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Large entropy fluctuations in a nonequilibrium steady state of classical mechanics are studied in extensive nu-
merical experiments on a simple two-freedom model with the so-called Gauss time-reversible thermostat. The
local fluctuations (on a set of fixed trajectory segments) from the average heat entropy absorbed in thermostat
are found to be non-Gaussian. The fluctuations can be approximately discribed by a two-Gaussian distribu-
tion with a crossover independent of the segment length and the number of trajectories («particles»). The
distribution itself does depend on both, approaching the single standard Gaussian distribution as any of those
parameters increases. The global time-dependent fluctuations are qualitatively different in that they have a
strict upper bound much less than the average entropy production. Thus, unlike the equilibrium steady state,
the recovery of the initial low entropy becomes impossible after a sufficiently long time, even in the largest
fluctuations. However, preliminary numerical experiments and the theoretical estimates in the special case of
the critical dynamics with superdiffusion suggest the existence of infinitely many Poincaré recurrences to the
initial state and beyond. This is a new interesting phenomenon to be further studied together with some other
open questions. The relation of this particular example of a nonequilibrium steady state to the long-standing

persistent controversy over statistical «irreversibility», or the notorious «time arrow», is also discussed.

In

conclusion, the unsolved problem of the origin of the causality «principle» is considered.

PACS: 05.70.Ln, 05.40.+

1. INTRODUCTION: EQUILIBRIUM VS.
NONEQUILIBRIUM STEADY STATE

The fluctuations are an inseparable part of statisti-
cal laws. This is well known since Boltzmann. What
is apparently less known are the peculiar properties of
rare big fluctuations (BF) as different from, and in a
sense even opposite to, those of small stationary fluc-
tuations. In particular, the former can be perfectly
regular on the average, symmetric in time with respect
to the fluctuation maximum, and can be described by
simple kinetic equations rather than by a sheer proba-
bility of irregular «noise». Even though big fluctuations
are very rare, they may be important in many vari-
ous applications (see, e.g., [1] and references therein).
In addition, the correct understanding and interpreta-
tion of the properties and origin of big fluctuations may
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help (at last!) to settle a strangely persistent contro-
versy over statistical «irreversibility» and the notorious
«time arrow».

In the big fluctuations problem, one must distin-
guish at least two qualitatively different classes of the
fundamental (Hamiltonian, nondissipative) dynamical
systems: those with and without the statistical equi-
librium, or the equilibrium steady state (ES).

In the former (simpler) case, a big fluctuation con-
sists of the two symmetric parts: the rise of a fluc-
tuation followed by its return, or relaxation, back to
ES (see Fig. 1 below). Both parts are described by
the same kinetic (e.g., diffusion) equation, the only
difference being in the sign of time. This relates
the time-symmetric dynamical equations to the time-
antisymmetric kinetic (but not statistical!) equations.
The principal difference between the two, some times
overlooked, is that the kinetic equations are widely un-
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Fig.1. Boltzmann's diffusive fluctuations in model (1.2) with the parameter C' = 15: the square of the phase space area

occupied by N independent trajectories («particles») vs. the time (the number of map iterations ¢t — ;) counted from the

instant ¢; of fluctuation maximum, or of minimal I's;, for each of the Ny; superimposed big fluctuations separated by the

average period P = ((t; — t;—1)). Straight lines show the expected dependence for anti-diffusion and diffusion (see text).

Two slightly different curves correspond to N =1 (grey) and N = 4 (black) with I'y; = 0.0001 and 0.1; Ny; = 3352 and
2851; P = 29863 and 35110, respectively

derstood as describing the relaxation only, i.e., the in-
crease of the entropy in a closed system, whereas they
actually do so for the rise of the big fluctuations as well,
i.e., for the entropy decrease. All this was qualitatively
known already to Boltzmann [2]. The first simple ex-
ample of a symmetric big fluctuation was considered by
Schrodinger [3]. A rigorous mathematical theorem for
the diffusive (slow) kinetics was proved by Kolmogorov
in 1937 in the paper entitled «Zur Umkehrbarkeit der
statistischen Naturgesetze» («Concerning reversibility
of statistical laws in nature») [4] (see also [5]). Re-
grettably, the principal Kolmogorov theorem still re-
mains unknown to the participants of the heated debate
over «irreversibility» (see, e.g., «Round Table on Irre-
versibility» in [6]) and to the physicists actually study-
ing such big fluctuations [1].

By now, there exists the well developed ergodic the-
ory of dynamical systems (see, e.g., [7]). In particular,
it proves that the relaxation (correlation decay, or mix-
ing) proceeds eventually in both directions of time for
almost any initial conditions of a chaotic dynamical
system. However, the relaxation must not be always
monotonic, which simply means a big fluctuation on
the way, depending on the initial conditions. To elim-
inate this apparently confusing (to many) «freedomsy,
one can take a different approach to the problem: to
start at arbitrary initial conditions (most likely corre-
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sponding to ES) and see the big fluctuation dynamics
and statistics.

At this point, it is essential to recall that the sys-
tems with ES allow for very simple models in both
the theoretical analysis and numerical experiments (of
which the latter are even more important). In this pa-
per, we use one of the most simple and popular models
specified by the so-called Arnold cat map (see [8, 9])

=p+ax mod 1,

p
T=x+D

1.1
mod 1, (.
that is a linear canonical map on the unit torus. It has
no parameters and is chaotic and even ergodic. The
rate of the local exponential instability, the Lyapunov
exponent

A=1In (3/2 + \/5/2) = 0.96,

implies a fast (ballistic) kinetics with the relaxation
time ¢, ~ 1/ ~ 1.
A minor modification of this map,

1
ﬁ=p+x—§ mod C,

(1.2)

T=x+D mod 1,

where C' > 1 is the circumference of the phase space
torus admits a slow (diffusive) relaxation with

t, ~ C?/4D,,
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where D, = 1/12 is the diffusion rate in p. A conve-
nient characteristic of the big fluctuation size is the rms
phase space volume (area) I'(t) = o, - 0, for a group of
N trajectories. In the ergodic motion at equilibrium,
we have

r=Ty=C/12.

In what follows, we use the dimensionless measure
[=0/Ty =T

and omit the tilde.

The entropy S can be defined by the relation

S(t) =1nT(¢), (1.3)

with S = 0 at equilibrium. This definition is not iden-
tical to the standard one (via the (coarse-grained) dis-
tribution function) but it is quite close to the latter if
I' € 1, i.e., for a big fluctuation, which is what we need
in the problem under consideration. A great advantage
of definition (1.3) is that the computation of S does not
require very many trajectories as does the distribution
function. In fact, even a single trajectory is sufficient!

A finite number of trajectories used for calculating
the phase-space volume T is a sort of the coarse-grained
distribution, as required in relation (1.3), but with a
free bin size that can be arbitrarily small. The detailed
study of big fluctuations in this class of ES models will
be published elsewhere [10]. Here, we briefly consider
the example shown in Fig. 1.

The data were obtained from running 4 and only 1
(1) trajectories for a sufficiently long time in order to
collect sufficiently many big fluctuations; they are su-
perimposed in Fig. 1 to clean up the regular big fluctua-
tion from a «podlike trash» of stationary fluctuations.
The size of big fluctuation chosen was approximately
fixed by the condition I'(¢t) < I'y;. In spite of the in-
equality, the mean values (I'(¢;)) = 0.000033 and 0.069
are close (by the order of magnitude) to the fixed Iy,
values in Fig. 1. We note that for a slow diffusive ki-
netics, we have

2
O(O'pOC

exp (25) (»*)
and o, remains constant.

