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Cavitation in the liquid helium isotopes of *He and *He is considered. It is shown that the dissipative processes
play an important role in the growth of the stable phase nucleus in the normal liquid *He. This leads to the lack
of the quantum behavior of cavitation in this system down to 2 mK, which is in contrast to the thermal-quantum
crossover in the cavitation of the superfluid “He at 600 mK. Below 180 mK, the dissipative *He kinetics is of
the Knudsen type. The high value 600 mK for the transition into the quantum kinetic behavior in “He is related
to the compressibility of a liquid, which, in particular, leads to a noticeable emission of sound with cavitation.
The recent experiments on quantum cavitation in the liquid helium isotopes *He and *He are discussed.

PACS: 64.60.Qb, 47.55.Bx, 67.20.+k

1. INTRODUCTION

At low temperatures, the first-order phase transi-
tion associated with the formation of droplets of a sta-
ble phase occurs via quantum tunneling through the
potential barrier originating from the positive inter-
facial tension between the phases. Such macroscopic
underbarrier motion is associated with the flow of the
metastable fluid towards the droplet due to the mass
difference between the stable and metastable liquids [1].
The growth of the droplet in the metastable phase is
also accompanied by the dissipative effects due to the
lack of equilibrium in the medium during the droplet
evolution [2]. The direct experimental observations of
the dissipation effects accompanying the kinetics of the
first-order phase transition are absent so far.

Recently, there was performed an experiment on the
kinetics of the first-order phase transition at the cavita-
tion in superfluid *He [3] and normal liquid *He [4]. In
the experiment [5], the large pressure oscillations in he-
lium are produced by focusing ultrasonic waves at the
center of the cell that has four windows providing an
optical access in the two perpendicular directions. The
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method is used to obtain the negative pressure region
in the bulk of the liquid in order to avoid the surface
nucleation. The cavitation is found to be a stochastic
process. A significant cavitation rate is observed near
the spinodal pressure.

The investigation of cavitation has a long his-
tory. First of all, this involves the investigation of the
crossover from thermal to quantum behavior. Accord-
ing to the first estimates [6] of the cavitation rates at
which bubbles nucleate in a liquid *He, it has been
expected that quantum nucleation should dominate
over the thermally activated one at temperatures be-
low ~ 0.3 K and that for this temperature range, the
pressure providing a noticeable nucleation rate or the
tensile strength should be about P ~ —15 atm. Later,
Maris and Xiong [7] attracted one’s attention to the
possibility that before this pressure can be achieved,
the liquid “He becomes unstable against the long wave-
length density fluctuations once the square of the sound
velocity becomes negative. The extrapolations of the
sound velocity into the negative pressure range and
some numerical calculations suggest that the sound ve-
locity at the pressure P vanishes as

¢(P) o (P = Fe)"
with the exponent v close to 1/3 + 1/4. The critical
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pressure P., i.e., the pressure at the spinodal point, was
estimated as P, = —(8-9) atm at absolute zero for *He.
For liquid 3He, it was expected that P, = —(2-3) atm
[8]. According to [9], the crossover temperature T™*
from thermal to quantum behavior must be about
125 mK for *He and 220 mK for *He. The analysis
is based only on the thermodynamic properties of *He
and “He, i.e., on the chemical potentials and surface en-
ergies. The kinetic properties of the system (relaxation
processes) were not involved.

The above result for T* was also supported by
the description of homogeneous and unhomogeneous
states of liquid helium within the density-functional
method [10]. In addition, the liquid-vapor phase di-
agram in *He and *He was analyzed with the help of
this method [10] in the vicinity of the spinodal line.
The spinodal pressures P, = —9 atm for liquid “He
and P. = —(2-3) atm for liquid *He were found. A
Monte Carlo simulation of the critical behavior of liquid
4He at negative pressure in the vicinity of the spinodal
curve [11] was performed.

The dissipation [2] and sound emission [12] strongly
affect the underbarrier nucleation kinetics [13]. Re-
cently, the dissipation effects in liquid *He have also
been considered within the density-functional method
using the hydrodynamic description for the metastable
fluid [14].

