РАССЕЯНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ НА АТОМАХ

В. И. Радченко*

Уральский государственный технический университет 620002, Екатеринбург, Россия

Поступила в редакцию 30 марта 2000 г.

Развивается замкнутый вариант борновского приближения для расчета дифференциальных сечений рассеяния в ион-атомных столкновениях. Для матричного элемента, описывающего в формуле для дифференциального сечения атом мишени, найдено выражение через матричные элементы J_{ij} по одноэлектронным состояниям атома. Матричные элементы J_{ij} усреднены по взаимной ориентации переданного в соударении импульса и оси симметрии электронных орбиталей атома мишени при использовании одноэлектронных волновых функций Рутаана—Хартри—Фока. Представление матричных элементов J_{ij} в алгебраической форме обеспечивает возможность проведения расчетов для атомов с любым номером Z. На основе разработанной модели выполнены расчеты сечений σ_{Σ} и характерных углов θ_c рассеяния для процесса потери электронов ионами H⁻ с энергией E = 0.1-100 МэВ в мишенях из атомов с номером Z = 2-54. Показано, что $\sigma_{\Sigma} \propto E^{-1}$, $\theta_c \propto E^{-1/2}$ для всех Z, а при фиксированном значении E поведение зависимостей $\sigma_{\Sigma}(Z)$ и $\theta_c(Z)$ определяется порядком заполнения электронных оболочек атомов мишени (потенциалом ионизации). Результаты расчетов анализируются и сравниваются с экспериментальными данными и результатами других расчетов.

PACS: 03.65.Nk; 34.50.-s

1. ВВЕДЕНИЕ

Одна из основных задач физики ион-атомных столкновений заключается в установлении зависимости полного сечения рассеяния налетающих частиц А на атомных частицах В мишени в том или ином процессе взаимодействия от атомного номера Z частиц мишени и кинетической энергии E падающих частиц: $\sigma = \sigma(Z, E)$. Под «атомными частицами» будем понимать атомы и их ионы как в основном, так и в возбужденном состоянии.

Обычно изучается энергетическое поведение сечений при Z = const для ограниченного набора мишеней, что с экспериментальной точки зрения обусловлено трудностью создания газообразных, пучковых или плазменных мишеней строго контролируемой толщины для произвольных химических элементов, а с теоретической — резко возрастающей при увеличении Z сложностью описания атомарных частиц мишеней (и падающих частиц). Указанные причины играют еще большую роль в объяснении отсутствия достаточно полных экспериментальных и теоретических зависимостей сечений от атомного номера мишени при фиксированном значении кинетической энергии падающих частиц:

$$\sigma = \sigma(Z, E = \text{const}). \tag{1}$$

Очевидно, что взаимно дополняющие друг друга результаты экспериментальных и теоретических исследований зависимостей (1) позволяют осуществлять целенаправленный поиск мишеней для решения разнообразных прикладных задач, а также вести проверку или определять области применимости теоретических моделей.

Широкий класс процессов ион-атомных столкновений двух частиц А и В можно описать формулой

$$A(\alpha_i) + B(\beta_i) \to A(\alpha_f) + B(\Sigma).$$
(2)

При этом α_i , β_i и α_g , β_f — начальные и конечные состояния частиц соответственно, символ Σ означает, что в расчет принимаются все возможные конечные состояния β_f мишени В, принадлежащие как дискретному (включая основное состояние), так и непрерывному спектру. Формула (2) охватывает процессы упругого рассеяния и возбуждения час-

^{*}E-mail: rad@nich.ustu.ru

тиц A, а также процессы потери частицей A электронов. Процессы захвата электронов, перезарядки, электронного обмена в дальнейшем не рассматриваются.

Будем считать, что скорость падающих частиц А принадлежит диапазону скоростей, ограниченных с одной стороны условием применимости борновского приближения, а с другой — требованием применимости нерелятивистской теории. Если взаимодействие сталкивающихся частиц в процессе (2) описывается кулоновским потенциалом, то в замкнутом борновском приближении (closure approximation) дифференциальное сечение рассеяния частиц А на угол ν в телесный угол do в системе центра инерции при использовании правила сумм по конечным состояниям частиц мишени записывается в виде [1–3]

$$\frac{d\sigma_{\alpha_f}(\nu)}{do} = \frac{4a_0^2}{(\bar{q}a_0)^4} \left(\frac{M}{m}\right)^2 \times \frac{\bar{k}_f}{k_i} \left|F_{\alpha_f\alpha_i}^{\rm A}(\bar{q})\right|^2 M(\bar{\mathbf{q}}), \quad (3)$$

где a_0 — радиус первой боровской орбиты; m, M — масса электрона и приведенная масса сталкивающихся частиц; $F^A_{\alpha_f\alpha_i}$ — атомный формфактор системы A; \mathbf{k}_i , \mathbf{k}_f — волновые векторы частицы A в системе центра инерции до и после соударения; $\mathbf{q} = \mathbf{k}_f - \mathbf{k}_i$; $\bar{\mathbf{q}}$, $\bar{\mathbf{k}}_f$ — средние (по β_f) значения соответствующих векторов, способ определения которых указан в статье [2]. Величина $M(\mathbf{q})$ в (3) — матричный элемент, определяемый для начального состояния частицы B:

$$M(\mathbf{q}) = \langle \psi_{\beta_i} | \left| Z - \sum_{b=1}^{N} \exp(i\mathbf{q} \cdot \mathbf{r}_b) \right|^2 |\psi_{\beta_i}\rangle, \quad (4)$$

здесь ψ_{β_i} — волновая функция начального состояния частицы В; N — число электронов, принадлежащих частице В; \mathbf{r}_b — радиус-вектор *b*-го электрона. Проблема получения зависимостей (1) при использовании замкнутого борновского приближения как раз и связана с трудоемкостью вычисления матричных элементов (4) для частиц В, содержащих большое количество электронов.

Замечательной особенностью соотношения (3) является то, что его можно разбить на три сомножителя: первый из них содержит фундаментальные постоянные m, a_0 , параметры задачи M, k_i и переменные величины $\bar{\mathbf{q}}$, \bar{k}_f ; второй сомножитель — формфактор F^A (и/или функция некогерентного рассеяния [1, 2]) — описывает только частицу A; третий сомножитель — матричный элемент $M(\bar{\mathbf{q}})$ — содержит величины, характеризующие только частицу В. Таким образом, получение выражения, позволяющего вычислить матричный элемент (4), в принципе решает задачу определения зависимостей $\sigma(Z, E)$ для любых процессов вида (2).