The probability of big fluctuation can be character-
ized by the average period between them, for which a
very simple estimate

P~ 3T, ~3exp(=NSp) (1.4)
is in a good agreement with data in Fig. 1 (upon in-
cluding the empirical factor 3).
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In the example presented here, the position of all
big fluctuations in the phase space is fixed as z = 1/2
and py = C/2. If one lifts this restriction, the proba-
bility of big fluctuation increases by the factor 1/T,
or by decreasing N by one (N — N — 1), due to an
arbitrary position of big fluctuation in phase space. In
the former case, a chain of big fluctuations is precisely
the well known Poincaré recurrence. It is less known
that the latter are a particular and specific case of big
fluctuations, and the recurrence of a trajectory in a
chaotic system is determined by the kinetics of the sys-
tem. Recurrence of several (N > 1) trajectories can
also be interpreted as the recurrence of a single trajec-
tory in N uncoupled freedoms.

As can be seen from Fig. 1, irregular deviations from
a regular big fluctuation are rapidly decreasing with
the entropy S — Sy. It may seem that the motion
becomes regular near big fluctuation maximum, hence
the term «optimal fluctuational path» [1]. In fact, the
motion remains diffusive down to the dynamical scale
that is |[Ap| ~ 1 independently of the parameter C' in
model (1.2).

Big fluctuations are not only perfectly regular by
themselves but also surprisingly stable against any per-
turbations, both regular and chaotic. Moreover, the
perturbations do not need to be small. At first glance,
this looks very strange in a chaotic, highly unstable dy-
namics. The resolution of this apparent paradox is that
the dynamical instability of motion affects the big fluc-
tuation time instant ¢; only. The big fluctuation shape
is determined by the kinetics that can have an arbitrary
mechanism, ranging from a purely dynamical one, as in
model (1.2), to a completely noisy (stochastic, cf. Fig. 1
above and Fig. 4 in [1]). As a matter of fact, the funda-
mental Kolmogorov theorem [4] is specifically related to
the latter case but remains valid in a much more gen-
eral situation. Surprising stability of big fluctuations
is similar to the full (less known) robustness property
of the Anosov (strongly chaotic) systems [11], whose
trajectories are only slightly deformed under a small
perturbation (for discussion, see [12]). From a different
perspective, this stability can be interpreted as a fun-
damental property of the «macroscopicy description of
big fluctuations. In such a simple few-freedom system
similar to (1.2), the term «macroscopic» refers to the
averaged quantities o, ', S, and similar ones. However,
a somewhat confusing result is that the «macroscopic»
stability comprises not only the relaxation of big fluc-
tuations but also its rise, because both parts of big
fluctuation always appear together. This may lead to
another misunderstanding that the fluctuation and re-
laxation probabilities are the same, which is certainly
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wrong. The point is that the ratio of both (unequal!)
probabilities is determined by the crossover parameter

P -~ 3 exp (—NSfl)

= — 02

1
ty >4

~

Rcro(Sfl) (15)

where the latter expression refers to model (1.2) and
the inequality determines the region of big fluctuation
where its waiting time is much longer than that of its
immediate relaxation from a nonequilibrium «macro-
scopicy state (for further discussion, see Sec. 6 in what
follows).

2. A NEW CLASS OF DYNAMICAL MODELS:
WHAT ARE THEY FOR?

A relatively simple picture of big fluctuations in
systems with the equilibrium steady state is well un-
derstood by now, although not yet well known. To
Boltzmann, this picture was the basis of his fluctuation
hypothesis for our Universe. Again, as is well under-
stood by now, this hypothesis is entirely incompatible
with the present structure of the Universe, because it
would immediately imply the notorious «heat death»
(see, e.g., [13]). For this reason, one may even term
such systems the heat death models. Nevertheless, they
can be and actually are widely used in the description
and study of local statistical processes in thermody-
namically closed systems. The latter term means the
absence of any heat exchange with the environment.
We note, however, that for the exponentially unsta-
ble motion, the only dynamically closed system is the
whole Universe. In particular, this excludes the hypo-
thetical «velocity reversal», which is still popular in de-
bates over «irreversibility» occurring since Loschmidt
(for discussion, see, e.g., [12, 14] and Sec. 6 in what
follows).

In any event, dynamical models with ES do not tell
us the whole story of either the Universe or even a typ-
ical macroscopic process therein. The principal solu-
tion of this problem, unknown to Boltzmann, is quite
clear by now, namely, the «equilibrium-free» models
are wanted. Various classes of such models are in-
tensively studied today. Moreover, the celebrated cos-
mic microwave background tells us that our Universe
was born already in the state of a heat death; for-
tunately to us, however, it became unstable because
of the well-known Jeans gravitational instability [15].
This resulted in developing a rich variety of collective
processes, or synergetics, the term recently introduced
or, better to say, put in use by Haken [16]. The most
important peculiarity of this collective instability is in
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that the total overall relaxation (to somewhere?) with
ever increasing total entropy is accompanied by an also
increasing phase space inhomogeneity of the system,
particularly in temperature. In other words, the whole
system as well as its local parts become more and more
nonequilibrium to the extent of the birth of a secondary
dynamics that can be, and sometimes is, as perfect as,
for example, the celestial mechanics (for general discus-
sion see, e.g., [17, 18, 12]).

We stress that all these inhomogeneous nonequilib-
rium structures are not big fluctuations as in ES sys-
tems, but are a result of regular collective instability,
and therefore, they are immediately formed under a
certain condition. In addition, they are typically dis-
sipative structures in Prigogine’s terms [19] because of
the energy and entropy exchange with the infinite en-
vironment. The latter is the most important feature
of such processes, and at the same time the main dif-
ficulty in studying the dynamics of those models both
theoretically and in numerical experiments, which are
so much simpler for the ES systems. Usually, the in-
vestigations in this field are based upon statistical laws
omitting the underlying dynamics from the beginning.

Recently, however, a new class of dynamical models
has been developed by Evans, Hoover, Morriss, Nosé,
and others [20, 21]. Some researchers still hope that
these new models will help to resolve the «paradox
of irreversibility». A more serious reason for studying
these models is that they allow one to relatively sim-
ply include the infinitely dimensional «thermostaty, or
«heat bath» into a model with a few degrees of free-
dom. This greatly facilitates both numerical experi-
ments and the theoretical analysis. In particular, the
derivation of Ohm’s law within this model was pre-
sented in [22], thereby solving «one of the outstanding
problems of modern physics» [23] (for this peculiar dy-
namical model only!). The authors of [22] claim that
«At present, no general statistical mechanical theory
can predict which microscopic dynamics will yield such
transport laws...» In our opinion, it would be more cor-
rect to inquire which of many relevant models could be
treated theoretically, and especially in a rigorous way
as was actually done in [22].