The nucleation of bubbles in *He at negative pres-
sures and temperatures down to 65 mK is studied ex-
perimentally [5]. The results are consistent with the
idea that the nucleation is a result of the quantum tun-
neling through the potential barrier below 0.6 K. The
quantum nucleation of bubbles occurs at the negative
pressure P, = —9.23 bar, which is close to the spinodal
pressure, i.e., although only 0.29 bar above. For the
normal 3He, although the observed cavitation threshold
is smaller and agrees with the prediction P. = —3.1 bar,
the results are too preliminary to assert the quantum
regime of the cavitation above 40 mK.

Here, we emphasize two points that permit us to
understand the disagreement between theory [9] and
experiment [5]. First of all, it is the energy dissipation
during the underbarrier motion of a nucleus of the sta-
ble phase in the normal >He that reduces the quantum
nucleation rate. The second point is that the exper-
iments are performed near the spinodal line and the
sound velocity vanishes at P = P,. In this case, the ki-
netic energy of a growing bubble K falls down and the
crossover temperature T increases [12,13]. This may
be one of reasons why T* equals 0.6 K in *He [4, 5] and
not 0.2 K as predicted in [7].
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2. DISSTPATION AND SOUND EMISSION IN
THE THEORY OF QUANTUM CAVITATION

We discuss the rate at which the bubbles can nu-
cleate via quantum fluctuations in the normal *He and
superfluid *He at negative pressures and sufficiently low
temperatures. The energy dissipation due to viscosity
and the sound emission due to compressibility of a fluid
are involved in the bubble growth kinetics. Owing to
viscosity, the quantum cavitation kinetics in ®He differs
qualitatively from that in *He and corresponds to the
dissipative tunneling in the overdamped regime. The
compressibility results in increasing the cavitation rate
and is essential in both liquids, especially, for the small
critical bubbles that are responsible for the experimen-
tally observable rates of the quantum cavitation.

Usually, all the calculations of the cavitation rate
and tensile strength in the region of the quantum tun-
neling regime have been performed within the frame-
work of the Lifshits—Kagan theory [1] of the first-order
phase transitions. However, this theory neglects the
compressibility of the metastable liquid; in other words,
the sound velocity is taken to be infinite in the liquid.
Clearly, a more realistic theory of the quantum cavita-
tion must involve the effect of the finite compressibility,
especially, in the closest vicinity of the instability point
at which the sound velocity vanishes.

To investigate quantum-mechanical tunneling be-
tween the metastable and stable states of a condensed
medium and to calculate the rate at which cavities nu-
cleate, we use the formalism based on the finite ac-
tion solutions (instantons) of equations continued to
the imaginary time. This approach [15], elaborated for
describing quantum-mechanical tunneling in the sys-
tems with a macroscopic number of degrees of freedom,
was used for incorporating the influence of energy dissi-
pation in a metastable condensed medium on the quan-
tum kinetics of the first-order phase transitions at low
temperatures [2].

The rate of the quantum nucleation can be writ-
ten as

I(T) = To(T) exp (~S(T) /1) 1)
where the prefactor Iy is the rate at which cavitation is
attempted per unit volume and unit time. According
to the general notions of the nucleation kinetics, the
prefactor I'g can be evaluated approximately as an at-
tempt frequency vy multiplied by the number of centers
at which the independent cavitation events can occur.

In its turn, the exponent S is the critical value of
the effective Euclidean action [2]
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where 3 = T~! is the inverse temperature. The
path R(7), which is defined in the imaginary

time 7, satisfies the periodic boundary conditions
R(—Bh/2) = R(Bh/2). Tt should be emphasized that
all parameters of the effective action are unambigu-
ously associated with the corresponding parameters in
the classical equation of growth,

1

U'(R) + m(R)R + M(R) x
X R-l—%]]\é((g))RQ — u3(R) x
3us(R) = 1 (p3(R)  pd(R) Y .
RS ) S (uz(R) B 253,(3)) Sl
Fo.=0. (3)

The correspondence can readily be settled by analyt-
ically continuing (|w,| — —iw) the Euler-Lagrange
equation (0.S.sr /0R. = 0) for the effective action to real
time, which gives the classical equation of growth. The
substitution |w,| — —iw of the Matsubara frequencies
with the real ones must be performed in the frequency
representation of the corresponding equations.