В данной работе получено алгебраическое выражение для матричного элемента (4), позволяющее вести расчеты сечений взаимодействия частиц в процессах типа (2) для атомарных частиц мишени с произвольным значением атомного номера Z. Для процесса ($\bar{1}0$) + ($\bar{1}1$) потери электронов отрицательными ионами водорода H⁻ с энергией E = 10 МэВ выполнены расчеты сечений (1) для диапазона Z = 2-54.

2. ТЕОРИЯ

Как мы видели, проблема вычисления сечений рассеяния в замкнутом варианте борновского приближения (3) упирается в нахождение матричного элемента $M(\mathbf{q})$. Пусть $M(\mathbf{q})$ определяется для частицы В, которая в общем случае может быть ионом с зарядом ядра Z и числом электронов N. Запишем операторную часть матричного элемента $M(\mathbf{q})$ в развернутом виде:

$$\left| Z - \sum_{b=1}^{N} \exp(i\mathbf{q} \cdot \mathbf{r}_{b}) \right|^{2} = Z^{2} - Z \sum_{b=1}^{N} \left[\exp(i\mathbf{q} \cdot \mathbf{r}_{b}) + \exp(-i\mathbf{q} \cdot \mathbf{r}_{b}) \right] + \sum_{b,c=1}^{N} \exp\left(i\mathbf{q} \cdot (\mathbf{r}_{c} - \mathbf{r}_{b})\right).$$
(5)

Будем считать, что волновая функция частицы В представляет собой детерминант Слэтера одноэлектронных волновых функций, а сама частица в момент столкновения может находиться в произвольном состоянии. Одноэлектронные состояния будем обозначать индексом i, понимая под ним весь набор квантовых чисел, необходимых для полного описания состояния: $|i\rangle \equiv |nlm\sigma\rangle$ — где n, l — главное и орбитальное квантовые числа; m, σ — проекции орбитального и спинового моментов вращения электрона. Использование буквы i для обозначения как мнимой единицы, так и одноэлектронного состояния не приведет к недоразумениям, поскольку состояние будет обозначаться буквой i лишь в виде индекса.

Подставим (5) в выражение для матричного элемента $M(\mathbf{q})$:

$$M(\mathbf{q}) = Z^{2} - Z\sum_{b=1}^{N} \left(\langle \psi | \exp(i\mathbf{q} \cdot \mathbf{r}_{b}) | \psi \rangle + \langle \psi | \exp(-i\mathbf{q} \cdot \mathbf{r}_{b}) | \psi \rangle \right) + N + \sum_{\substack{b,c=1\\(b\neq c)}}^{N} \langle \psi | \exp(i\mathbf{q} \cdot (\mathbf{r}_{c} - \mathbf{r}_{b})) | \psi \rangle.$$
(6)

Поскольку $|\psi|^2$ является симметричной функцией относительно инверсии вектора \mathbf{r}_b , справедливо равенство

$$\langle \psi | \exp(i\mathbf{q} \cdot \mathbf{r}_b) | \psi \rangle = \langle \psi | \exp(-i\mathbf{q} \cdot \mathbf{r}_b) | \psi \rangle,$$
 (7)

с помощью которого для матричного элемента (6) получается соотношение

$$M(\mathbf{q}) = Z^{2} + N - 2Z \sum_{b=1}^{N} \langle \psi | \exp(i\mathbf{q} \cdot \mathbf{r}_{b}) | \psi \rangle + 2\sum_{b=1}^{N-1} \sum_{c=b+1}^{N} \langle \psi | \exp(i\mathbf{q} \cdot (\mathbf{r}_{c} - \mathbf{r}_{b})) | \psi \rangle.$$
(8)

Рассмотрим матричный элемент в третьем слагаемом соотношения (8) под знаком суммы, раскрыв ψ как детерминант Слэтера и помня, что нормировочный множитель функции ψ равен $(N!)^{-1/2}$:

$$\langle \psi | \exp(i\mathbf{q} \cdot \mathbf{r}_b) | \psi \rangle = \frac{1}{N!} \times$$

$$\int \left[\sum_{s=1}^{N!} P_s^{(t)} (-1)^s \psi_{t_1}^*(\mathbf{r}_1) \dots \psi_{t_i}^*(\mathbf{r}_b) \dots \psi_{t_N}^*(\mathbf{r}_N) \right] \times$$

$$\times \exp(i\mathbf{q} \cdot \mathbf{r}_b) \times$$

$$\times \left[\sum_{u=1}^{N!} P_u^{(\nu)} (-1)^u \psi_{\nu_1}(\mathbf{r}_1) \dots \psi_{\nu_j}(\mathbf{r}_b) \dots \psi_{\nu_N}(\mathbf{r}_N) \right] d\tau,$$

$$(9)$$

где интегрирование ведется по конфигурационному пространству N электронов частицы B; $P_s^{(t)}$ — оператор попарных перестановок элементов упорядоченного множества $t_1, t_2, ..., t_N$, составленного из элементов 1, 2, ..., N; символ t в обозначении оператора перестановок $P_s^{(t)}$ указывает на последующие функции с элементами t_k , на которые распространяется действие оператора; аналогично для оператора $P_u^{(\nu)}$. В формуле (9) операторы перестановок действуют на индексы, нумерующие одноэлектронные состояния частицы B. Ввиду ортогональности одноэлектронных волновых функций в выражении (9) отличными от нуля останутся лишь следующие слагаемые:

$$\langle \psi | \exp(i\mathbf{q} \cdot \mathbf{r}_b) | \psi \rangle = \frac{1}{N!} \int \exp(i\mathbf{q} \cdot \mathbf{r}_b) \times \\ \times \sum_{s=1}^{N!} P_s^{(t)} |\psi_{t_1}(\mathbf{r}_1)|^2 \dots |\psi_{t_i}(\mathbf{r}_b)|^2 \dots |\psi_{t_N}(\mathbf{r}_N)|^2 d\tau.$$