The zest of new models is the so-called Gauss ther-
mostat, or heat bath (GHB). In the simplest case, the
motion equations of a particle in this bath are [20-22]:

dp _
dt

_F-p

F_Cp', p2 )

¢ (2.1)
where F is a given external force and ( stands for the
«friction coefficient». The first peculiarity of this «fric-

tion» is in its explicit time reversibility contrary to the
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«standard friction». The price for reversibility is the
strict connection between the two forces, the friction
and the external force F. Moreover, and this is most
important, the connection is such that

(2.2)

The first of the two identical terms represents the me-
chanical work of the external regular force F, the spring
of the external energy, and the second one describes
the sink of energy into GHB. Thus, asymptotically as
t — oo, the model describes a steady state only. This is
the main restriction of such models. The particle itself
does only immediately transfer the energy without any
change of its own one because of the above constraint

'p|? = const.

For one degree of freedom, the latter would lead to the
trivial solution p = const. Therefore, at least two de-
grees of freedom are required to allow for a variation
of the vector p in spite of the constraint. For many
interacting particles, the constraint

Z 'pi|? = const

is less stringent, hence the reference to the Gauss «Prin-
ciple of Least Constrainty [24] for deriving the re-
versible friction in Eq. (2.1). In the present paper, the
simplest case of N noniteracting particles with two de-
grees of freedom is considered only as in [22].

The next important point is a special form of the
energy in GHB, which is the heat. In true heat bath it
is given by the chaotic motion of infinitely many par-
ticles. This is not the case in GHB, and one needs an
additional force in Eq. (2.1) to make the particle motion
chaotic, at the same time maintaining the constraint.
Whether such an external to GHB chaos is equivalent
to the chaos inside the true heat bath, at least statisti-
cally, remains an open question, but it seems plausible
from the physical viewpoint [22] (see also Ref. [25]).
If so, the model describes the direct conversion of me-
chanical work into heat (), and hence the permanent
entropy production. The calculation of the latter is not
a trivial question (for discussion, see [20-22]). In our
opinion, the simplest way is to use the thermodynamic

relation
dS 1.dQ @ .

E_T%a dt =p-F, (2-3)

14 ZKBT®, srim. 1

where T' = pg is the effective temperature [22]. Because
the input energy is of zero entropy (the formal temper-
ature Ty, = 00), relation (2.3) determines the entropy
production in the whole system (particles + GHB). We
note that in Eq. (2.3), as well as throughout this paper,
the entropy S is understood to be determined in the
standard way via a coarse-grained distribution func-
tion.

On the other hand, the usual interpretation of GHB
models is quite different [20-22]. Namely, the entropy
production in Eq. (2.3) is expressed via the Lyapunov
exponents \; of the particle motion,

dS _ dSgup _ dS, _ ,
T E— g == ;)\Z, (2.4)

where Sgp and S, are the respective entropy of GHB
and of the ensemble of particles. An unpleasant feature
of this relation is in that the latter equality holds for the
Gibbs entropy only, which is conserved in the Hamil-
tonian system modeled by the GHB. As a result, the
entropy of the total system (particles + GHB) remains
constant (the second equality in Eq. (2.4)), which liter-
ally means no entropy production at all! Even though
this interpretation can be formally justified, it seems
to us to be physically misleading. In our opinion, the
application of Lyapunov exponents would be better re-
stricted to characterization of the phase-space fractal
microstructure of the particle motion (which is really
interesting), retaining the universal coarse-grained def-
inition of the entropy (cf. ES models in Sec. 1).

As mentioned above, the GHB models describe the
nonequilibrium steady states only. Moreover, any col-
lective processes of interacting particles are also ex-
cluded, among them those responsible for the very ex-
istence of regular nonequilibrium processes, in partic-
ular, of the field F in model (2.1). In a more com-
plicated Nosé—Hoover version of GHB models, these
severe restrictions can be partly, but not completely,
lifted. Whether this is sufficient for the inclusion of
collective processes remains, to our knowledge, an open
question.

In any event, even the simplest GHB model like
(2.1) represents a qualitatively different type of statis-
tical behavior compared to that in the ES models. The
origin of this principal difference is twofold: (i) the ex-
ternal «inexhaustible» spring of energy, if only intro-
duced «by hand», and (ii) a heat sink of infinite capac-
ity that excludes any equilibrium.

In conclusion of this section, we precisely formulate
the model considered in the main part of the paper.
Choosing the model for numerical experiments, we fol-
low the «golden rules: construct the model as simple as
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possible but not simpler. In the problem under consid-
eration, the models already studied are mainly based
on the well-known and well-studied «Lorentz gas» that
is a particle (or many particles) moving through a set
of fixed scatterers. A new element is a constant field
accelerating the particles. Actually, the Lorentz model
becomes the famous Galton Board [26], the very first
model of chaotic motion, which was invented by Galton
for another purpose, and which has not been studied in
detail until recently [20-22]. Our model is still simpler,
and is specified by the two maps: (i) the 2D Arnold
cat map (1.1) to chaotize particles, and (ii) the 1D
map version of Eq. (2.1),

pr=p1 + F — 4Fp3, (2.5)

where p; = p — po and the parameter in Eq. (2.1) is
po = 1/2. For |F| < 1/4, the momentum p remains
within the unit interval (0 < p < 1) as in map (1.1).
The principal relation (2.3) for the entropy reduces also
to the additional 1D map,

S=S+pm+F)?-pl=S+2pmF+F? (26)

where the entropy unit is changed by the factor 2 for
simplicity. Because S is the entropy produced in GHB,
the latter map implicitly includes also the motion in
the second degree of freedom for each of the noninter-
acting particles because of the Gauss constraint that
guarantes the immediate transfer of energy to GHB.

In numerical experiments considered below, an ar-
bitrary number N of noninteracting particles (trajec-
tories) with random initial conditions was used. In this
case, the Gauss constraint remains unchanged, and all
the trajectories are run simultaneously.

3. NONMONOTONIC ENTROPY
PRODUCTION: LOCAL FLUCTUATIONS

Statistical properties of the entropy growth in the
model chosen are determined by the first two moments
of the p; distribution function. In the limit as t — o
and/or N — oo, they are given by (per iteration and
per trajectory)

1
2 e
<p1> - 127

where averaging is done over both the motion time ¢
(now the number of the iterations of the map) and N
noninteracting particles (particle trajectories). In com-
bination with Eq. (2.6), the first moment in Eq. (3.1)
implies the linear growth of the average entropy (per
trajectory)

3

(S(t)) =t F2. (3.2)
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Fig.2. Distribution function f(Ss) of local fluctua-

tions in the nonequilibrium steady state with F = 0.01.

Dashed line is the standard Gauss law (3.5); points

represent the results of numerical experiments with
N =1, and ¢ = 10, 25, 100

In this section, the statistics of local fluctuations is
considered. A similar problem was studied in [27] for
a more realistic model with many interacting particles.
In the present model, the local fluctuation is defined
as follows. The total motion time ¢y is subdivided into
many segments of equal duration ¢;. On each segment
i = 1,....ty/t1, the total change of the entropy S;
for all N trajectories is calculated using Eq. (2.6) and
represented as the dimensionless random variable

_Si—=(Si) _ Si—T

a

So

(3.3)

a

where
<Sz> = Nt1F2 =T

(see Eq. (3.2)), and the rms fluctuation o is given by a
simple relation (see Eqs. (2.6) and (3.1))

(3.4)

This relation neglects all the correlations, which implies
the standard Gaussian distribution

exp (—52/2)

An example of the actual distribution function is
shown in Fig. 2 for a single trajectory with the segment
length t; = 10, 25, 100 iterations, and the number of
segments up to 107. The cap of the distribution is close
to the standard Gauss form (3.5) (see also Fig. 3) but
both tails clearly show a considerable enhancement of
fluctuations depending on both ¢; and N (in other ex-
amples, see below).