In the classical equation (3) for the growth of the su-
percritical droplet, we assume the limit of a low growth
rate of the droplet and expand the rate in powers of
the growth rate. The growth rate-independent term
corresponds to the potential energy of the bubble. The
term that is linear in the growth rate describes the en-
ergy dissipation, the second-order term corresponds to
the kinetic energy of the droplet, and the third-order
term can be attributed to the sound emission with the
change of the bubble volume. Thus, it is clear that
the first two terms in Eq. (2) can be referred to as the
potential energy U(R;) and the kinetic energy with
the mass M(R;) of the bubble. The other terms are
nonlocal in time and are due to the energy dissipation
D(R-,R_) during the bubble growth and the sound
emission C'(R-, R_+) originating from the finite com-
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pressibility. The energy dissipation is connected with
the vortex v (R) [2,13] as

D(R-,R.) = (m(R:) = 11 (R1))? (4)
and ~; (R) is unambiguously determined by the friction
coefficient

pi(R) = (O (R)/OR)*.

We would like to make an important remark concern-
ing the behavior of the friction coefficient p(R) as a
function of the bubble radius and temperature. In the
hydrodynamic approximation, the bubble radius must
be much larger than the mean free path I(T) of exci-
tations in the medium surrounding the bubble. Since
the mean free path increases rapidly at low tempera-
tures, in particular, [(T) o< 1/T? for 3He, the crossover
from the hydrodynamic R > [ regime to the ballistic or
Knudsen regime with R < [ must occur. Depending on
whether the hydrodynamic or ballistic regime occurs,
we arrive at the general expression for the friction co-
efficient 1 (R),

(4a)

i (R) = 16mnRf(R/1),

where 7 is the viscosity coefficient and

{

is a dimensionless function of the ratio of the bubble
radius to the mean free path of excitations in the liquid.
The numerical factor a is of the order of unity, depends
on the specific features of the interaction of excitations
with the bubble surface, and can be calculated explic-
itly using the kinetic equation.

It should be noted that the friction coefficient u; (R)
in the ballistic R < [ regime is independent of the mean
free path [(T') since  ~ pecl, where p is the density of
the liquid. In this case, 71 (R) does not depend on the
temperature

1

azx,

’ $>>1,

f(x) <1

(4b)

11(R) = /Aman/l . (5)

This ballistic regime with the temperature-independent
7 (R) is the only possible underbarrier motion of the
nucleus because the opposite case where R > [ implies
a large critical radius R, within the whole range of
temperatures outside a close vicinity of T. The large
critical radius R, leads to a negligible decay rate of the
metastable liquid and to the impossibility of recording
it experimentally. Thus, for the underbarrier motion of
the cavity, we can always assume the validity of Eq. (5).
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The second nonlocal term in (2),

dvs(R:)  09(R.)]°
or or' ’

C(R;.Ry) = (6)

is responsible for the excitation and emission of sound
waves in the course of the underbarrier growth of a bub-
ble and 3(R) is determined by the kinetic coefficient

M3 (R)7
p13(R) = (973(R)/OR)*.

The corresponding coefficient uz(R) is given by

47
na(R) = —L R,
c
which leads to
_ 2 7P 3
13(R) =34/ R (7)

It is interesting to note that in contrast to the term
with the Ohmic dissipation D(R., R,/) related to the
dissipative function that is proportional to the square
of the first-order time derivative, the term C(R,, R,/)
due to the finite compressibility of the fluid medium
gives a negative contribution into the effective action
(Eq. (2)). This results in enhancing the quantum nu-
cleation rate compared with the one calculated in the
framework of the Lifshits—-Kagan model [1] of an incom-
pressible fluid. Some hints for this conclusion can be
seen from the fact that the finiteness of the sound veloc-
ity confines the region of the bubble environment that
can be disturbed and set into motion. The size of this
region is approximately equal to A = e¢r, where 7 is a
typical time of growth. In some sense, one can say that
the total kinetic energy of the fluid flowing away from
the expanding bubble becomes smaller than for the in-
compressible fluid where the perturbation induced by
the formation of the bubble extends instantaneously to
the infinity.

The kinetic energy can be described in terms of the
variable mass of the bubble

M(R) = 4npR®. (8)

It can be attributed to the kinetic energy of the fluid
that flows away from the bubble. In the case of cavita-
tion, the potential energy can be represented as
dr o 9

U(R) = ?PR + 4draR”, (8a)

where «a is the liquid—gas surface tension.
Equations (1) and (2) with the coefficients (4)—(8)
allow us to calculate the rate of the underbarrier mo-
tion of the bubble. It should be emphasized that all
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parameters of the effective action are unambiguously
associated with the corresponding parameters in the
classical equation of growth (3).