$$(10)$$

Если зафиксировать *b*-ый электрон с радиусом-вектором \mathbf{r}_b в *i*-ом состоянии (волновая функция с индексом t_i), то оператор $P_s^{(t)}$ будет осуществлять перестановку остальных N-1 индексов состояний у одноэлектронных волновых функций, каждая из которых зависит от одного из N-1 оставшихся радиусов-векторов, отличных от \mathbf{r}_b . Число размещений N-1 электронов по N-1 состояниям без повторений равно (N-1)!, поэтому

$$\langle \psi | \exp(i\mathbf{q} \cdot \mathbf{r}_b) | \psi \rangle = \frac{1}{N!} \sum_{i=1}^{N} \int \exp(i\mathbf{q} \cdot \mathbf{r}_b) |\psi_{t_i}(\mathbf{r}_b)|^2 \times$$

$$\times \sum_{s=1}^{(N-1)!} P_s^{(t)} |\psi_{t_1}(\mathbf{r}_1)|^2 \dots |\psi_{t_N}(\mathbf{r}_N)|^2 d\tau. \quad (11)$$

Интеграл от произведения N-1 сомножителей вида $|\psi_{t_1}(\mathbf{r}_1)|^2 \dots |\psi_{t_N}(\mathbf{r}_N)|^2$ равен единице вследствие ортонормированности одноэлектронных волновых функций. Число слагаемых, состоящих из произведений такого типа, очевидно, равно (N-1)!, так что

$$\langle \psi | \exp(i\mathbf{q} \cdot \mathbf{r}_b) | \psi \rangle = \frac{1}{N} \sum_{i=1}^N J_i(\mathbf{q}),$$
 (12)

где

$$J_{i}(\mathbf{q}) \equiv J_{ii} = \langle \psi_{i} | \exp(i\mathbf{q} \cdot \mathbf{r}) | \psi_{i} \rangle =$$
$$= \int \exp(i\mathbf{q} \cdot \mathbf{r}) |\psi_{i}(\mathbf{r})|^{2} dV. \quad (13)$$

Легко видеть, что $J_i(-\mathbf{q}) = J_i^*(\mathbf{q}) = J_i(\mathbf{q})$, а значит J_i — действительная функция. Заметим, что правая часть равенства (13) от индекса b, как и должно быть, не зависит, поэтому

$$\sum_{b=1}^{N} \langle \psi | \exp(i\mathbf{q} \cdot \mathbf{r}_{b}) | \psi \rangle = \sum_{i=1}^{N} J_{i}(\mathbf{q}).$$
(14)

Рассмотрим теперь матричный элемент в четвертом слагаемом формулы (8) точно так же, как это

делалось при получении выражений (9)–(11). Но, поскольку экспоненциальный оператор этого матричного элемента содержит радиусы-векторы *b*-го и *c*-го электронов, данный матричный элемент будет содержать две группы слагаемых (остальные равны нулю вследствие ортогональности одноэлектронных волновых функций):

$$\langle \psi | \exp(i\mathbf{q} \cdot (\mathbf{r}_c - \mathbf{r}_b)) | \psi \rangle = \frac{1}{N!} \int \exp(i\mathbf{q} \cdot (\mathbf{r}_c - \mathbf{r}_b)) \times \\ \times \sum_{s=1}^{N!} P_s^{(t)} |\psi_{t_1}(\mathbf{r}_1)|^2 \dots |\psi_{t_i}(\mathbf{r}_c)|^2 \dots |\psi_{t_j}(\mathbf{r}_b)|^2 \dots \\ \dots |\psi_{t_N}(\mathbf{r}_N)|^2 d\tau + \frac{1}{N!} \int \exp(i\mathbf{q} \cdot (\mathbf{r}_c - \mathbf{r}_b)) \times \\ \times \sum_{s=1}^{N!} P_s^{(t)} |\psi_{t_1}(\mathbf{r}_1)|^2 \dots \psi_{t_i}^*(\mathbf{r}_c) \psi_{t_j}^*(\mathbf{r}_b) \dots \\ \dots \psi_{t_i}(\mathbf{r}_b) \psi_{t_j}(\mathbf{r}_c) \dots |\psi_{t_N}(\mathbf{r}_N)|^2 (-1)^{2s+1} d\tau.$$
(15)

Появление сомножителя $(-1)^{2s+1} \equiv -1$ во втором слагаемом выражения (15) обусловлено тем, что слагаемые детерминанта Слэтера входят в (15) в виде суммы попарных произведений, отличающихся друг от друга лишь одной перестановкой (и знаком комплексного сопряжения).

Зафиксируем *b*-ый и *c*-ый электроны в *i*-ом или *j*-ом состояниях и осуществим перестановки индексов состояний у оставшихся одноэлектронных волновых функций (при неизменном порядке следования радиусов-векторов электронов). Индексы выбираются из числа индексов, соответствующих оставшимся N - 2 состояниям (кроме *i*-го и *j*-го). Другими словами, осуществим все возможные перестановки остальных N - 2 электронов по оставшимся N - 2состояниям. Число размещений без повторения равно (N - 2)!. В итоге найдем

$$\langle \psi | \exp(i\mathbf{q} \cdot (\mathbf{r}_c - \mathbf{r}_b)) | \psi \rangle = \frac{1}{N(N-1)} \times$$

$$\times \sum_{\substack{i,j=1\\(i\neq j)}}^{N} \left[J_i(\mathbf{q}) J_j(\mathbf{q}) - J_{ij}(\mathbf{q}) J_{ji}(-\mathbf{q}) \right], \quad (16)$$

где

$$J_{ij}(\mathbf{q}) = \langle \psi_i | \exp(i\mathbf{q} \cdot \mathbf{r}) | \psi_j \rangle =$$

= $\int \psi_i^*(\mathbf{r}) \exp(i\mathbf{q} \cdot \mathbf{r}) \psi_j(\mathbf{r}) dV,$ (17)
 $J_{ji}(-\mathbf{q}) = J_{ij}^*(\mathbf{q}).$

Волновые функции $\psi_i(\mathbf{r})$, $\psi_j(\mathbf{r})$ из (17) либо симметричны, либо антисимметричны относитель-