G(S,) = (3.5)
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f(Sa)/G(Sla)

10"

10%8

0 2 4 6 8 10
S2/2

Fig.3. The ratio of the distribution f(S,) to the

standard Gauss law (3.5) (broken lines). The valu-

es of the parameter N/t from top to bottom are:

1/5 (S2/2 < 7.5, see text); 1/10; 1/100; 10/10, and

100/1. The oblique dotted straight line demonstrates
the Gaussian shape of the tails

The shape of the tails is also Gaussian but the width
is the larger the smaller ¢t; and N. This is especially
clear in a different representation of the data in Fig. 3,
where the ratio of the empirical distribution to the stan-
dard Gauss one is plotted as a function of the Gaussian
variable S = S2/2. Each run with particular val-
ues of NV and t; is represented by two slightly different
lines for both signs of S,. In addition to fluctuations,
the difference apparently involves some asymmetry of
the distribution with respect to S, = 0. The origin
of this asymmetry is not completely clear as yet. A
sharp crossover between the two Gaussian distributions
at Sg & 3 is nearly independent of the parameters N
and ty, as is the top distribution below crossover. On
the contrary, the tail distribution essentially depends
on both parameters in a rather complicated way. The
origin of the difference between the two Gaussian dis-
tributions apparently lies in dynamical correlations. In
spite of a fast decay (see Sec. 1), the correlation in
Arnold map (1.1) does affect somehow the big entropy
fluctuations except in the limiting case N > #; (two
lower lines in Fig. 3) where the correlations vanish be-
cause of random and statistically independent initial
conditions of many trajectories.

For any fixed parameters N and ¢y, the fluctuations
are bounded (F < 1)

3

1Se| < V/3Nty,

which follows from Eqs. (2.6), (3.3), and (3.4). This is
clearly seen in Fig. 3 for minimum Nt; = 5. If only

(3.6)

the force F' is fixed instead, the relative entropy fluc-
tuations s .
¢ I J—

AR + 7 (3.7)
are also restricted but can be arbitrarily large for small
F' and, moreover, can have either sign. This implies a
nonmonotonic growth of the entropy at the expense of
the segments with S; < 0.

The probability (in the number of trajectory seg-
ments) of extremely large fluctuations, Egs. (3.6) and
(3.7), is exponentially small (see Eq. (3.5) and below).
However, the probability of the fluctuations with a ne-
gative entropy change (S; < 0) (without time reversal!)
is generally not small at all, reaching 50% as 7 — 0
(for arbitrary N and ¢;). In principle, this is known, at
least for the systems with an equilibrium steady state
(Sec. 1). Nevertheless, the first, to our knowledge, di-
rect observation of this phenomenon in a nonequilib-
rium steady state [27] has so much staggered the au-
thors that they even entitled the paper «Probability
of Second Law violations in shearing steady state». In
fact, this is simply a sort of peculiar fluctuations that
are big not so much with respect to their size but pri-
marily to their probability (cf. discussion in Sec. 1).
However, the important point is that all those negative
entropy fluctuations (transforming the heat into work)
are randomly scattered among the others of positive en-
tropy, and for making any use of the former a Maxwell’s
demon is required who is known by now to be well in
a «peaceful coexistence» with the Second Law.

A Gaussian distribution of the entropy fluctuations
shifted with respect to S; = 0 in a nonequilibrium
steady state first observed in [27] was also theoreti-
cally explained there in terms of the Lyapunov expo-
nents (see Eq. (8) in [27]). This was the first form of
what is now called the «Fluctuation Theorem» (see,
e.g., D. Ruelle in [6, p. 540]). In our opinion, a more
physical representation of this theorem would be the
ratio of the two moments in Eq. (3.4). In any rep-
resentation, the theorem essentially depends on both
the underlying dynamics and the type of fluctuations
considered (see Sec. 4 and 5).

Another interesting limit is 1 — ¢ty — oo (a single
segment) [27] with 7 — 0, which is possible if F' — 0
too. In this case, the probability of zero entropy change
in the entire motion also approaches 50%. However, the
probability of any negative entropy fluctuation vanishes
(see Eq. (3.3)). An interesting question is whether there
exists some intermediate region of parameters where
the latter probability remains finite. In other words,
are the Poincaré recurrences to negative entropy change
S; < 0 possible in a nonequilibrium steady state as they

14*
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are in the equilibrium (Sec. 1)? The answer to this Sq
question is given by the statistics of the global fluctua- 2 B N
tions. L \ i
1L
4. NONMONOTONIC ENTROPY i |
PRODUCTION: GLOBAL FLUCTUATIONS 0

The definition of the global fluctuations is similar
to, yet essentially different from that of the local fluctu-
ations in the previous Section. Namely (cf. Eqs. (3.3)
and (3.4)), the principal dimensionless random variable
Sy (t) now explicitly depends on time,

S, (1) = S = (St) _ St -7 (1)
o o
where S(t) is calculated from Eq. (2.6), S(0) = 0,

(S(t)) = NtF? = 1 (see Eq. (3.2)), and the rms fluctu-
ation o is given by the same relation (3.4) with a new
time variable T,

(4.2)

In other words, the global fluctuations are described as
a diffusion with the constant rate

(4.3)

The global fluctuations can also be viewed as a con-
tinuous time-dependent deviation of the entropy from
its average growth unlike the local fluctuations in the
ensemble of fixed trajectory segments (Sec. 3). Now,
the primary goal is to find whether the entropy can
reach negative values S(t) < 0 as t — oco. As was dis-
cussed in the previous Section, this is possible at some
finite segments of the trajectory with the probability
rapidly decreasing (but always finite) as the segment
length grows.

In Fig. 4, three examples of global fluctuations
are shown in a slightly different representation (cf.
Eq. (4.1))

(4.4)

chosen in order to always keep the most important bor-
der S(r) = 0 in front of one’s eyes (with S,(r) = —1,
the horizontal line in Fig. 4). Eventually, all trajecto-
ries converge to the average entropy growth (the hori-
zontal line S, = 0 in Fig. 4). During the initial stage of
diffusion, the probability of negative entropy is roughly
50%, similar to the local fluctuations (Sec. 3). However,
the situation cardinally changes at 7 > 1, with all the
trajectories moving away from the border S = 0. More-
over, the relative distance to the border with respect
to the fluctuation size increases indefinitely.

212

-

_/V

1 = ey
7/
L \</ ﬂd S<0
/
-2 vt v VoA vt
107* 1072 107' 10° 10! 10?
T

Fig.4. Time dependence of the reduced global fluctu-
ations Sy (7), Eq. (4.4): three sets by N = 10 trajecto-
ries with different initial conditions but the same initial
entropy S(0) = 0 and F' = 0.01. Horizontal solid line
Sy = 0 represents the average entropy growth. The
lower solid line S = 0 is the border between positive
and negative entropy. A pair of dashed curves corre-
sponds to the standard rms fluctuation o, Eq. (4.2),
and two solid curves represent the maximum diffusion
fluctuations o3, Eq. (4.5)

The fluctuation size is characterized by two param-
eters. The first one is the well-known rms dispersion o,
Eq. (4.2) (two dashed curves in Fig. 4), which estimates
the fluctuation distribution width. In the problem un-
der consideration, the most important is the second
characteristic, o, (two solid curves in Fig. 4), which
sets the maximum size (the upper bound) of the dif-
fusion fluctuations, and therefore ensures against the
recurrence into the region S < 0 in a sufficiently long
time. The ratio of the two sizes

Tb

R,(1) = — =+/2Inln (Ar) (4.5)

is given by the famous Khinchin law of iterated loga-
rithm [28].