3. THE MANIFESTATION OF
COMPRESSIBILITY IN THE EXPERIMENT
ON QUANTUM CAVITATION IN
SUPERFLUID “He

Recently [5], cavitation was studied in superfluid
4He and normal liquid *He experimentally. The inves-
tigation of cavitation in these liquids is related to the
possibility of avoiding impurities, which usually mani-
fest themselves as centers of cavitation. On the other
hand, these liquids have essentially different properties,
namely, *He is a superfluid liquid and *He is a normal
viscous Fermi liquid in the experimental range of tem-
peratures from 40 to 1000 mK. The cavitation process
is induced by sound pulses at a frequency w close to
1 MHz and is focused in the center of the experimental
cell. The pulses create oscillations of the local pressure
about several bars around the static pressure. The typ-
ical size of the acoustic focus is ~ 0.12 mm and the size
of the experimental cell is 8 mm. The above-mentioned
limiting temperature 40 mK is connected with thermal
radiation due to these sound pulses with a short dura-
tion between 30 and 70us and the repetition rate within
the range 0.1-1 Hz.

The cavitation process is observed to be stochastic.
For the invariant temperature and pressure parame-
ters, some sound pulses of a given amplitude produce
the cavitation and some pulses of the same amplitude
do not. Applying several sound pulses and counting
the number of cavitation events, one can determine
the probability ¥ of cavitation as a function of the
applied voltage and temperature. According to [5], it
is obtained that the cavitation probability in “He de-
pends on temperature only above about 400 mK. One
of the difficulties in interpreting the experiment is re-
lated to the fact that the maximum of the sound atten-
uation exists in the system in this temperature range.
An increase of the sound attenuation has the conse-
quence that a larger voltage is needed to produce the
same pressure swing at the acoustic focus where cavi-
tation occurs. After the correction, the cavitation volt-
age is found to be independent of the temperature up
to 600 mK. Above this temperature, the voltage de-
creases as T' increases, corresponding to a thermally
activated nucleation. This experimental result can be
interpreted as a crossover from the quantum cavitation
below 600 mK to the thermally activated cavitation. It
should be emphasized [5] that the stochastic behavior of
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the nucleation process combined with the temperature-
independent behavior of the voltage at which the cav-
itation occurs is in contrast to the assumption that
the spinodal pressure is achieved, because this pressure
cannot result in the stochastic behavior of the cavita-
tion process.

There is one more difficulty in interpreting the ex-
periment. The temperature of the cell that is measured
in the experiment [5] may be different from the tem-
perature in the focus where the cavitation occurs. The
point is that the acoustic wave is adiabatic in the first
approximation, and consequently, the temperature and
the pressure oscillates at the focus. Within the adia-
baticity assumption, the temperature in the focus of
the sound wave can readily be estimated [5]. At the
temperatures below 0.7 K, phonons make the dominant
contribution into the entropy per unit mass [16],
21273 9
45p3¢3 " )

In the isentropic process, the temperature is therefore
proportional to the sound velocity c. It is found exper-
imentally [5] that near the spinodal at P = —9.23 bar,
the sound velocity is 74 m/s, which is by the factor 3
lower than at zero pressure (¢ = 238 m/s). As a result,
the local instantaneous temperature 7' must be reduced
at the focus by the same factor 3 with respect to the
static temperature Tyt of the cell [5].

This interpretation is consistent only if the follow-
ing two conditions are fulfilled. The first condition is
related to the well-known fact that the nonlinear effects
arise very early in an alternating field [17]. The typical
field in which the nonlinear effects arise is proportional
to the exponential

S%Sphz

V= f/exp{oﬂg}, (10)

where w is the sound frequency, 7y is a typical time of
the underbarrier motion and V' is the sound amplitude.
In the experiment [5], w = 1 MHz and in the experi-
mentally analyzed vicinity of the spinodal line, 79 can
be estimated as 79 = 107! s=!. Thus, in the experi-
ment range where wtg < 1, the nonlinear effects can be
neglected. The second condition is much more severe,
meaning that T entering Eq. (9) follows local variations
of the pressure in space and time in the sound wave.
The conditions can be represented as

wrLl or 1<K (11)