но инверсии вектора **r**. Если состояния i, j обладают симметрией одного и того же типа относительно инверсии вектора **r**, то из (17) следует, что $J_{ij}(\mathbf{q}) = J_{ij}(-\mathbf{q})$. Если же состояния i и j имеют противоположную симметрию, то $J_{ij}(\mathbf{q}) = -J_{ij}(-\mathbf{q})$. Поэтому в любом случае, используя (17), будем иметь

$$J_{ij}(\mathbf{q})|^{2} = \left[\pm J_{ij}^{*}(-\mathbf{q})\right] \left[\pm J_{ij}(-\mathbf{q})\right] = = |J_{ij}(-\mathbf{q})|^{2} = |J_{ji}(\mathbf{q})|^{2}.$$
 (18)

Правая часть (16) опять-таки от индексов *b* и *c* не зависит, поэтому с учетом (13) и (17) найдем, что

$$2\sum_{b=1}^{N-1}\sum_{c=b+1}^{N} \langle \psi | \exp(i\mathbf{q} \cdot (\mathbf{r}_{c} - \mathbf{r}_{b})) | \psi \rangle =$$
$$= \sum_{\substack{i,j=1\\(i\neq j)}}^{N} J_{i}J_{j} - \sum_{\substack{i,j=1\\(i\neq j)}}^{N} |J_{ij}|^{2}. \quad (19)$$

Здесь мы воспользовались равенством

$$\sum_{b=1}^{N-1} \sum_{c=b+1}^{N} 1 = \frac{N(N-1)}{2}.$$

Подставим найденные соотношения (14), (19) в (8):

$$M(\mathbf{q}) = Z^{2} + N - 2Z \sum_{i=1}^{N} J_{i} + \sum_{\substack{i,j=1\\(i\neq j)}}^{N} \left(J_{i}J_{j} - |J_{ij}|^{2} \right). \quad (20)$$

При выводе выражения (20) никаких упрощающих предположений или допущений не делалось. Однако очевидно, что входящие в него функции J_{ij} проще матричных элементов, суммируемых в формуле (8).

Выражение (20) можно упростить, если воспользоваться соотношением

$$\sum_{\substack{i,j=1\\i\neq j}}^{N} J_i J_j = 2 \sum_{i=1}^{N-1} J_i \sum_{j=i+1}^{N} J_j = \left(\sum_{i=1}^{N} J_i\right)^2 - \sum_{i=1}^{N} J_i^2, \quad (21)$$

которое легко получить, замечая, что, с одной стороны,

$$\sum_{i=1}^{N-1} J_i \sum_{j=i+1}^{N} J_j = \sum_{i=1}^{N-1} J_i \left(\sum_{j=i}^{N} J_j - J_i \right) =$$
$$= \sum_{i=1}^{N-1} J_i \sum_{j=1}^{N} J_j - \sum_{i=1}^{N-1} J_i^2 =$$
$$= \sum_{i=1}^{N} J_i \sum_{j=i}^{N} J_j - \sum_{i=1}^{N} J_i^2, \quad (22)$$

а с другой,

$$\sum_{i=1}^{N-1} J_i \sum_{j=i+1}^{N} J_j = \sum_{i=2}^{N} J_i \sum_{j=1}^{i-1} J_j =$$
$$= \sum_{i=2}^{N} J_i \left(\sum_{j=1}^{i} J_j - J_i \right) =$$
$$= \sum_{i=1}^{N} J_i \sum_{j=1}^{i} J_j - \sum_{i=1}^{N} J_i^2. \quad (23)$$

Складывая (22) и (23), получаем формулу (21), подставляя которую в (20), найдем

$$M(\mathbf{q}) = Z^{2} + N - 2ZD + D^{2} - G - \sum_{\substack{i,j=1\\(i\neq j)}}^{N} |J_{ij}|^{2}, \quad (24)$$
$$D = \sum_{i=1}^{N} J_{i}, \quad G = \sum_{i=1}^{N} J_{i}^{2}. \quad (25)$$

Перейдем теперь к нахождению матричных элементов J_{ij} . Волновые функции из формулы (17) имеют вид [4,5] $\psi_i(\mathbf{r}) = R_{nl}(r)Y_{lm}(\theta,\varphi)\chi(\sigma)$, где $R_{nl}(r)$ — радиальная волновая функция; $Y_{lm}(\theta,\varphi) = \Theta_{lm}(\theta)\Phi_m(\varphi)$ — сферическая функция; $\Phi_m(\varphi) = (2\pi)^{-1/2}e^{im\varphi}$; $\chi(\sigma)$ — спиновая функция. Присутствие спиновых функций в выражении для J_{ij} приведет к появлению символа Кронекера $\delta_{\sigma\sigma'}$.

Сферические координаты r, θ , φ электронов атома мишени задаются с помощью правой тройки векторов (**x**, **y**, **z**), связанной с ядром атома. Ось **z** традиционно выбирается полярной и является осью симметрии одноэлектронных орбиталей атома мишени. В этой же сферической системе координат направление волнового вектора **q** зададим полярным углом α и азимутальным углом β . Тогда скалярное произведение в показателе экспоненты в формуле (17) будет равно

$$(\mathbf{q} \cdot \mathbf{r}) = qr \left[\cos\theta\cos\alpha + \sin\theta\sin\alpha\cos(\varphi - \beta)\right].$$
 (26)

Взаимная ориентация в пространстве векторов **q** и **z** может быть произвольной, поэтому следует провести усреднение дифференциальных сечений рассеяния (3), а значит, и матричных элементов $M(\mathbf{q})$ по направлениям **q** относительно оси **z**. Вероятность обнаружить вектор **q** внутри телесного угла $d\Omega_q = \sin \alpha \, d\alpha \, d\beta$ равна $d\Omega_q/4\pi$. Задача усреднения $M(\mathbf{q})$ нуждается в упрощении. С этой целью используем приближенный статистический метод, согласно которому усредненное значение M(q) принимается равным величине, полученной в результате усреднения матричных элементов J_{ij} и их подстановки в формулу (24) для вычисления M(q).