We emphasize again that the principal peculiarity
and importance of the border o, is that it character-
izes a sharp drop of the fluctuation probability down to
zero (in the limit as 7 — o0). In other words, almost
any trajectory approaches infinitely many times arbi-
trarily close to this border from below, but the number
of border crossings remains finite. In Fig. 4, this corre-
sponds to the eternal confinement of trajectories in the
gap between the two solid curves.

This surprising behavior of random trajectories is
well known to mathematicians but, apparently, not to
physicists. In Fig. 5 several examples of the fluctuation
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Fig.5. Histogram of the global fluctuations in the num-

ber of entries per bin of the width 0.02: F = 0.01;

N = 100; R, ~ 3. From bottom to top in the left-

most part of figure: 7 = 10° (dashed line); 10° (two

solid lines, different initial conditions); 107 (circles); the

total motion time ¢ = 100 7 iterations. For compari-

son, the smooth dashed line shows unbounded Gaussian
distribution (4.7) for 7 = 10°

distributions are shown for illustration of that unpene-
trable border.

In the Khinchin theorem, the factor A in Eq. (4.5)
is irrelevant and is set to A = 1. This is because the
theorem can be proved in the formal limit as 7 — oo,
only as most theorems in the probability theory (as well
as in the ergodic theory, by the way). However, in nu-
merical experiments on a finite time, even if arbitrarily
large, one needs a correction to the limit expression.
In addition, it would be desirable to look at the bor-
der over the whole motion down to the dynamical time
scale determined by the correlation decay. In the model
under consideration, it is of the order of the relaxation
time ¢, ~ 1 (see Sec. 1). The additional parameter A
can be fixed by the condition

oo(m) = o(n), ™ =NF?, (4.6)
for minimal ¢ = 1 on the dynamical time scale of the

diffusion. It then follows from Eq. (4.5) that
AT1 == 52,

which is used in Figs. 4 and 5. The condition assumed
is, of course, somewhat arbitrary but the dependence
on A remains extremely weak provided 71 < 1.

The histogram in Fig. 5 is given in the absolute
numbers of trajectory entries into bins in order to
graphically demonstrate a negligible number of excep-
tional crossings of the border. The exact formulation of
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the Khinchin theorem admits a finite number of cros-
sings in infinite time. Actually, all those «exceptions»
are concentrated within a relatively short initial time
interval 7 ~ 1 (for the accepted A value, see Fig. 4).

The distribution of entropy fluctuations between
the borders is characterized by its own big fluctuations
due to a large time interval (~ 7) required for crossing
the distribution region (see Eq. (4.3)). The spectacu-
lar precipice of many orders of magnitude is reminiscent
of a diffusion «shock wave» cutting away the Gaussian
tail. The unbounded Gauss curve is also shown in Fig. 5
by the smooth dashed line.

In terms of the variable S,, = S,/R,, the stan-
dard Gauss law is no longer a stationary distribution
(cf. Eq. (3.5)),

SZ
V21 G(S,,) = R, (7) exp <—§R§(7)>. (4.7)
Both the probability density at the border |Sy,| = 1
and the integral probability beyond that are slowly de-
creasing o< 1/1In (A7). The «shock wave» decays but
still continues to «hold back» the trajectories.

Thus, unlike unrestricted entropy fluctuations out
of the equilibrium steady state (Sec. 1), the strictly re-
stricted fluctuations in the nonequilibrium steady state
are well separated, in a short time, from the negati-
ve-entropy region, separated in a large excess that
grows in time. In other words, the Poincaré recurrences
to any negative entropy quickly and completely disap-
pear leaving the system with ever increasing, even if
nonmonotonically, entropy.

Ag the nonequlibrium steady state involves a heat
bath of the infinite phase-space volume (or its nice sub-
stitute, the Gauss heat bath), the Poincaré recurrence
theorem is not applicable. However, the «anti-recur-
rence» theorem is not generally true either. For exam-
ple, the entropy repeatedly crosses the line S = 7 of
the average growth in spite of the infinite heat bath,
yet it does not do so for the line S = 0 of the initial
entropy.

We note that the new ratio a7 /(S(t)) (cf. Eq. (3.4))
represents another «Fluctuation Theorem» as com-
pared to the known one mentioned in Sec. 3.

5. BIG ENTROPY FLUCTUATIONS IN
CRITICAL DYNAMICS

The strict restriction of the global entropy fluctu-
ations in a nonequilibrium steady state considered in
the previous Section is a result of the «normal», Gaus-
sian, diffusion of the entropy with a constant rate (4.3)
and with the surprising unpenetrable border (4.5). In
turn, this is related to a particular underlying dynamics
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of model (1.1) with very strong statistical properties.
We note that the border (4.5) has a statistical nature
because it is much less than the maximum dynamical
fluctuation (3.7).

However, it is well known by now that the homo-
geneous diffusion can in general be «abnormaly» in the
sense that the diffusion rate depends on time,

D(t) xt?, —1<¢cp<1, (5.1)

where cp is the so-called critical diffusion exponent.
The term «critical» refers to a particular class of such
systems with a very intricate and specific structure of
the phase space (see, e.g., [29] and references therein).
The «normal» diffusion corresponds to c¢p = 0, while
a positive cp > 0 represents a superfast diffusion with
the upper bound ¢p = +1, the maximum diffusion rate
possible for a homogeneous diffusion. The latter is, of
course, the most interesting case for the problem under
consideration here. A superslow diffusion for a nega-
tive ¢p < 0 is also possible with the limit ¢p = —1,
which means the absence of any diffusion for c¢p < —1.
An interesting example of a superslow diffusion with
cp = —1/2 was considered in [30]. Besides a particu-
lar application to the plasma confinement in magnetic
field, the example is of a special interest because this
slow diffusion is the result of the time-reversible diffu-
sion of particles in a chaotic magnetic field. For other
examples and various discussions of abnormal diffusion,
see [31].

A number of dynamical models exhibiting the su-
perfast diffusion are known including the limiting case
ep = 1[29, 32]. Interestingly, a simple simulation of
the abnormal diffusion is possible by a minor modifica-
tion of the model under consideration. It concerns the
additional 1D map (2.6) only, which now becomes

S =S+ (2pmF + Ft,, (5.2)
where the new variable t, is defined by a simple relation

(5.3)

with s being the distance from any of the two borders
p1 = £0.5 homogeneously distributed within the inter-
val (0 < s < 1). The quantity ¢; > 1 describes the
sticking of a trajectory in the «critical structure» con-
centrated near s = 0. Actually, the model does not
involve this structure, however its effect is simulated
by the «sticking time» s that enhances both the fluc-
tuations and the average entropy (5.2). In a sense, this
simulation is similar in spirit to that of the Gauss heat
bath. All the properties of that sticking are described
by a single parameter cg, the critical sticking exponent
(0 < ¢s <1). In particular, it is directly related to the
diffusion exponent cp (see below).

ts:37657 521_2|p1|

3
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The statistical properties of the abnormal diffusion
in this model are determined by the first two moments
of the t4 distribution, which can be directly evaluated
from the above relations as follows. For the first mo-
ment, we have

1
1
(ts) = /ts(s)ds = <l ()
0 S
and 1
(ts) ~In— ~Int, c;=1. (5.4b)

S1
In the latter case the integral diverges and is deter-
mined by the minimum s = s; ~ 1/t reached over
time ¢ that is the total motion time in the iterations of
the map. It must be distinguished from the «physical
time» in a true model of the critical structure,

cs < 1,
1—65 s )

(5.5)

tInt, cs=1.

