see Se
. 1), the 
orrelation inArnold map (1.1) does a�e
t somehow the big entropy�u
tuations ex
ept in the limiting 
ase N � t1 (twolower lines in Fig. 3) where the 
orrelations vanish be-
ause of random and statisti
ally independent initial
onditions of many traje
tories.For any �xed parameters N and t1, the �u
tuationsare bounded (F � 1),jS� j < p3Nt1; (3:6)whi
h follows from Eqs. (2.6), (3.3), and (3.4). This is
learly seen in Fig. 3 for minimum Nt1 = 5. If only

the for
e F is �xed instead, the relative entropy �u
-tuations SihSii � � 1F (3:7)are also restri
ted but 
an be arbitrarily large for smallF and, moreover, 
an have either sign. This implies anonmonotoni
 growth of the entropy at the expense ofthe segments with Si < 0.The probability (in the number of traje
tory seg-ments) of extremely large �u
tuations, Eqs. (3.6) and(3.7), is exponentially small (see Eq. (3.5) and below).However, the probability of the �u
tuations with a ne-gative entropy 
hange (Si < 0) (without time reversal!)is generally not small at all, rea
hing 50% as � ! 0(for arbitrary N and t1). In prin
iple, this is known, atleast for the systems with an equilibrium steady state(Se
. 1). Nevertheless, the �rst, to our knowledge, di-re
t observation of this phenomenon in a nonequilib-rium steady state [27℄ has so mu
h staggered the au-thors that they even entitled the paper �Probabilityof Se
ond Law violations in shearing steady state�. Infa
t, this is simply a sort of pe
uliar �u
tuations thatare big not so mu
h with respe
t to their size but pri-marily to their probability (
f. dis
ussion in Se
. 1).However, the important point is that all those negativeentropy �u
tuations (transforming the heat into work)are randomly s
attered among the others of positive en-tropy, and for making any use of the former a Maxwell'sdemon is required who is known by now to be well ina �pea
eful 
oexisten
e� with the Se
ond Law.A Gaussian distribution of the entropy �u
tuationsshifted with respe
t to Si = 0 in a nonequilibriumsteady state �rst observed in [27℄ was also theoreti-
ally explained there in terms of the Lyapunov expo-nents (see Eq. (8) in [27℄). This was the �rst form ofwhat is now 
alled the �Flu
tuation Theorem� (see,e.g., D. Ruelle in [6, p. 540℄). In our opinion, a morephysi
al representation of this theorem would be theratio of the two moments in Eq. (3.4). In any rep-resentation, the theorem essentially depends on boththe underlying dynami
s and the type of �u
tuations
onsidered (see Se
. 4 and 5).Another interesting limit is t1 ! tf ! 1 (a singlesegment) [27℄ with � ! 0, whi
h is possible if F ! 0too. In this 
ase, the probability of zero entropy 
hangein the entire motion also approa
hes 50%. However, theprobability of any negative entropy �u
tuation vanishes(see Eq. (3.3)). An interesting question is whether thereexists some intermediate region of parameters wherethe latter probability remains �nite. In other words,are the Poin
aré re
urren
es to negative entropy 
hangeSi < 0 possible in a nonequilibrium steady state as they211 14*
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. 1)? The answer to thisquestion is given by the statisti
s of the global �u
tua-tions. 4. NONMONOTONIC ENTROPYPRODUCTION: GLOBAL FLUCTUATIONSThe de�nition of the global �u
tuations is similarto, yet essentially di�erent from that of the lo
al �u
tu-ations in the previous Se
tion. Namely (
f. Eqs. (3.3)and (3.4)), the prin
ipal dimensionless random variableS�(t) now expli
itly depends on time,S�(t) = S(t)� hS(t)i� = S(t)� �� ; (4:1)where S(t) is 
al
ulated from Eq. (2.6), S(0) = 0,hS(t)i = NtF 2 � � (see Eq. (3.2)), and the rms �u
tu-ation � is given by the same relation (3.4) with a newtime variable � , �2 = �3 : (4:2)In other words, the global �u
tuations are des
ribed asa di�usion with the 
onstant rateD = �2� = 13 : (4:3)The global �u
tuations 
an also be viewed as a 
on-tinuous time-dependent deviation of the entropy fromits average growth unlike the lo
al �u
tuations in theensemble of �xed traje
tory segments (Se
. 3). Now,the primary goal is to �nd whether the entropy 
anrea
h negative values S(t) < 0 as t ! 1. As was dis-
ussed in the previous Se
tion, this is possible at some�nite segments of the traje
tory with the probabilityrapidly de
reasing (but always �nite) as the segmentlength grows.In Fig. 4, three examples of global �u
tuationsare shown in a slightly di�erent representation (
f.Eq. (4.1)) Sg(�) = S(�)� � 1 (4:4)
hosen in order to always keep the most important bor-der S(�) = 0 in front of one's eyes (with Sg(�) = �1,the horizontal line in Fig. 4). Eventually, all traje
to-ries 
onverge to the average entropy growth (the hori-zontal line Sg = 0 in Fig. 4). During the initial stage ofdi�usion, the probability of negative entropy is roughly50%, similar to the lo
al �u
tuations (Se
. 3). However,the situation 
ardinally 
hanges at � & 1, with all thetraje
tories moving away from the border S = 0. More-over, the relative distan
e to the border with respe
tto the �u
tuation size in
reases inde�nitely.