Вычисление и усреднение матричных элементов J_{ij} может быть выполнено аналитически. Интегрирование при этом рационально проводить по переменным в следующем порядке: β , φ , α , θ , r. Сохраним для усредненного матричного элемента J_{ij} прежнее обозначение. Опуская громоздкие, но по сути простые выкладки, связанные с использованием табличных интегралов, приведем для J_{ij} выражение, найденное после интегрирования по угловым переменным:

$$J_{ij} = \frac{1}{q} \int_{0}^{\infty} R_{nl} R_{n'l} \sin(qr) r \, dr.$$
 (27)

Заметим, что в ходе интегрирования появляются символы Кронекера $\delta_{mm'}$, $\delta_{ll'}$ по магнитному и орбитальному квантовым числам, а сами матричные элементы J_{ij} от величины m не зависят, что использовано при записи формулы (27). Одноэлектронные волновые функции R_{nl} , $R_{n'l'}$, входящие в состав детерминанта Слэтера и выражение (27), могут быть записаны в виде [5]

$$R_{nl} = \sum_{c} a_{c} r^{n_{c}-1} \exp(-\zeta_{c} r),$$

$$R_{n'l'} = \sum_{d} a'_{d} r^{n'_{d}-1} \exp(-\zeta'_{d} r).$$
(28)

Подставляя функции R_{nl} , $R_{n'l}$ в форме (28) в интеграл (27), выполняя элементарное интегрирование и используя формулу бинома Ньютона, получим окончательное соотношение для усредненного матричного элемента J_{ij} :

$$J_{ij} = \sum_{c,d} \frac{a_c a'_d (n_{cd} - 1)!}{\zeta_{cd} \left[\zeta_{cd} \left[\zeta_{cd} (1 + x_{cd})\right]^{n_{cd}}} \times \sum_{s=0}^{S} C^{2s+1}_{n_{cd}} (-x_{cd})^s, \quad (29)$$

где $n_{cd} = n_c + n'_d$, $\zeta_{cd} = \zeta_c + \zeta'_d$, $x_{cd} = q^2 a_0^2 / \zeta_{cd}^2$, $C_{n_{cd}}^{2s+1}$ — биномиальные коэффициенты, а верхний предел суммирования

$$S = \begin{cases} \frac{n_{cd} - 1}{2}, & \text{если} & n_{cd} - \text{нечетное число,} \\ \frac{n_{cd}}{2} - 1, & \text{если} & n_{cd} - \text{четное число.} \end{cases}$$
(30)

Радиус r в формулах (28) измеряется обычно в атомных единицах, чем и вызвано появление множителя a_0 в выражении для x_{cd} из (29).

3. РАСЧЕТ СЕЧЕНИЙ. АНАЛИЗ РЕЗУЛЬТАТОВ

Обратимся к вычислению сумм по *i* и *j* в формуле (24) для $M(\mathbf{q})$ при использовании усредненных матричных элементов J_{ij} . При этом удобно перейти от суммирования по номерам состояний *i*, *j* к суммированию по соответствующим квантовым числам n, l, m, σ и ввести функцию занятости состояния $|nlm\sigma\rangle$:

$$\mu_{nlm\sigma} = \begin{cases} 1, & \text{если состояние занято,} \\ 0, & \text{если состояние не занято.} \end{cases} (31)$$

Пусть n_e — главное квантовое число внешней оболочки частицы В, т. е. максимальное значение n из набора занятых состояний. Тогда для суммы D из (24), (25) получим выражение (далее $J_i = J_{nl}$)

$$D = \sum_{n=1}^{n_e} \sum_{l=0}^{n-1} J_{nl} \sum_{m=-l}^{l} \sum_{\sigma=-1/2}^{1/2} \mu_{nlm\sigma}, \qquad (32)$$

в котором учтено, что матричные элементы J_{ij} не зависят от квантового числа m и значения спина σ , поэтому здесь и далее числа m и σ среди индексов J опускаем. Для суммы G из (24), (25) найдем аналогичное соотношение.

Последнюю сумму в равенстве (24), пользуясь свойством (18) и присутствием символа Кронекера $\delta_{ll'}$ в формуле для усредненных матричных элементов $J_{ij} = J_{nl,n'l}$ представим в виде

$$2V = \sum_{\substack{i,j=1\\(i\neq j)}}^{N} |J_{ij}|^2 = 2\sum_{nlm\sigma} \sum_{\substack{n'lm\sigma\\(n'>n)}} |J_{nl,n'l}|^2, \quad (33)$$

где

$$V = \sum_{n=1}^{n_e-1} \sum_{n'=n+1}^{n_e} \sum_{l=0}^{n-1} J_{nl,n'l}^2 \times \sum_{m=-l}^{l} \sum_{\sigma=-1/2}^{1/2} \mu_{nlm\sigma} \mu_{n'lm\sigma}.$$
 (34)

Знак модуля матричного элемента J в формуле (34) опущен, поскольку матричные элементы (29) действительны.

В настоящей работе на основе изложенной выше теории вычислены полные сечения $\sigma_{\Sigma} = \sigma_{\bar{1}0} + \sigma_{\bar{1}1}$ и характерные углы θ_c рассеяния ионов H⁻ с энергией E = 0.1-100 МэВ на атомах с номерами Z = 2-54для процесса (10) + (11) потери одного и двух электронов (далее сечения σ_{Σ} и углы θ_c , вычисленные с помощью замкнутого борновского приближения, не будут снабжаться какими-либо отличительными индексами). Под характерным углом θ_c рассеяния частиц понимается такое значение угла θ , при котором достигается максимум функции $\sin\theta d\sigma(\theta)/d\Omega$, где *θ* — угол рассеяния в лабораторной системе координат. Для расчета σ_{Σ} и θ_c использовалась формула (3), просуммированная по всем возможным конечным состояниям $\alpha_f \neq \alpha_i$ налетающей частицы и записанная в лабораторной системе координат. После суммирования по α_f квадрат модуля формфактора налетающей частицы А в формуле (3) заменяется функцией некогерентного рассеяния [1,2], которая определяется волновой функцией основного состояния частицы А. В данной работе, как и в статье [3], основное состояние ионов Н⁻ описывалось волновой функцией Чандрасскара.