Similarly the second moment is given by three relations:

1 1
t2 = s 50 .
)= 1= <3 (5.64)
for the normal diffusion,
1
(t3) ~ 1ng ~lnt, e =g, (5.6b)
in the critical case, and
1-2c¢, 2cs—1
S 1= 1
t2) o L ~ - s <1 5.6
G~ i~ 3<¢<h (569

for the superfast diffusion.

The average entropy production is found from

Eq. (5.2) as

(S(t)) = NF?t{t;) = NF*t = 1, (5.7)
with the redefined time variable 7 (cf. Eq. (3.3)). In
this Section, we only consider the simplest case of a
single trajectory (NN = 1).

Evaluating the superfast diffusion requires a slightly
different averaging ((2p1ts)?) (see Eq. (5.2)). However,
it is easily verified that asymptotically as 7 — oo, the
difference with respect to Eq. (5.6¢) vanishes, and one
arrives at the following estimate for the critical rms
dispersion o.;:

o (7)

Ocr
B2

= D) = FX(2)t =

(1 — )2
2cs — 1

T2CS

F4CS —2

(5.8a)

if 1/2 < ¢s <1 (5.6¢), and
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Oer(T) T
B Fln(r/F?)
in the most interesting limiting case where ¢y = 1. The
empirical factor B ~ 1 accounts for all the approxima-
tions in the above relations.

The limit as ¢; — 1 in Eq. (5.8a) crucially differs
from the limiting relation (5.8b). The origin of this dis-
crepancy is Eq. (5.4a). A more accurate evaluation for
cs ~ 1 reads

(5.8b)

_1-exp [(1—cs)Insy]

5.9
Lo ()
where s ~ 1/t is the minimum s over ¢ iterations of the
map (cf. Eq. (5.4b)). Relation (5.4a) is therefore valid
under the condition elnt > 1 only (with € = 1 — ¢5),
while in the opposite limit, we have (ts) ~ Int as for

¢s = 1, Eq. (5.4b). The crossover between the two
scalings occurs at
1/e€
toro ~ €€ oo ~ S F2. (5.10)

€

The deviation from Eq. (5.8a) is essential for a suffi-
ciently small € only.
The ratio of fluctuations to the average entropy pro-

duction is given by the reduced entropy (see Eq. (4.4))
Oer B

Sy=t—r~+t—— 5.11

9 T Fln(r/F?)’ ( )

where the latter expression is estimate (5.8b) for the
rms fluctuations. They are slowly decreasing with time,

d at
e = F2exp (1/F),

T 2 Ty

the rms line crosses the border S, = —1 of zero entropy.
Afterwards, the entropy remains mainly positive. To
be more precise, the probability for a trajectory to en-
ter into the negative-entropy region is systematically
decreasing with time, although rather slowly. This
must be compared with the F-independent crossover
7o = 1/3 and a rapid drop of the probability to return
to S < 0 for the normal diffusion (Sec. 4).

However, there exists another mechanism of big
fluctuations, specific for the critical dynamics. Namely,
a separated individual fluctuation can be produced as
the result of a single extremely big sticking time t;
over the total motion up to the moment the fluctua-
tion springs up in a single map iteration. We recall
that in the present model, each sticking corresponds to
just one map iteration. The increments of dynamical
variables in this jump are obtained from Eq. (5.2) as
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AS = +Ft,, At =F?%, (5.12)
where ts > 1 (with 2p; &~ 1) is assumed (a big fluctu-

ation). The reduced fluctuation is then given by
F
S n ts n 1/F .
T+ F?t, 1+7/A7

~

Sy~ (5.13)
The maximum single sticking time over the motion time
t is, on the average,

(t;) ~tInt = —

= (5.14)

Therefore, a single fluctuation (5.13) has the upper

bound A

Sil S 5 (515)

where an empirical factor A ~ 1 is introduced similarly
to Eq. (5.8b).

The border (5.15) considerably exceeds the rms dif-
fusion fluctuation (5.11) and, even more importantly,
the former never crosses the zero-entropy line S, = —1.
Therefore, the critical fluctuations repeatedly bring the
system into the negative-entropy region. This is be-
cause the upper bound (5.15) does not depend on time
7 provided At > 7 in Eq. (5.13). However, in a chain
of successive fluctuations, the values of 7 in Eqs. (5.13)
and (5.14) are not generally equal. While in the former
relation it is always the total motion time as assumed
above, it must be the preceeding period of fluctuations
in Eq. (5.14): 7, — P, < 7,, where n is the serial
number of fluctuations. Hence, the approach to the
upper bound (5.15) is only possible under the condi-
tion P, > P,_1, which implies P, ~ 7,. Thus, the
fluctuations become more and more rare with the pe-
riod growing exponentially in time. In other words, the
fluctuations are stationary in In 7 with a sufficiently big
mean period (In P) ~ 5 (see Fig. 6).

In Fig. 6, an example of several big critical fluctu-
ations in the limiting case ¢ = 1 is presented for five
single suffuciently long trajectories with different initial
conditions and the motion time up to 7 ~ 5 - 10? and
t = 10'0 iterations. To achieve such a long time, the
force was increased up to F = 0.1 (see Eq. (5.14)).

Unlike a similar Fig. 4 for the normal diffusion, only
several big fluctuations with F'|S,| > 0.3 are presented
in Fig. 6. For the full picture of critical fluctuations, the
required output becomes formidably long. The distri-
bution of all fluctuations, independent of time, is shown
in Fig. 7.

Each fluctuation in Fig. 6 is presented by a pair of
F'S, values connected by the straight line: one at a
map iteration just before the fluctuation (circles), and
the other (stars) at the next iteration when the fluctu-
ation springs up (see above). Both are plotted at the

~
~
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Fig.6. Time dependence of 26 big fluctuations in criti-
cal dynamics: 5 single trajectories up to 10'° iterations,
¢s =1, F = 0.1. Only fluctuations with F|S,| > 0.3
are shown, each by a pair of points connected by the
straight line: the big fluctuation itself (stars) and at the
preceding map iteration (circles, see text). Two dashed
curves show the rms fluctuations of F'|S,|, Eq. (5.11),

with B = 1. Horizontal dotted lines mark the upper
bound, Eq. (5.15), with A =1
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Fig.7. Histogram of critical fluctuations in the num-

ber of entries per bin of the width 0.007 for the data in

Fig. 6. The border S = 0 corresponds to 'S, = —F =

= — 0.1. The points for the longest trajectory are
connected by line

same, latter, 7 to follow the pairs. This slightly shifts
the circles to the right.

The most important, if only preliminary, result of
numerical experiments is the confirmation of the fluctu-
ation upper bound (5.15) that is independent of time.
As expected, the circles represent considerably smaller

F|S4| values, roughly following the diffusive scaling
(5.11).