These conditions are essentially equivalent. The sec-
ond inequality can be obtained from the first by mul-
tiplying it by the sound velocity ¢. The second con-
dition means that the sound wavelength A must be
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much larger than the mean free path [. In the ex-
periment [5], the opposite condition is fulfilled within
the entire temperature range. The size of the acoustic
focus is ~ 0.12 mm and this distance is much less than
the mean free path [, for the phonon—phonon scatter-
ing, which equals 1.3 mm at 0.7 K. According to [16],
T A 6-10°T7 s (with T measured in K), lpn ~ c7p,
with the value ¢ = 74 m/s near the spinodal line used
in the estimate. Moreover, Iy, increases as T~ with
lowering the temperature and becomes about 15 mm at
T = 0.5 K, which exceeds the size of the experimental
cell of 8 mm. The other scattering processes, in par-
ticular, the phonon-roton and roton-roton scatterings,
are inefficient at low temperature for the relaxation to
local equilibrium because of freezing rotons. Thus, the
local temperature 7" in the sound wave cannot follow
the variations of the pressure in the sound wave in this
range of temperatures, with the entropy S in Eq. (9)
being conserved. The local temperature in the focus
of the sound wave is therefore equal to the tempera-
ture outside the focus, i.e., T* = 0.6 K at the crossover
point from thermal to quantum behavior of the kinetics
of bubble nucleation.

We are now able to compare the thermal-quantum
crossover temperature 7™ obtained experimentally with
the calculations. We start from the simplest esti-
mate that can be obtained from the first two terms
of Eq. (2). These two terms are the potential and ki-
netic energy of the growing cavity and correspond to
the Lifshits—Kagan analysis [1]. In the case of cavita-
tion the crossover temperature reduces to the following
equation with the known parameters:

. 256h |P|3/?
C405mV6 ay/p

The substitution of the *He data p = 0.095 g/cm?,
a 0.37 erg/cm?, and the experimental value
P = —9.5 bar near the spinodal line gives 7" = 0.15 K.
The estimate used is a thin-wall approximation where
the bubble is assumed to have a sharp surface of the
radius R forming the boundary between an empty in-
terior and the bulk liquid surrounding the bubble. A
more elaborate calculation for the bubbles of the radius
that is comparable with the interface thickness [9] uses
the density-functional approximation for the energy of
the metastable liquid and gives T* = 0.2 K. The in-
significant difference between these two approximations
is not surprising because they both are based on the
same value of the surface energy a [1,9]. The differ-
ence between these two opposite estimates is less than
the experimental value, which, as is emphasized, should
be taken as T* = 0.6 K instead of T* = 0.2 K that was

(12)
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assumed in [5]. The results are insensitive to the in-
clusion of the third term D(R., R,/) in Eq. (2) that
describes dissipation because the dissipation in *He is
negligible at low temperatures. Moreover, this leads to
lowering T and to a deviation of its value from the ex-
perimental result 7% = 0.6 K. But the term involving
C(R;,R;) in Eq. (2) leads to the opposite and impor-
tant effect of increasing T*. If we consider the term
with C(R,, R,) in Eq. (2) as a perturbation, we ob-
tain the following expression for effective action Sef in
Eq. (2) in the low-temperature limit:

5\/571'2 1/2 7/2 4 2a
eff — 1- _V )
R, 30
N

This expression differs from that for Sey in [1] only by
the factor (1 — R/c), where R = (2/3)%/2(|P|/p)"/? is
the rate of the underbarrier growth of the cavity. Sub-
stituting the data p = 0.095 g/cm®, P = —9.5 bar, and
¢ = 74 m/s, we obtain R/c = 0.48 and hence T* in-
creases approximately twice and equals 7% = 0.4 K. We
assert that the tendency of increasing 7 due to a fi-
nite compressibility of *He and the underbarrier sound
emission during cavitation is a reason for the high value
of T observed experimentally. The manifestation of
the phenomenon is strongly related to a high value of
the ratio R/c, which is about one half. The high value is
directly related with the experimental conditions [3, 5]
of the cavitation taking place in the vicinity of the spin-
odal pressure. For P = 0, this ratio is only about 0.1.
In any case, more elaborated considerations should be
used in analysing the phenomenon because the leading
approximation in R/c < 1 is assumed for the deriva-
tion of Eq. (2).