Матричные элементы (4) из формулы (3) определялись согласно равенству (24), которое, напомним, является точным и в котором для нахождения соответствующих слагаемых использовались выражения (32)–(34). И наконец, вычисление функций J_{ij} из формул (32), (34) и из аналогичной формулы для суммы G (см. (24)) осуществлялось с помощью соотношения (29). Отметим, что при $q \to 0$ матричные элементы $J_{ii} \to 1$, а $J_{ij} \to 0$; следовательно, для функций D, G и V в случае атомов мишени с номером Z в том же пределе $q \to 0$ получим $D \to Z$, $G \to Z, V \to 0$ (см. формулы (25), (33)). Проверка указанных пределов служит критерием правильности работы алгоритма расчета и введенных параметров волновых функций.

Кроме того, в данной работе для тех же диапазонов энергий E и номеров Z были выполнены аналогичные расчеты сечений σ_{Σ}^{d} и углов θ_{c}^{d} в приближении дипольного момента для описания атома мишени (указанные сечения и углы снабжены дополнительным индексом d). В приближении дипольного момента предполагается, что в течение времени ион-атомного столкновения атом можно рассматривать как электрический диполь, обладающий некоторым эффективным дипольным моментом d. Теория приближения дипольного момента подробно изложена в статьях [6, 7], поэтому здесь будут приведены только результаты соответствующих расчетов.

В той и другой моделях расчета одноэлектронные состояния атома мишени описывались волновыми функциями Рутаана—Хартри—Фока [5].

В таблице и на рис. 1, 2 представлены сечения и характерные углы рассеяния ионов H⁻ с энергией 10 МэВ как зависимости от Z, полученные в рамках обоих теоретических подходов. Значение E = 10 МэВ выбрано потому, что, во-первых, необходимо наиболее полно удовлетворить условию $v > 2Zv_0$ применимости борновского приближения для атомов мишени с большим номером Z (здесь v — скорость иона, $v_0 = 2.19 \cdot 10^8$ см/с, т.е. E следует увеличивать; см. [11, 12]), во-вторых, поправочные коэффициенты для расчета сечений в приближении дипольного момента играют при данном значении энергии несущественную роль [7], в-третьих, при этом значении энергии имеются экспериментальные данные для газовых мишеней.

Обе теоретические модели показывают, что при фиксированном значении E сечение $\sigma_{\Sigma}(Z)$ испытывает скачкообразный рост при переходе от мишени из атомов инертных газов к мишени из атомов соседних с ними элементов первой и второй групп периодической системы. При каждом таком переходе сечение увеличивается в первом приближении на одну и ту же величину, поэтому относительный рост сечения наиболее ярко проявляется при переходе от Не к Li. Этот вывод подтверждается результатами экспериментальных исследований из работы [13] для E = 30-200 кэВ.

Сечения, найденные в приближении дипольного момента (рис. 1), а также в приближении свободных столкновений [14–16], в целом лучше согласуются с имеющимися экспериментальными данными для мишеней из инертных газов, нежели сечения, вычисленные по изложенной в данной статье теории. Однако замкнутое борновское приближение является строго последовательной теорией, приближенный характер которой обусловлен лишь естественными ограничениями скорости налетающей частицы и использованием правила сумм по конечным состояниям сталкивающихся частиц. Окончательное постро-

Рис. 1. Сечение потери электронов ионами H⁻ с энергией E = 10 МэВ при взаимодействии с атомами, имеющими номер Z = 2-54: 1 — расчет по теории, развитой в данной работе; 2 — расчет в приближении дипольного момента [6,7]; 3 — расчет по формуле (54); \blacktriangle — экспериментальные данные для E = 10.4 МэВ [8] (результат для калиевой мишени взят из работы [6] для E = 5.14 МэВ и пересчитан на энергию E = 10 МэВ в предположении, что сечение для мишеней из К и соседнего Аг имеют одну и ту же энергетическую зависимость)

Рис.2. Зависимость характерного угла рассеяния частиц водорода для процесса потери электронов ионами H⁻ с энергией E = 10 MэB от атомного номера Z мишени: 1— результаты расчета по теории, изложенной в настоящей работе; 2— расчет в приближении дипольного момента [6, 7]; — — расчет в трехчастичном борновском приближении для угла $\theta_{1/2}$ [9]; \blacktriangle — экспериментальные данные для $\theta_{1/2}$ из работы [10]

Характерные углы и сечения рассеяния для процесса $(ar{1}0)+(ar{1}1)$ потери электронов ионами H $^-$ с энергией 10 МэВ
при взаимодействии с атомными мишенями, имеющими номера $Z=2 extsf{-54}$ (величины $ heta_c$ и σ_Σ вычислены по
теории, изложенной в данной работе, а сечение σ_{Σ}^d рассчитано в приближении дипольного момента $[6,7]$)

7	Атом	$\theta_c,$	$\sigma_{\Sigma},$	$\sigma^d_{\Sigma},$
Z	мишени	10 ⁻⁶ рад	10^{-16} cm^2	10^{-16} cm^2
2	$_{\rm He}$	10.2	0.0546	0.0500
3	Li	8.12	0.199	0.464
4	\mathbf{Be}	9.81	0.279	0.426
5	В	10.8	0.334	0.384
6	С	11.6	0.363	0.328
7	Ν	12.2	0.380	0.313
8	О	12.5	0.400	0.322
9	\mathbf{F}	12.8	0.411	0.320
10	Ne	13.0	0.418	0.312
11	${ m Na}$	9.28	0.604	0.684
12	Mg	11.0	0.746	0.757
13	Al	12.1	0.902	0.948
14	Si	14.0	1.01	0.887
15	Р	16.6	1.10	0.888
16	S	19.0	1.19	0.916
17	Cl	22.2	1.25	0.884
18	Ar	25.1	1.31	0.867
19	К	11.4	1.60	1.41
20	Ca	12.8	1.85	1.55
21	Sc	13.8	1.92	1.39
22	Ti	14.5	1.87	1.34
23	V	15.3	2.01	1.30
24	Cr	18.4	1.89	1.26
25	Mn	16.7	2.05	1.25
26	${\rm Fe}$	17.4	2.09	1.23
27	Co	20.8	1.99	1.21
28	Ni	19.1	2.13	1.19
29	Cu	22.5	2.03	1.18
30	Zn	20.8	2.16	1.03
31	Ga	18.6	2.34	1.45
32	Ge	20.7	2.49	1.50
33	As	23.0	2.62	1.50
34	Se	24.6	2.75	1.52
35	Br	26.3	2.88	1.52
36	Kr	28.1	2.99	1.50
37	Rb	14.7	3.37	2.30
38	Sr	14.9	3.72	2.56
39	Y	16.4	3.91	2.26