The border (5.15) qualitatively reminds the strict
upper bound for the normal diffusion (Sec. 4), includ-
ing a logarithmic ratio with respect to the rms size
(4.5), as compared to the ratio

Rer(1) = 1In(1/F?) (5.16)
in the critical diffusion. An interesting question
whether the new, critical, border is also as strict as
the old one in the normal diffusion remains, to our
knowledge, open, at least for the physical model un-
der consideration where the superdiffusion is caused
by a strong long-term correlation of successive entropy
changes due to the sticking of trajectory.

However, for a much simpler problem of statis-
tically independent changes, various generalizations
of Khinchin theorem to the abnormal diffusion were
proved by many mathematicians (see, e.g., [33]). In
the present model, this is precisely the case for the de-
scription in map’s time ¢ with statistically independent
iterations. The most general and complete result was
recently obtained by Borovkov [34]. In the present no-
tation, it can be approximately represented in a very
simple form for the ratio

Tp

RC’I" = — ~ (lnt)cs (5.17)
o

in the entire superdiffusion interval (1/2 < ¢; < 1). For

the most important reduced fluctuation (5.13), we then

arrive at the two relations

cs—1
Ty T T \ s
for ¢y < 1 and - 1
Syl S 2~ = 5.18b
‘ g|r\./ T F ( )

in the limiting case ¢ = 1. The latter confirms estimate
(5.15), which, in turn, is in a good agreement with the
empirical data in Fig. 6. In any event, a simple physical
estimate (5.15) seems to provide an efficient description
of the fluctuation upper bound.

In Fig. 7, an example of all (at each map’s iteration)
fluctuations is shown for the data from the same runs
as in Fig. 6. In addition to very large overall distri-
bution fluctuations, a sharp drop by about four orders
of magnitude is clearly seen near the expected upper
bound (5.15). It is similar to the drop in Fig. 5 for the
normal diffusion.

Thus, the critical diffusion results in infinitely many
recurrences far into the negative-entropy region S < 0
(for F < 1), the sojourn time in that region being com-
parable to the total motion time. Of course, the former
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is less than 50% on the average, so that asymptotically
in time the entropy is always growing. In this respect,
the global critical fluctuations are similar to the local
ones in the normal diffusion (Sec. 3).

We note, however, that the upper bound o,/7 ~
~ 1/F (5.18b) is permanent in the strict limit ¢; = 1
only. For any deviation from the limit e = 1 — ¢5 > 0,
this bound lasts a finite time determined by the
crossover (5.10) (1 < FZexp(1/e)/e) to decreasing
op/T — 0, Eq. (5.18a). Another interesting represen-
tation of this intermediate behavior is the crossover in

the sticking exponent,
1

< — = ,
EN ln(T/FQ) F|Sg|,

(5.19)
which is actually shown in Fig. 6 by the upper dashed
line. For the longest 7 = 5 10%, the latter crossover is
€cro = 0.037.

Again, the new cardinally different critical ratio
o2/(S(t)) and the distribution of entropy fluctuations
lead to yet another «Fluctuation Theorem» as com-

pared to the two previous ones mentioned in Secs. 3
and 4.

6. DISCUSSION AND CONCLUSIONS

In the present paper, the results of extensive nu-
merical experiments on big entropy fluctuations in a
nonequilibrium steady state of classical dynamical sys-
tems are presented and their peculiarities are analyzed
and discussed. For comparison, some similar results
for the equilibrium steady state are briefly described
in the Introduction (they will be published in detail
elsewhere [10]).

All numerical experiments have been carried out on
the basis of a very simple model, the Arnold cat map
(1.1) on a unit torus, with only three minor, but im-
portant, modifications that allowed comprising all the
problems under consideration. The modifications are:

(1) Expansion of the torus in p direction (1.2),
which allows more impressive diffusive fluctuations out
of the equilibrium steady state (Fig. 1 in Sec. 1).

(2) Addition of 1D map (2.5) with the constant
driving force F' and with an ingenious time-reversible
friction force that represents the so-called Gauss heat
bath and which allows modeling a physical thermostat
of infinitely many degrees of freedom [20, 21]. This is
the principal modification in the present studies of fluc-
tuations in a nonequilibrium steady state (Secs. 3-5).

(3) Addition of a new parameter t5, Eq. (5.3), in
map (5.2) which allows for the study of very unusual
fluctuations of an «abnormaly, critical, dynamical dif-
fusion (Sec. 5).
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Big fluctuations in the equilibrium steady state
are briefly considered in Sec. 1. The simplest one of
this class, which we call the Boltzmann fluctuation, is
shown in Fig. 1. It is obviously symmetric under time
reversal, and at least in this case, therefore, there is
no physical reason for the notorious «time arrow» con-
cept. Nevertheless, a related concept, for example, the
thermodynamic arrow, pointing in the direction of the
average increase of entropy, makes sense in spite of the
time symmetry. The point is that the relaxation time
of the fluctuation is determined by model parameter C
only, and does not depend on the fluctuation itself. On
the contrary, the expectation time for a given fluctu-
ation, or the mean period between successive fluctua-
tions, rapidly grows with the fluctuation size and with
the number of trajectories (or degrees of freedom).

Besides the simplest Boltzmann fluctuation, vari-
ous others are also possible, typically with a much less
probability. One of those — the two correlated Boltz-
mann fluctuations, which we call the Schulman fluctu-
ation — was recently described in [36] using the same
Arnold cat map. However, this model is not related to
cosmology as was speculated in [36]. At least, the Uni-
verse and most of the macroscopic phenomena therein
require qualitatively different models, ones without an
equilibrium steady state. These structures do appear
(with probability 1) as a result of certain regular collec-
tive processes that lead to very complicated nonequi-
librium and inhomogeneous states with ever increasing
entropy. This is in contrast with a constant, on the
average, entropy in ES systems.

A nonequilibrium steady state, the main subject of
this paper, is but a little, characteristic though, piece
of the chaotic collective processes. In model (2.5), the
driving force F represents a result of some preced-
ing collective processes, the spring of free energy, and
the Gauss friction does so for an infinite environment
around, the sink of the energy, converting the work into
heat, on the average. An interesting peculiarity of these
systems is that the big fluctuations can, and under cer-
tain conditions, do the opposite, converting some heat
back into the work.

Two types of fluctuations were studied:

(i) the local ones on a set of trajectory segments
of length-t; iterations and of the entropy change .S;
(Sec. 3), and

(i) ones of the global entropy S(t) along a trajec-
tory with respect to the initial entropy set to zero,
S(0) =0 (Secs. 4 and 5).

The former were found to have a stationary unre-
stricted distribution close to the standard Gauss law
with some enhancement of an unknown mechanism for
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large fluctuations. The study of the latter effect will be
continued. The distribution is symmetric with respect
to the average entropy, growing in proportion to time
in agreement with previous studies on a more compli-
cated (and more realistic) model [27]. Even though the
distribution is asymmetric with respect to zero entropy
change, the probability of negative S; < 0 is generally
not small provided F? Nt; < 1. This phenomenon, ap-
parently a new one in the nonequilibrium steady state,
was first observed in [27] but has been interpreted there
as a violation of the Second Law. It seems to be the
reflection of a common, but wrong in our opinion, un-
derstanding of the Second Law as a monotonic growth
of the entropy, neglecting all the fluctuations including
the large ones. The nonmonotonic rise of entropy is
clearly seen, for instance, in Fig. 4, and discussed in
detail in Secs. 3 and 4.