4. THE MANIFESTATION OF DISSIPATION
IN THE EXPERIMENT ON QUANTUM
CAVITATION IN NORMAL FLUID 3He

We now turn to the analysis of the experiments on
quantum cavitation in liquid ®*He. 3He is a normal
viscous Fermi liquid within the experimental range of
temperatures from 40 to 1000 mK [4]. The simplest
estimate for 7% in Eq. (12) gives T* = 0.09 K for
p = 0.054 g/cm?, a = 0.16 erg/cm?, and the pressure
P = —3.1 bar near the spinodal of He. A more accu-
rate calculation for the bubbles of the radii comparable
with the interface thickness uses the density-functional
approximation for the energy of the metastable liquid
and gives T* = 0.125 K [9]. However, the crossover to
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the quantum behavior is not observed experimentally
down to T' = 0.04 K [4].

Both the above estimates are based on the first two
terms in the effective action Sepy in Eq. (2), which in-
clude only the potential and kinetic energies in differ-
ent approximations and ignore the fact that liquid *He
is a viscous liquid. The viscosity 1 behaves as T2
with the temperature since *He is a Fermi liquid and
n ~ pvplp, where p is the density of *He, vp is the
Fermi velocity, and lp ~ vp7r is the mean free path.
Here 7 is the collision time for excitations in the Fermi
liquid and 77 ~ DhsF/T2, where cp is the Fermi en-
ergy, D ~ (prag/h)~% is a dimensionless coefficient,
and ag is the scattering length [18]. Using the ex-
pression for the Fermi momentum pp = fi(372p/m)*/3
and ep p%/2m*, with m being the mass of the
3He atom and m* being the effective mass such that
m*/m = 3.08, and substituting p = 0.054 g/cm? near
the spinodal, we obtain pr/h = 0.68 - 108 cm L. If we
put D ~ 0.15, we obtain 7 = 1.2 - 1071272 5 (with
T expressed in K), which differs from the value for 7p
obtained from the viscosity [16] only by the factor 1.3
due to the difference between the density of 3He near
the spinodal line (p = 0.054 g/cm?) and the density
p = 0.082g/cm? at pressure P = 0. For I, we have

lp ~ A/T2,
2 x\ —2
A=n (m ) Dp, (14)
m m

Ip ~0.5-107%T%cm (T in K).

We see that [r is about 0.5 A at the temperature
T = 1 K. In this case, lp € R., because R. ~ 10 A
according to [1] (see also the introduction to [19]).
With lowering the temperature, the mean free path I
grows drastically as T2 and Ir becomes ~ 50 A at
T = 0.1 K for Ip > R.. Thus, within the tempera-
ture range 1-0.1 K, the behavior of the nucleation of
bubbles varies from the hydrodynamic type to the bal-
listic one and we can introduce [2] the temperature 7T;
at which the mean free is path I ~ R, and the hy-
drodynamic nucleation type is replaced by the ballistic
one,

T, = \/A/R,.

For cavitation in *He near the spinodal, T; = 0.18 K. At
this point, we go over from one type of the dissipation
in the system to another one. Above T' > T}, the nucle-
ation is governed by the hydrodynamic flow of viscous
Fermi liquid (4b) (with R./lr > 1) and for T' < T} the
ballistic propagation of excitations in the Fermi liquid

(15)
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occurs (4b) (with R./lp < 1). For T' > Tj, the viscos-
ity n enters the dissipation at the bubble nucleation.
Inserting the above estimate into the expression for 7,
we obtain from [16] n = ag/T?, with ag ~ 107¢ pois.
For T < Ty, the dissipation is governed by n/lp.