�1�20
12

�S < 0
Sg
10�3 10�1 100 101 10210�2Fig. 4. Time dependen
e of the redu
ed global �u
tu-ations Sg(�), Eq. (4.4): three sets by N = 10 traje
to-ries with di�erent initial 
onditions but the same initialentropy S(0) = 0 and F = 0:01. Horizontal solid lineSg = 0 represents the average entropy growth. Thelower solid line S = 0 is the border between positiveand negative entropy. A pair of dashed 
urves 
orre-sponds to the standard rms �u
tuation �, Eq. (4.2),and two solid 
urves represent the maximum di�usion�u
tuations �b, Eq. (4.5)The �u
tuation size is 
hara
terized by two param-eters. The �rst one is the well-known rms dispersion �,Eq. (4.2) (two dashed 
urves in Fig. 4), whi
h estimatesthe �u
tuation distribution width. In the problem un-der 
onsideration, the most important is the se
ond
hara
teristi
, �b (two solid 
urves in Fig. 4), whi
hsets the maximum size (the upper bound) of the dif-fusion �u
tuations, and therefore ensures against there
urren
e into the region S < 0 in a su�
iently longtime. The ratio of the two sizesR�(�) = �b� =p2 ln ln (A�) (4:5)is given by the famous Khin
hin law of iterated loga-rithm [28℄.We emphasize again that the prin
ipal pe
uliarityand importan
e of the border �b is that it 
hara
ter-izes a sharp drop of the �u
tuation probability down tozero (in the limit as � ! 1). In other words, almostany traje
tory approa
hes in�nitely many times arbi-trarily 
lose to this border from below, but the numberof border 
rossings remains �nite. In Fig. 4, this 
orre-sponds to the eternal 
on�nement of traje
tories in thegap between the two solid 
urves.This surprising behavior of random traje
tories iswell known to mathemati
ians but, apparently, not tophysi
ists. In Fig. 5 several examples of the �u
tuation212
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0 0.4 0.8 1.2 1.6 2.0100102104106108
jS�b jFig. 5. Histogram of the global �u
tuations in the num-ber of entries per bin of the width 0.02: F = 0.01;N = 100; R� � 3. From bottom to top in the left-most part of �gure: � = 105 (dashed line); 106 (twosolid lines, di�erent initial 
onditions); 107 (
ir
les); thetotal motion time t = 100 � iterations. For 
ompari-son, the smooth dashed line shows unbounded Gaussiandistribution (4.7) for � = 106distributions are shown for illustration of that unpene-trable border.In the Khin
hin theorem, the fa
tor A in Eq. (4.5)is irrelevant and is set to A = 1. This is be
ause thetheorem 
an be proved in the formal limit as � ! 1,only as most theorems in the probability theory (as wellas in the ergodi
 theory, by the way). However, in nu-meri
al experiments on a �nite time, even if arbitrarilylarge, one needs a 
orre
tion to the limit expression.In addition, it would be desirable to look at the bor-der over the whole motion down to the dynami
al times
ale determined by the 
orrelation de
ay. In the modelunder 
onsideration, it is of the order of the relaxationtime tr � 1 (see Se
. 1). The additional parameter A
an be �xed by the 
ondition�b(�1) = �(�1); �1 = NF 2; (4:6)for minimal t = 1 on the dynami
al time s
ale of thedi�usion. It then follows from Eq. (4.5) thatA�1 = 5:2;whi
h is used in Figs. 4 and 5. The 
ondition assumedis, of 
ourse, somewhat arbitrary but the dependen
eon A remains extremely weak provided �1 � 1.The histogram in Fig. 5 is given in the absolutenumbers of traje
tory entries into bins in order tographi
ally demonstrate a negligible number of ex
ep-tional 
rossings of the border. The exa
t formulation of

the Khin
hin theorem admits a �nite number of 
ros-sings in in�nite time. A
tually, all those �ex
eptions�are 
on
entrated within a relatively short initial timeinterval � � 1 (for the a