40	Zr	17.9	4.04	1.97
41	Nb	22.8	4.01	1.86
42	Mo	24.6	4.10	2.05
43	Tc	21.9	4.36	2.03
44	Ru	27.0	4.29	2.00
45	Rh	28.2	4.37	1.97
46	Pd	33.9	4.28	1.95
47	Ag	30.4	4.50	1.91
48	Cd	27.6	4.72	2.07
49	In	27.8	4.53	_
50	Sn	24.5	5.24	2.35
51	\mathbf{Sb}	25.4	5.46	2.38
52	Te	26.0	5.69	2.42
53	I	27.0	5.90	2.43
54	Xe	28.2	6.09	2.43

Продолжение таблицы

ение замкнутого борновского приближения, связанное по существу с получением точного алгебраического выражения для усредненного матричного элемента M(q), позволит дать ответ на вопрос о точности и области применимости этого приближения. Для атомов He, Li и Be, находящихся в основном состоянии и содержащих электроны только на сферически-симметричных *s*-орбиталях, матричные элементы (4) не зависят от взаимной ориентации векторов **q** и **z**, поэтому для этих атомов усредненные матричные элементы $M(\mathbf{q})$ и соответствующие сечения рассеяния являются в рамках замкнутого борновского приближения точными.

Для описания зависимости $\sigma_{\bar{1}0}(Z,E)$ в работе [17] предложена формула:

$$\sigma_{\bar{1}0} = N_i \pi a_0^2 \frac{Z^{\alpha(Z)}}{v^{\gamma} u_i u(Z)},\tag{35}$$

в которой N_i — число эквивалентных электронов у налетающего иона; $\alpha(Z)$, $\gamma \equiv 1$ — параметры; $u_i = \sqrt{I_i/I_0}$ — средняя орбитальная скорость удаляемого электрона для налетающего иона; $u(Z) = \sqrt{I(Z)/I_0}$ — средняя орбитальная скорость внешнего электрона для атома среды с номером Z; $I_0 = 13.6$ эВ; I_i — энергия связи электрона в оболочке иона; I(Z) — потенциал ионизации атома среды; в формуле (35) все скорости берутся в атомных единицах v_0 . На рис. 1 приведены результаты расчета по формуле (35) для $N_i = 1$, $I_i = 0.754$ эВ и $\alpha(Z) = 0.75$ (см. [17]). Сечения (35) при E = 10 МэВ в 2–4 раза больше экспериментальных значений для мишеней из инертных газов. Общее сравнение зависимости (35) с результатами измерений (см. ниже) приводит к выводу о том, что показатель γ является функцией Z и E.

Как видно на рис. 2, поведение функции $\theta_c(Z, E = \text{const})$ с ростом Z определяется последовательностью заполнения электронных оболочек атома мишени. Согласно же физической модели, заложенной в приближении дипольного момента, угол θ_c^d не зависит от типа мишени. Кроме θ_c с помощью замкнутого борновского приближения были вычислены углы $\theta_{1/2}$, соответствующие полуширине дифференциального сечения рассеяния частиц на половине его высоты. Расчеты показали, что теоретическая зависимость углов $\theta_{1/2}$ от энергии ионов H⁻ и атомного номера Z мишени не согласуется с экспериментальными фактами. На возможность такой ситуации было указано авторами статьи [2]. Дело в том, что замкнутое борновское приближение основано на использовании правила сумм по конечным состояниям сталкивающихся частиц, а это приводит к автоматическому включению в рассмотрение конечных состояний, которые не удовлетворяют законам сохранения энергии и импульса. Ошибка, возникающая при вычислении дифференциальных сечений рассеяния из-за использования правила сумм, будет тем больше, чем меньше величина среднего импульса, переданного в столкновении, т.е. когда $\theta \rightarrow 0$. Значение же

 $d\sigma(\theta = 0)/d\Omega$ используется для определения угла $\theta_{1/2}$, чем и обусловливается более высокая методическая ошибка вычисления $\theta_{1/2}$ по сравнению с θ_c . По указанным причинам результаты расчетов $\theta_{1/2}$ далее не приводятся.

Результаты наших расчетов характерных углов рассеяния сравниваются на рис. 2 с экспериментальными значениями из работы [10] для углов $\theta_{1/2}$, соответствующих полуширине на половине высоты пространственно-углового распределения атомов водорода, полученных в процессе (10) нейтрализации ионов Н⁻ в СО₂-мишени. Следует отметить, что в работе [10] измерения $\theta_{1/2}$ были сделаны для пучка частиц ленточного вида. Экспериментальные значения $\theta_{1/2}$ не зависят в пределах погрешности измерений от номера Z атома мишени ([10], см. также [9, 18]) и лежат существенно ниже теоретических значений θ_c . Последнее обстоятельство объясняется в первую очередь тем, что замкнутое борновское приближение и приближение дипольного момента являются двухчастичными, т. е. угол θ задает в этих моделях направление движения центра масс частиц, образовавшихся в процессе потери одного или двух электронов ионом Н⁻. В эксперименте же измеряется распределение именно атомов H⁰ для процесса $(\bar{1}0)$. Анализ процесса $(\bar{1}0)$ в трехчастичном борновском приближении [9] показывает, что форма дифференциального сечения рассеяния атомов водорода практически не зависит от выбора мишени, а расчетное значение угла $\theta_{1/2} \propto E^{-1/2}$ и примерно в полтора раза ниже экспериментальных данных для ленточного пучка частиц (рис. 2).