We see that near the spinodal in *He, T} is higher
than 7™, which is about 0.1 K according to the esti-
mate without the dissipation processes at nucleation
are taken into account. The involvement of dissipa-
tion only reduces T*. In any case, therefore, the quan-
tum cavitation is accompanied by the dissipation of
the Knudsen type. We can now compare the value of
the effective action Serr, Eq. (2), in the dissipation-
less case (13) with the one involving the dissipation,
Sdiss ~ leg. For T' < T, (Rc/lp < 1), this ra-
tio is ¢ = Skin/Saiss ~ 0.05(P/p)'/?v;" ~ 0.08 for
the above-mentioned values P and p near the spin-
odal of *He. This estimate means that the growth
of the bubble is accompanied by a strong dissipa-
tion corresponding to the overdamped quantum regime
and the thermal-quantum crossover temperature is
T* = hUy/Sqiss, with Up (16/27)aR? being the
height of the potential barrier. For the dissipation of
the Knudsen type, we thus obtain T* as

_,m* h P?
=3 R —

T*

16
e (16)

where s is a coefficient that depends only on the dissipa-
tion type. In what follows, we see that for the ballistic
propagation of excitations in the metastable environ-
ment, s = s, &~ 1.2 and T becomes about 2 mK. Note
that % does not enter the expression for T* in Eq. (16)
because pr/h depends only on the density p, i.e., ap-
proximately, pr /i = (372p/m)'/?. The absence of &
in T* is related to the overdamped ballistic regime of
dissipation. In this case, the dissipation is proportional
to n/l, which is of the order pvp and is proportional to
h. Thus, I does not enter T* because of a purely quan-
tum nature of the dissipation in the Fermi liquid. A
formal reduction of the dissipation (7 — 0) leads to a
dissipationless behavior where & enters again in 7.

To determine s, we can use only two terms of the
effective action Serf[R;] in Eq. (2), namely, the poten-
tial energy U(R;) and the nonlocal dissipative term
D(R.,R;), because the term with the kinetic energy
is small in the case of a strong dissipation and is pro-
portional to ¢ ~ 0.08. We can reduce Serr[R;] to the
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dimensionless action s,(t), cf. [2],

1/2t ,
t
spler] = / dre?(1—x,) + WT X
—1/2t
1/2t
/ PG (17)
X —_—r
T sin? [rt(T — 7')]
—1/2t

The numerical calculation of (17) gives s = s, &~ 1.2.

5. CONCLUSIONS

We would like to emphasize the qualitative feature
whereby the normal liquid *He differs from the super-
fluid “He [2], namely, the dissipation of energy in the
course of quantum cavitation for normal *He. In the
absence of the dissipation, only the kinetic energy K of
the motion of the metastable liquid governs the under-
barrier dynamics of the growing bubble. The kinetic
energy can be described in terms of the variable mass
of the bubble M(R) = 4npR?® as K = MR?/2 [1]. The
underbarrier motion of the bubble in *He corresponds
to the dynamic motion indicated above if we disregard
phonon excitations. Anyway, this is true at low temper-
atures. In 3He, we must also take the viscous motion
of the normal Fermi liquid into account. This leads to
the appearance of the term with the energy dissipation
in the bubble expansion equation.

The growth rate of the bubble is determined by the
interplay of the kinetic energy K and the energy dissi-
pation. It should be emphasized that there are no free
parameters in *He that can determine the relative con-
tribution of these two terms. The kinetic energy K is
of the order M (R)R?/2 and should be compared with
p(R)RR from the energy dissipation. The ratio of K
to the energy dissipation is of the order R/UF < 1.
The last condition is connected with the approximate
relation vp ~ ¢ and vg differs from the sound velocity
c only by a numerical coefficient of about 2/(v/37'/3).
Our consideration assumes the slow growth rate of the
bubble, R < ¢. We would like to emphasize that the
dynamics of the underbarrier motion of the bubble is
governed by the energy dissipation power, rather than
by the kinetic energy K. This implies the overdamped
regime of quantum cavitation. Accordingly, we have
the exponent u(R.)R? in the growth rate instead of

2M(R.)U(R,) as in the absence of dissipation. In
addition,

f(Re)R2 > \/2M (R:)U (R,).
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Thus, because of the dissipation, the crossover tem-
perature T* falls down and becomes lower than the
temperature of the *He transition into superfluidity.
This manifests itself as T* because of the lack of dis-
sipation in the superfluid state. That is why the
crossover from thermal to quantum behavior was not
found [4].

For the understanding of the experiments on quan-
tum cavitation in superfluid *He [3], it is important
to incorporate the compressibility and sound emission
into the equation of the bubble growth. The point is
that the experiments are performed near the spinodal
line and the sound velocity vanishes at P = P,. In this
case, the kinetic energy K falls down and T* increases.
This is the reason why T* equals 0.6 K in *He [3, 5],
and not 0.2 K as predicted in [9].
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