epted A value, see Fig. 4).The distribution of entropy �u
tuations betweenthe borders is 
hara
terized by its own big �u
tuationsdue to a large time interval (� �) required for 
rossingthe distribution region (see Eq. (4.3)). The spe
ta
u-lar pre
ipi
e of many orders of magnitude is reminis
entof a di�usion �sho
k wave� 
utting away the Gaussiantail. The unbounded Gauss 
urve is also shown in Fig. 5by the smooth dashed line.In terms of the variable S�b = S�=R�, the stan-dard Gauss law is no longer a stationary distribution(
f. Eq. (3.5)),p2�G(S�b ) = R�(�) exp��S2�b2 R2�(�)�: (4:7)Both the probability density at the border jS�b j = 1and the integral probability beyond that are slowly de-
reasing / 1= ln (A�). The �sho
k wave� de
ays butstill 
ontinues to �hold ba
k� the traje
tories.Thus, unlike unrestri
ted entropy �u
tuations outof the equilibrium steady state (Se
. 1), the stri
tly re-stri
ted �u
tuations in the nonequilibrium steady stateare well separated, in a short time, from the negati-ve-entropy region, separated in a large ex
ess thatgrows in time. In other words, the Poin
aré re
urren
esto any negative entropy qui
kly and 
ompletely disap-pear leaving the system with ever in
reasing, even ifnonmonotoni
ally, entropy.As the nonequlibrium steady state involves a heatbath of the in�nite phase-spa
e volume (or its ni
e sub-stitute, the Gauss heat bath), the Poin
aré re
urren
etheorem is not appli
able. However, the �anti-re
ur-ren
e� theorem is not generally true either. For exam-ple, the entropy repeatedly 
rosses the line S = � ofthe average growth in spite of the in�nite heat bath,yet it does not do so for the line S = 0 of the initialentropy.We note that the new ratio �2b=hS(t)i (
f. Eq. (3.4))represents another �Flu
tuation Theorem� as 
om-pared to the known one mentioned in Se
. 3.5. BIG ENTROPY FLUCTUATIONS INCRITICAL DYNAMICSThe stri
t restri
tion of the global entropy �u
tu-ations in a nonequilibrium steady state 
onsidered inthe previous Se
tion is a result of the �normal�, Gaus-sian, di�usion of the entropy with a 
onstant rate (4.3)and with the surprising unpenetrable border (4.5). Inturn, this is related to a parti
ular underlying dynami
s213
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al properties.We note that the border (4.5) has a statisti
al naturebe
ause it is mu
h less than the maximum dynami
al�u
tuation (3.7).However, it is well known by now that the homo-geneous di�usion 
an in general be �abnormal� in thesense that the di�usion rate depends on time,D(t) / t
D ; �1 � 
D � 1; (5:1)where 
D is the so-
alled 
riti
al di�usion exponent.The term �
riti
al� refers to a parti
ular 
lass of su
hsystems with a very intri
ate and spe
i�
 stru
ture ofthe phase spa
e (see, e.g., [29℄ and referen
es therein).The �normal� di�usion 
orresponds to 
D = 0, whilea positive 
D > 0 represents a superfast di�usion withthe upper bound 
D = +1, the maximum di�usion ratepossible for a homogeneous di�usion. The latter is, of
ourse, the most interesting 
ase for the problem under
onsideration here. A superslow di�usion for a nega-tive 
D < 0 is also possible with the limit 
D = �1,whi
h means the absen
e of any di�usion for 
D < �1.An interesting example of a superslow di�usion with
D = �1=2 was 
onsidered in [30℄. Besides a parti
u-lar appli
ation to the plasma 
on�nement in magneti
�eld, the example is of a spe
ial interest be
ause thisslow di�usion is the result of the time-reversible di�u-sion of parti
les in a 
haoti
 magneti
 �eld. For otherexamples and various dis
ussions of abnormal di�usion,see [31℄.A number of dynami
al models exhibiting the su-perfast di�usion are known in
luding the limiting 
ase
D = 1 [29, 32℄. Interestingly, a simple simulation ofthe abnormal di�usion is possible by a minor modi�
a-tion of the model under 
onsideration. It 
on
erns theadditional 1D map (2.6) only, whi
h now be
omesS = S + ( 2p1F + F 2)ts; (5:2)where the new variable ts is de�ned by a simple relationts = s�
s ; s = 1� 2jp1j; (5:3)with s being the distan
e from any of the two bordersp1 = �0:5 homogeneously distributed within the inter-val (0 < s < 1). The quantity ts > 1 des
ribes thesti
king of a traje
tory in the �
riti
al stru
ture� 
on-
entrated near s = 0. A
tually, the model does notinvolve this stru
ture, however its e�e
t is simulatedby the �sti
king time� ts that enhan
es both the �u
-tuations and the average entropy (5.2). In a sense, thissimulation is similar in spirit to that of the Gauss heatbath. All the properties of that sti
king are des
ribedby a single parameter 
s, the 
riti
al sti
king exponent(0 � 
s � 1). In parti
ular, it is dire
tly related to thedi�usion exponent 
D (see below).