Энергетические зависимости сечений σ_{Σ} и характерных углов θ_c , вычисленных для мишеней из Не и Хе, представлены на рис. 3 и 4. Для атомов мишени с произвольным значением Z сечения ведут себя по закону близкому к $\sigma_{\Sigma} \propto E^{-1},$ а углы по закону $heta_c \propto E^{-1/2}$ (за исключением гелиевой мишени при E < 1 МэВ; см. рис. 4). Закономерность $\theta_c \propto E^{-1/2}$ совпадает с экспериментальной зависимостью $heta_{1/2} \propto E^{-1/2}$ [10,18]. Сечения σ_{Σ} и углы θ_c , найденные в данной работе для Не-мишени, практически совпадают с аналогичными расчетами в [3]. В случае легких атомов мишени (He, Li) зависимость $\sigma_{\Sigma}(E)$ хорошо согласуется с экспериментальными данными во всем диапазоне применимости замкнутого борновского приближения по Е. С увеличением Z приближенная экспериментальная зависимость $\sigma_{\Sigma}^{exp}\propto E^{-n(Z)}$ становится все более пологой, т. е. показатель степени n(Z) систематически уменьшается (от $n \approx 1$ для Не до $n \approx 0.45$ для Xe). Расхождение между теоретическими и эксперимен-

Рис. 3. Зависимости сечений потери электронов ионами Н⁻ от энергии *E* для мишеней из атомов Не и Хе: 1 и 2 — результаты расчета по теории из данной работы для атомов Не и Хе соответственно; 3 и 4 — расчеты в приближении дипольного момента для атомов Не и Хе соответственно; ▲ — экспериментальные данные для Не из работ [8, 13, 19]; ■ — экспериментальные данные для Хе из работ [8, 13]

тальными значениями сечений возрастает с увеличением Z и уменьшением E. Это объясняется тем, что борновское приближение не учитывает движения электронов, находящихся в составе сталкивающихся частиц, и динамики ион-атомных столкновений.

4. ЗАКЛЮЧЕНИЕ

1. В разработанном варианте замкнутого борновского приближения матричный элемент (4), ответственный за описание атома мишени, в результате тождественных преобразований сводится к выражению, содержащему матричные элементы J_{ii} по одноэлектронным состояниям атома (формулы (20), (24)), a усреднение матричного элемента $M(\mathbf{q})$ по направлениям вектора q относительно оси z атома выполняется приближенно, а именно — путем подстановки в формулу (24) усредненных (по взаимной ориентации векторов q и z) матричных элементов J_i и J_{ij} (формула (29)). При усреднении матричных элементов J_{ij} использовались одноэлектронные волновые функции Рутаана-Хартри-Фока. В итоге соотношение для дифференциального сечения рассеяния приобрело вид алгебраического выражения, что

Рис. 4. Энергетические зависимости характерных углов рассеяния частиц водорода в процессе потери электронов ионами H⁻ для мишеней из атомов He и Xe: 1 и 2 — результаты расчета по теории из данной работы для атомов He и Xe соответственно; 3 расчет в приближении дипольного момента для Heмишени [6,7]; • — экспериментальные данные для угла $\theta_{1/2}$, соответствующего полуширине на половине высоты пространственно-углового распределения атомов водорода, появляющихся при рассеянии ионов H⁻ на CO₂-мишени [10]

позволяет проводить вычисления сечений рассеяния частиц на атомах мишени с произвольным номером Z. Для атомов He, Li и Be, содержащих в основном состоянии электроны на сферически-симметричных *s*-орбиталях, результаты расчетов матричных элементов $M(\mathbf{q})$ являются в рамках замкнутого борновского приближения точными.

2. Выполнены систематические расчеты сечений σ_{Σ} и характерных углов θ_c для процесса потери электронов ионами H⁻ с энергией E = 0.1-100 МэВ при соударении с атомами среды, имеющими номер Z = 2-54. Согласно расчетам, при переходе от мишени из атомов инертного газа к мишени из атомов соседнего щелочного металла сечение σ_{Σ} скачкообразно возрастает, а угол θ_c — уменьшается; наилучшими угловыми характеристиками будет обладать пучок атомов водорода, полученных при нейтрализации ионов H⁻ в мишени из паров лития (если пренебречь процессами рассеяния ионов H⁻ и атомов H⁰ без изменения заряда [3,10]).

Выражаю глубокую благодарность В. С. Кортову и А. В. Кружалову за поддержку в работе, а также Ю. Г. Лазареву за помощь в отладке программ расчета.

ЛИТЕРАТУРА

- 1. M. Inokuti, Rev. Mod. Phys. 43, 297 (1971).
- Y. T. Lee and J. C. Y. Chen, Phys. Rev. A 19, 526 (1979).
- **3**. В. И. Радченко, ЖЭТФ **103**, 40 (1993).
- Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика, Наука, Москва (1974).
- E. Clementi and C. Roetti, Atomic data and nuclear data tables 14, 177 (1974).
- 6. В. И. Радченко, ЖЭТФ 105, 834 (1994).
- В. И. Радченко, Д. А. Кожухов, В. Н. Кудрявцев, ЖТФ 70(2), 12 (2000).
- 8. В. И. Радченко, Г. Д. Ведьманов, ЖЭТФ 107, 3 (1995).
- 9. J. A. Johnstone, NIM Phys. Res. B 52, 1 (1990).
- Г. Д. Ведьманов, Ю. Г. Лазарев, В. И. Радченко, ЖТФ 70(2), 81 (2000).
- 11. Н. Бор, *Прохождение атомных частиц через вещество*, Изд-во иностр. лит., Москва (1950).
- И. С. Дмитриев, Я. М. Жилейкин, В. С. Николаев, ЖЭТФ 49, 500 (1965).
- C. J. Anderson, R. J. Girnius, A. M. Howald, and L. W. Anderson, Phys. Rev. A 22, 822 (1980).
- 14. K. Riesselmann, L. W. Anderson, L. Durand, and C. J. Anderson, Phys. Rev. A 43, 5934 (1991).
- И. С. Дмитриев, В. С. Николаев, ЖЭТФ 44, 660 (1963).
- D. P. Dewangan and H. R. J. Walters, J. Phys. B: Atom. and Mol. Phys. 11, 3983 (1978).
- 17. И. С. Дмитриев, Я. Ф. Теплова, Ю. А. Файнберг, ЖЭТФ 107, 55 (1995).
- Б. А. Дьячков, В. И. Зиненко, Г. В. Казанцев, ЖТФ 47, 416 (1977).
- 19. D. P. Almeida, N. V. de Castro, F. L. Freite et al., Phys. Rev. A 36, 16 (1987).