The behavior of the global entropy is completely
different as the data in the same Fig. 4 demonstrate
(Sec. 4). Although the entropy evolution remains non-
monotonic, it quickly crosses the line of the initial zero
entropy and does not return into the negative entropy
region S < 0. This is insured by the famous Khinchin
theorem about the strict upper bound for the diffusion
process. At least for physicists, this limitation of sta-
tistical nature for a random motion is surprising and
apparently less known. That unidirectional evolution
is the most important distinction of the nonequilibrium
steady states from the equilibrium ones. In particular,
it leads to a certain asymmetry of the entropy distri-
bution sometimes called the «Fluctuation Theorem» or
«Fluctuation Lawy». However, one should bear in mind
that this law essentially depends on the underlying dy-
namics as briefly discussed in Secs. 3-5.

This characteristic feature of nonequilibrium steady
state further justifies the concept of the thermodynamic
arrow pointing to a larger, on the average, entropy. Yet,
again it is not related to the properties of time. Of
course, the entropy will systematically decrease upon
formal time reversal, which is also the case with the
model under consideration because the Gauss heat bath
is time reversible. Within the steady state approximar-
ion, or rather restriction, this would be an infinitely
large fluctuation that never comes to the end. However,
this fluctuation would never occur either, as a result of
the natural time evolution of the system, opposite to
the case of equilibrium fluctuations. The ultimate ori-
gin of that crucial difference is that the former process,
even asymptotically in time, is a tiny little part of the
full underlying dynamics of an infinite system. In par-
ticular, the initial state S(0) = 0 is not a result of the
preceding fluctuation, as is the case in ES, but has been
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eventually caused, for instance, by instability of the ini-
tial ES at a very remote time in the past. If one imag-
ined the time reversal at that instant, nothing would
change because the thermodynamic arrow does not de-
pend on the direction of time provided, of course, the
time reversible fundamental dynamics. Precisely this
universal overall dynamics unifies the time for all the
interacting objects like particles and fields throughout
the Universe. In particular, it is incompatible with the
two opposite time arrows (an old Boltzmann’s hypoth-
esis [2] that still has some adherents [36]).

Coming back to nonequilibrium steady states, it is
worth mentioning that the regularities of the fluctua-
tions in those, both local and global, can be applied, at
least qualitatively, to a small part of a big fluctuation
in a statistical equilibrium (Fig. 1) on both sides of the
maximum. This interesting question will be considered
in detail elsewhere [10].

Finally, some preliminary numerical experiments on
the global entropy fluctuations and the theoretical anal-
ysis were carried out in a special case of the critical
dynamics, which turned out to be the most interesting
one for the problem in question (Sec. 5). The point
is that the critical dynamics leads to the «abnormal»
superdiffusion with the rate D o 72¢:~! and the rms
fluctuation size .. x 7¢%, where ¢s; is a new param-
eter of the third model (1/2 < ¢; < 1). This implies
that for cs &~ 1, the reduced entropy [S,| o< 7%=~ de-
creases very slowly compared to the normal diffusion
|Sg| o 1/4/7. In the limiting case where ¢, = 1, the
entropy |Sg| oc 1/1In7 is still decreasing. However, in
addition to diffusive fluctuations, there is a set of in-
finitely many separated fluctuations whose size does
not decrease with time (Fig. 6). In other words, these
preliminary numerical experiments suggest that in the
limiting case of the critical dynamics, the Poincaré re-
currences to the initial state S = 0 and beyond repeat-
edly occur without limit. These are preliminary results
to be confirmed and further studied in detail.

In this paper, we only considered the fluctuations
in classical mechanics. In general, the quantum fluc-
tuations must be significantly different. However, ac-
cording to the Correspondence Principle, the dynamics
and statistics of a quantum system in the semiclassi-
cal regime must be close to the classical ones on the
appropriate, generally finite, time scales (for details,
see [12, 35]). Interestingly, the computer classical dy-
namics (that is, the simulation of a classical dynamical
system on digital computer) is of a qualitatively simi-
lar character. This is because any quantity is discrete
(«overquantized») in computer representation. As a re-
sult, the correspondence between the classical contin-
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uous dynamics and its computer representation in nu-
merical experiments is restricted to certain finite time
scales as in quantum mechanics (see the first two ref-
erences in [35]).

Discreteness of computer phase space leads to an-
other peculiar phenomenon: generally, the computer
dynamics is irreversible because of the rounding-off op-
eration unless the special algorithm is used in numeri-
cal experiments. Nevertheless, this does not affect the
statistical properties of chaotic computer dynamics. In
particular, the statistical laws in computer representa-
tion remain time-reversible in spite of the (nondissipa-
tive) irreversibility of the underlying dynamics. This
simple example demonstrates that contrary to a com-
mon belief, the statistical reversibility is a more general
property than the dynamical one.

In the very conclusion, we briefly remark on a very
difficult, complicated and vague problem, the so-called
(physical) causality principle, i.e., the time-ordering
of the cause and the effect. A detailed discussion of
this important problem will be published elsewhere
[37]. We only note the example of a simple Boltzmann
fluctuation shown in Fig. 1. We adhere to the idea of
statistical nature of causality. Indeed, the cause is,
by definition, an «absolutely» independent event that
is only possible in the chaotic dynamics. Moreover,
the concept of cause loses its usual physical meaning
in any purely dynamical description. For example,
the initial conditions precisely determine the entire
infinite trajectory (—oo < t < o0), i.e., both the
future and the past of such a «cause». For a single
Boltzmann fluctuation, an appropriate cause is the
minimum entropy (at ¢ = ¢; in Fig. 1). This was
exactly the procedure used in numerical experiments
for the location of a fluctuation of an approximately
given size. The principal difference from the exact
dynamical initial conditions is that the former cause is
an approximate (e.g., average) fluctuation size, which
is sufficient for the complete statistical description
of the fluctuation, however it leaves enough freedom
for the independence from other events, including the
preceding fluctuations. However, this cause determines
not only the future relaxation of the fluctuation (in
agreement with the causality principle) but also the
past rise of the same fluctuation, which is a violation
of causality, or acausality (spontaneous rise of a
fluctuation), or anti-causality, which is perhaps the
most appropriate term. Upon the time reversal, the
causality /anticausality exchange, which allows for the
concept of the causality arrow, however this is not
related to the physical time. In this philosophy, the
directions of the thermodynamic and causal arrows,
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coincide independently of the direction of time. An
important point of this philosophy is that the «arrow»
concept is related to the interpretation of a physical
phenomenon rather than to the phenomenon itself.
In particular, the question «how to fix or maintain
the arrow» [36] is up to the researcher alone. In a
more complicated Schulman’s double fluctuation, the
causality mechanism becomes more interesting [36],
and will be discussed in [37] from a different point of
view.

I am grateful to Wm. Hoover for attracting my
attention to a new class of highly efficient dynamical
models with the Gauss heat bath and for stimulating
discussions and suggestions. I very much appreciate
the initial collaboration with O. V. Zhirov. I am also
indebted to A. A. Borovkov for elucidation of Khinchin
theorem and of its recent generalizations to the «abnor-
mal» superdiffusion.
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