The statisti
al properties of the abnormal di�usionin this model are determined by the �rst two momentsof the ts distribution, whi
h 
an be dire
tly evaluatedfrom the above relations as follows. For the �rst mo-ment, we havehtsi = 1Z0 ts(s)ds = 11� 
s ; 
s < 1; (5:4a)and htsi � ln 1s1 � ln t; 
s = 1: (5:4b)In the latter 
ase the integral diverges and is deter-mined by the minimum s � s1 � 1=t rea
hed overtime t that is the total motion time in the iterations ofthe map. It must be distinguished from the �physi
altime� in a true model of the 
riti
al stru
ture,et � thtsi �8><>: t1� 
s ; 
s < 1;t ln t ; 
s = 1: (5:5)Similarly the se
ond moment is given by three relations:ht2si = 11� 2
s ; 
s < 12 ; (5:6a)for the normal di�usion,ht2si � ln 1s1 � ln t; 
s = 12 ; (5:6b)in the 
riti
al 
ase, andht2si � s1�2
s12
s � 1 � t2
s�12
s � 1 ; 12 < 
s � 1; (5:6
)for the superfast di�usion.The average entropy produ
tion is found fromEq. (5.2) ashS(t)i = NF 2thtsi = NF 2et � �; (5:7)with the rede�ned time variable � (
f. Eq. (3.3)). Inthis Se
tion, we only 
onsider the simplest 
ase of asingle traje
tory (N = 1).Evaluating the superfast di�usion requires a slightlydi�erent averaging h(2p1ts)2i (see Eq. (5.2)). However,it is easily veri�ed that asymptoti
ally as � ! 1, thedi�eren
e with respe
t to Eq. (5.6
) vanishes, and onearrives at the following estimate for the 
riti
al rmsdispersion �
r:�2
r(�)B2 = etD(et) = F 2ht2sit == (1� 
s)2
s2
s � 1 �2
sF 4
s�2 (5.8a)if 1=2 < 
s < 1 (5.6
), and214
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r(�)B = �F ln (�=F 2) (5:8b)in the most interesting limiting 
ase where 
s = 1. Theempiri
al fa
tor B � 1 a

ounts for all the approxima-tions in the above relations.The limit as 
s ! 1 in Eq. (5.8a) 
ru
ially di�ersfrom the limiting relation (5.8b). The origin of this dis-
repan
y is Eq. (5.4a). A more a

urate evaluation for
s � 1 readshtsi = 1Zs1 ts(s) ds = 1� s1�
s11� 
s == 1� exp [(1� 
s) ln s1℄1� 
s ; (5.9)where s1 � 1=t is the minimum s over t iterations of themap (
f. Eq. (5.4b)). Relation (5.4a) is therefore validunder the 
ondition � ln t > 1 only (with � = 1 � 
s),while in the opposite limit, we have htsi � ln t as for
s = 1, Eq. (5.4b). The 
rossover between the twos
alings o

urs att
ro � e1=�; �
ro � e1=�� F 2: (5:10)The deviation from Eq. (5.8a) is essential for a su�-
iently small � only.The ratio of �u
tuations to the average entropy pro-du
tion is given by the redu
ed entropy (see Eq. (4.4))Sg = ��
r� � � BF ln (�=F 2) ; (5:11)where the latter expression is estimate (5.8b) for therms �u
tuations. They are slowly de
reasing with time,and at � & �0 = F 2 exp (1=F );the rms line 
rosses the border Sg = �1 of zero entropy.Afterwards, the entropy remains mainly positive. Tobe more pre
ise, the probability for a traje
tory to en-ter into the negative-entropy region is systemati
allyde
reasing with time, although rather slowly. Thismust be 
ompared with the F -independent 
rossover�0 = 1=3 and a rapid drop of the probability to returnto S < 0 for the normal di�usion (Se
. 4).However, there exists another me
hanism of big�u
tuations, spe
i�
 for the 
riti
al dynami
s. Namely,a separated individual �u
tuation 
an be produ
ed asthe result of a single extremely big sti
king time tsover the total motion up to the moment the �u
tua-tion springs up in a single map iteration. We re
allthat in the present model, ea
h sti
king 
orresponds tojust one map iteration. The in
rements of dynami
alvariables in this jump are obtained from Eq. (5.2) as

�S = �Fts; �� = F 2ts; (5:12)where ts � 1 (with 2p1 � 1) is assumed (a big �u
tu-ation). The redu
ed �u
tuation is then given bySg � S� = � Fts� + F 2ts � � 1=F1 + �=�� : (5:13)The maximum single sti
king time over the motion timet is, on the average,htsi � t ln t = �F 2 : (5:14)Therefore, a single �u
tuation (5.13) has the upperbound jSgj . AF ; (5:15)where an empiri
al fa
tor A � 1 is introdu
ed similarlyto Eq. (5.8b).The border (5.15) 
onsiderably ex
eeds the rms dif-fusion �u
tuation (5.11) and, even more importantly,the former never 
rosses the zero-entropy line Sg = �1.Therefore, the 
riti
al �u
tuations repeatedly bring thesystem into the negative-entropy region. This is be-
ause the upper bound (5.15) does not depend on time� provided �� & � in Eq. (5.13). However, in a 
hainof su

essive �u
tuations, the values of � in Eqs. (5.13)and (5.14) are not generally equal. While in the formerrelation it is always the total motion time as assumedabove, it must be the pre
eeding period of �u
tuationsin Eq. (5.14): �n ! Pn < �n, where n is the serialnumber of �u
tuations. Hen
e, the approa
h to theupper bound (5.15) is only possible under the 
ondi-tion Pn � Pn�1, whi
h implies Pn � �n. Thus, the�u
tuations be
ome more and more rare with the pe-riod growing exponentially in time. In other words, the�u
tuations are stationary in ln � with a su�
iently bigmean period hlnP i � 5 (see Fig. 6).In Fig. 6, an example of several big 
riti
al �u
tu-ations in the limiting 
ase 
s = 1 is presented for �vesingle su�u
iently long traje
tories with di�erent initial
onditions and the motion time up to � � 5 � 109 andt = 1010 iterations. To a
hieve su
h a long time, thefor
e was in
reased up to F = 0:1 (see Eq. (5.14)).Unlike a similar Fig. 4 for the normal di�usion, onlyseveral big �u
tuations with F jSgj > 0:3 are presentedin Fig. 6. For the full pi
ture of 
riti
al �u
tuations, therequired output be
omes formidably long. The distri-bution of all �u
tuations, independent of time, is shownin Fig. 7.Ea
h �u
tuation in Fig. 6 is presented by a pair ofFSg values 
onne
ted by the straight line: one at amap iteration just before the �u
tuation (
ir
les), andthe other (stars) at the next iteration when the �u
tu-ation springs up (see above). Both are plotted at the215
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�1:5�1:0�0:5
FSg

101010�2 102 104 106 108100 �Fig. 6. Time dependen
e of 26 big �u
tuations in 
riti-
al dynami
s: 5 single traje
tories up to 1010 iterations,
s = 1, F = 0.1. Only �u
tuations with F jSgj > 0.3are shown, ea
h by a pair of points 
onne
ted by thestraight line: the big �u
tuation itself (stars) and at thepre
eding map iteration (
ir
les, see text). Two dashed
urves show the rms �u
tuations of F jSgj, Eq. (5.11),with B = 1. Horizontal dotted lines mark the upperbound, Eq. (5.15), with A = 1

0 0.2 0.4 0.6 0.8 1.01001021041061081010

F jSgjFig. 7. Histogram of 
riti
al �u
tuations in the num-ber of entries per bin of the width 0.007 for the data inFig. 6. The border S = 0 
orresponds to FSg = �F == � 0.1. The points for the longest traje
tory are
onne
ted by linesame, latter, � to follow the pairs. This slightly shiftsthe 
ir
les to the right.The most important, if only preliminary, result ofnumeri
al experiments is the 
on�rmation of the �u
tu-ation upper bound (5.15) that is independent of time.As expe
ted, the 
ir
les represent 
onsiderably smaller

F jSg j values, roughly following the di�usive s
aling(5.11).The border (5.15) qualitatively reminds the stri
tupper bound for the normal di�usion (Se
. 4), in
lud-ing a logarithmi
 ratio with respe
t to the rms size(4.5), as 
ompared to the ratioR
r(�) � ln (�=F 2) (5:16)in the 
riti
al di�usion. An interesting questionwhether the new, 
riti
al, border is also as stri
t asthe old one in the normal di�usion remains, to ourknowledge, open, at least for the physi
al model un-der 
onsideration where the superdi�usion is 
ausedby a strong long-term 
orrelation of su

essive entropy
hanges due to the sti
king of traje
tory.However, for a mu
h simpler problem of statis-ti
ally independent 
hanges, various generalizationsof Khin
hin theorem to the abnormal di�usion wereproved by many mathemati
ians (see, e.g., [33℄). Inthe present model, this is pre
isely the 
ase for the de-s
ription in map's time t with statisti
ally independentiterations. The most general and 
omplete result wasre
ently obtained by Borovkov [34℄. In the present no-tation, it 
an be approximately represented in a verysimple form for the ratioR
r = �b� � (ln t)
s (5:17)in the entire superdi�usion interval (1=2 < 
s � 1). Forthe most important redu
ed �u
tuation (5.13), we thenarrive at the two relationsjSg j . �b� � �
s�1F 2
s�1 �ln �F 2�
s (5:18a)for 
s < 1 and jSg j . �b� � 1F (5:18b)in the limiting 
ase 
s = 1. The latter 
on�rms estimate(5.15), whi
h, in turn, is in a good agreement with theempiri
al data in Fig. 6. In any event, a simple physi
alestimate (5.15) seems to provide an e�
ient des
riptionof the �u
tuation upper bound.In Fig. 7, an example of all (at ea
h map's iteration)�u
tuations is shown for the data from the same runsas in Fig. 6. In addition to very large overall distri-bution �u
tuations, a sharp drop by about four ordersof magnitude is 
learly seen near the expe
ted upperbound (5.15). It is similar to the drop in Fig. 5 for thenormal di�usion.Thus, the 
riti
al di�usion results in in�nitely manyre
urren
es far into the negative-entropy region S < 0(for F � 1), the sojourn time in that region being 
om-parable to the total motion time. Of 
ourse, the former216
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tuations : : :is less than 50% on the average, so that asymptoti
allyin time the entropy is always growing. In this respe
t,the global 
riti
al �u
tuations are similar to the lo
alones in the normal di�usion (Se
. 3).We note, however, that the upper bound �b=� �� 1=F (5.18b) is permanent in the stri
t limit 
s = 1only. For any deviation from the limit � = 1� 
s > 0,this bound lasts a �nite time determined by the
rossover (5.10) (� . F 2 exp (1=�)=�) to de
reasing�b=� ! 0, Eq. (5.18a). Another interesting represen-tation of this intermediate behavior is the 
rossover inthe sti
king exponent,� . 1ln (�=F 2) � F jSgj; (5:19)whi
h is a
tually shown in Fig. 6 by the upper dashedline. For the longest � = 5 � 109, the latter 
rossover is�
ro � 0:037.Again, the new 
ardinally di�erent 
riti
al ratio�2b=hS(t)i and the distribution of entropy �u
tuationslead to yet another �Flu
tuation Theorem� as 
om-pared to the two previous ones mentioned in Se
s. 3and 4.6. DISCUSSION AND CONCLUSIONSIn the present paper, the results of extensive nu-meri
al experiments on big entropy �u
tuations in anonequilibrium steady state of 
lassi
al dynami
al sys-tems are presented and their pe
uliarities are analyzedand dis
ussed. For 
omparison, some similar resultsfor the equilibrium steady state are brie�y des
ribedin the Introdu
tion (they will be published in detailelsewhere [10℄).All numeri
al experiments have been 
arried out onthe basis of a very simple model, the Arnold 
at map(1.1) on a unit torus, with only three minor, but im-portant, modi�
ations that allowed 
omprising all theproblems under 
onsideration. The modi�
ations are:(1) Expansion of the torus in p dire
tion (1.2),whi
h allows more impressive di�usive �u
tuations outof the equilibrium steady state (Fig. 1 in Se
. 1).(2) Addition of 1D map (2.5) with the 
onstantdriving for
e F and with an ingenious time-reversiblefri
tion for
e that represents the so-
alled Gauss heatbath and whi
h allows modeling a physi
al thermostatof in�nitely many degrees of freedom [20, 21℄. This isthe prin
ipal modi�
ation in the present studies of �u
-tuations in a nonequilibrium steady state (Se
s. 3�5).(3) Addition of a new parameter ts, Eq. (5.3), inmap (5.2) whi
h allows for the study of very unusual�u
tuations of an �abnormal�, 
riti
al, dynami
al dif-fusion (Se
. 5).

Big �u
tuations in the equilibrium steady stateare brie�y 
onsidered in Se
. 1. The simplest one ofthis 
lass, whi
h we 
all the Boltzmann �u
tuation, isshown in Fig. 1. It is obviously symmetri
 under timereversal, and at least in this 
ase, therefore, there isno physi
al reason for the notorious �time arrow� 
on-
ept. Nevertheless, a related 
on
ept, for example, thethermodynami
 arrow, pointing in the dire
tion of theaverage in
rease of entropy, makes sense in spite of thetime symmetry. The point is that the relaxation timeof the �u
tuation is determined by model parameter Conly, and does not depend on the �u
tuation itself. Onthe 
ontrary, the expe
tation time for a given �u
tu-ation, or the mean period between su

essive �u
tua-tions, rapidly grows with the �u
tuation size and withthe number of traje
tories (or degrees of freedom).Besides the simplest Boltzmann �u
tuation, vari-ous others are also possible, typi
ally with a mu
h lessprobability. One of those � the two 
orrelated Boltz-mann �u
tuations, whi
h we 
all the S
hulman �u
tu-ation � was re
ently des
ribed in [36℄ using the sameArnold 
at map. However, this model is not related to
osmology as was spe
ulated in [36℄. At least, the Uni-verse and most of the ma
ros
opi
 phenomena thereinrequire qualitatively di�erent models, ones without anequilibrium steady state. These stru
tures do appear(with probability 1) as a result of 
ertain regular 
olle
-tive pro
esses that lead to very 
ompli
ated nonequi-librium and inhomogeneous states with ever in
reasingentropy. This is in 
ontrast with a 
onstant, on theaverage, entropy in ES systems.A nonequilibrium steady state, the main subje
t ofthis paper, is but a little, 
hara
teristi
 though, pie
eof the 
haoti
 
olle
tive pro
esses. In model (2.5), thedriving for
e F represents a result of some pre
ed-ing 
olle
tive pro
esses, the spring of free energy, andthe Gauss fri
tion does so for an in�nite environmentaround, the sink of the energy, 
onverting the work intoheat, on the average. An interesting pe
uliarity of thesesystems is that the big �u
tuations 
an, and under 
er-tain 
onditions, do the opposite, 
onverting some heatba
k into the work.Two types of �u
tuations were studied:(i) the lo
al ones on a set of traje
tory segmentsof length-t1 iterations and of the entropy 
hange Si(Se
. 3), and(ii) ones of the global entropy S(t) along a traje
-tory with respe
t to the initial entropy set to zero,S(0) = 0 (Se
s. 4 and 5).The former were found to have a stationary unre-stri
ted distribution 
lose to the standard Gauss lawwith some enhan
ement of an unknown me
hanism for217
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tuations. The study of the latter e�e
t will be
ontinued. The distribution is symmetri
 with respe
tto the average entropy, growing in proportion to timein agreement with previous studies on a more 
ompli-
ated (and more realisti
) model [27℄. Even though thedistribution is asymmetri
 with respe
t to zero entropy
hange, the probability of negative Si < 0 is generallynot small provided F 2Nt1 . 1. This phenomenon, ap-parently a new one in the nonequilibrium steady state,was �rst observed in [27℄ but has been interpreted thereas a violation of the Se
ond Law. It seems to be there�e
tion of a 
ommon, but wrong in our opinion, un-derstanding of the Se
ond Law as a monotoni
 growthof the entropy, negle
ting all the �u
tuations in
ludingthe large ones. The nonmonotoni
 rise of entropy is
learly seen, for instan
e, in Fig. 4, and dis
ussed indetail in Se
s. 3 and 4.The behavior of the global entropy is 
ompletelydi�erent as the data in the same Fig. 4 demonstrate(Se
. 4). Although the entropy evolution remains non-monotoni
, it qui
kly 
rosses the line of the initial zeroentropy and does not return into the negative entropyregion S < 0. This is insured by the famous Khin
hintheorem about the stri
t upper bound for the di�usionpro
ess. At least for physi
ists, this limitation of sta-tisti
al nature for a random motion is surprising andapparently less known. That unidire
tional evolutionis the most important distin
tion of the nonequilibriumsteady states from the equilibrium ones. In parti
ular,it leads to a 
ertain asymmetry of the entropy distri-bution sometimes 
alled the �Flu
tuation Theorem� or�Flu
tuation Law�. However, one should bear in mindthat this law essentially depends on the underlying dy-nami
s as brie�y dis
ussed in Se
s. 3�5.This 
hara
teristi
 feature of nonequilibrium steadystate further justi�es the 
on
ept of the thermodynami
arrow pointing to a larger, on the average, entropy. Yet,again it is not related to the properties of time. Of
ourse, the entropy will systemati
ally de
rease uponformal time reversal, whi
h is also the 
ase with themodel under 
onsideration be
ause the Gauss heat bathis time reversible. Within the steady state approximar-ion, or rather restri
tion, this would be an in�nitelylarge �u
tuation that never 
omes to the end. However,this �u
tuation would never o

ur either, as a result ofthe natural time evolution of the system, opposite tothe 
ase of equilibrium �u
tuations. The ultimate ori-gin of that 
ru
ial di�eren
e is that the former pro
ess,even asymptoti
ally in time, is a tiny little part of thefull underlying dynami
s of an in�nite system. In par-ti
ular, the initial state S(0) = 0 is not a result of thepre
eding �u
tuation, as is the 
ase in ES, but has been

eventually 
aused, for instan
e, by instability of the ini-tial ES at a very remote time in the past. If one imag-ined the time reversal at that instant, nothing would
hange be
ause the thermodynami
 arrow does not de-pend on the dire
tion of time provided, of 
ourse, thetime reversible fundamental dynami
s. Pre
isely thisuniversal overall dynami
s uni�es the time for all theintera
ting obje
ts like parti
les and �elds throughoutthe Universe. In parti
ular, it is in
ompatible with thetwo opposite time arrows (an old Boltzmann's hypoth-esis [2℄ that still has some adherents [36℄).Coming ba
k to nonequilibrium steady states, it isworth mentioning that the regularities of the �u
tua-tions in those, both lo
al and global, 
an be applied, atleast qualitatively, to a small part of a big �u
tuationin a statisti
al equilibrium (Fig. 1) on both sides of themaximum. This interesting question will be 
onsideredin detail elsewhere [10℄.Finally, some preliminary numeri
al experiments onthe global entropy �u
tuations and the theoreti
al anal-ysis were 
arried out in a spe
ial 
ase of the 
riti
aldynami
s, whi
h turned out to be the most interestingone for the problem in question (Se
. 5). The pointis that the 
riti
al dynami
s leads to the �abnormal�superdi�usion with the rate D / �2
s�1 and the rms�u
tuation size �
r / � 
s , where 
s is a new param-eter of the third model (1=2 < 
s � 1). This impliesthat for 
s � 1, the redu
ed entropy jSgj / � 
s�1 de-
reases very slowly 
ompared to the normal di�usionjSg j / 1=p� . In the limiting 
ase where 
s = 1, theentropy jSg j / 1= ln � is still de
reasing. However, inaddition to di�usive �u
tuations, there is a set of in-�nitely many separated �u
tuations whose size doesnot de
rease with time (Fig. 6). In other words, thesepreliminary numeri
al experiments suggest that in thelimiting 
ase of the 
riti
al dynami
s, the Poin
aré re-
urren
es to the initial state S = 0 and beyond repeat-edly o

ur without limit. These are preliminary resultsto be 
on�rmed and further studied in detail.In this paper, we only 
onsidered the �u
tuationsin 
lassi
al me
hani
s. In general, the quantum �u
-tuations must be signi�
antly di�erent. However, a
-
ording to the Corresponden
e Prin
iple, the dynami
sand statisti
s of a quantum system in the semi
lassi-
al regime must be 
lose to the 
lassi
al ones on theappropriate, generally �nite, time s
ales (for details,see [12, 35℄). Interestingly, the 
omputer 
lassi
al dy-nami
s (that is, the simulation of a 
lassi
al dynami
alsystem on digital 
omputer) is of a qualitatively simi-lar 
hara
ter. This is be
ause any quantity is dis
rete(�overquantized�) in 
omputer representation. As a re-sult, the 
orresponden
e between the 
lassi
al 
ontin-218
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tuations : : :uous dynami
s and its 
omputer representation in nu-meri
al experiments is restri
ted to 
ertain �nite times
ales as in quantum me
hani
s (see the �rst two ref-eren
es in [35℄).Dis
reteness of 
omputer phase spa
e leads to an-other pe
uliar phenomenon: generally, the 
omputerdynami
s is irreversible be
ause of the rounding-o� op-eration unless the spe
ial algorithm is used in numeri-
al experiments. Nevertheless, this does not a�e
t thestatisti
al properties of 
haoti
 
omputer dynami
s. Inparti
ular, the statisti
al laws in 
omputer representa-tion remain time-reversible in spite of the (nondissipa-tive) irreversibility of the underlying dynami
s. Thissimple example demonstrates that 
ontrary to a 
om-mon belief, the statisti
al reversibility is a more generalproperty than the dynami
al one.In the very 
on
lusion, we brie�y remark on a verydi�
ult, 
ompli
ated and vague problem, the so-
alled(physi
al) 
ausality prin
iple, i.e., the time-orderingof the 
ause and the e�e
t. A detailed dis
ussion ofthis important problem will be published elsewhere[37℄. We only note the example of a simple Boltzmann�u
tuation shown in Fig. 1. We adhere to the idea ofstatisti
al nature of 
ausality. Indeed, the 
ause is,by de�nition, an �absolutely� independent event thatis only possible in the 
haoti
 dynami
s. Moreover,the 
on
ept of 
ause loses its usual physi
al meaningin any purely dynami
al des
ription. For example,the initial 
onditions pre
isely determine the entirein�nite traje
tory (�1 < t < 1), i.e., both thefuture and the past of su
h a �
ause�. For a singleBoltzmann �u
tuation, an appropriate 
ause is theminimum entropy (at t = ti in Fig. 1). This wasexa
tly the pro
edure used in numeri
al experimentsfor the lo
ation of a �u
tuation of an approximatelygiven size. The prin
ipal di�eren
e from the exa
tdynami
al initial 
onditions is that the former 
ause isan approximate (e.g., average) �u
tuation size, whi
his su�
ient for the 
omplete statisti
al des
riptionof the �u
tuation, however it leaves enough freedomfor the independen
e from other events, in
luding thepre
eding �u
tuations. However, this 
ause determinesnot only the future relaxation of the �u
tuation (inagreement with the 
ausality prin
iple) but also thepast rise of the same �u
tuation, whi
h is a violationof 
ausality, or a
ausality (spontaneous rise of a�u
tuation), or anti-
ausality, whi
h is perhaps themost appropriate term. Upon the time reversal, the
ausality/anti
ausality ex
hange, whi
h allows for the
on
ept of the 
ausality arrow, however this is notrelated to the physi
al time. In this philosophy, thedire
tions of the thermodynami
 and 
ausal arrows,


oin
ide independently of the dire
tion of time. Animportant point of this philosophy is that the �arrow�
on
ept is related to the interpretation of a physi
alphenomenon rather than to the phenomenon itself.In parti
ular, the question �how to �x or maintainthe arrow� [36℄ is up to the resear
her alone. In amore 
ompli
ated S
hulman's double �u
tuation, the
ausality me
hanism be
omes more interesting [36℄,and will be dis
ussed in [37℄ from a di�erent point ofview.I am grateful to Wm. Hoover for attra
ting myattention to a new 
lass of highly e�
ient dynami
almodels with the Gauss heat bath and for stimulatingdis
ussions and suggestions. I very mu
h appre
iatethe initial 
ollaboration with O. V. Zhirov. I am alsoindebted to A. A. Borovkov for elu
idation of Khin
hintheorem and of its re
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