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COMMENTS ON THE MORITA EQUIVALENCEK. Saraikin*Landau Institute for Theoretial Physis117334, Mosow, RussiaInstitute of Theoretial and Experimental Physis117259, Mosow, RussiaSubmitted 25 May 2000It is known that the nonommutative Yang�Mills (YM) theory with periodial boundary onditions on a torusat the rational value of the nonommutativity parameter is Morita equivalent to the ordinary YM theory withtwisted boundary onditions on the dual torus. We give a simple derivation of this fat. We desribe theone-to-one orrespondene between these two theories and the orresponding gauge invariant observables. Inpartiular, we show that under the Morita map, the Polyakov loops in the ordinary YM theory go into the opennonommutative Wilson loops disovered by Ishibashi, Iso, Kawai, and Kitazawa.PACS: 11.25.-w, 02.10.Tq1. INTRODUCTIONNonommutative geometry deals with funtions ona deformation of the ordinary spae where the oordi-nates do not ommute1),[x̂�; x̂� ℄ = 2�i��� ; �; � = 1; : : : ; d: (1.1)The antisymmetri tensor ��� is alled the nonommu-tativity parameter. The deformed �at (��� = onst)and ompat spae is alled the nonommutative(quantum) torus Td� . Reently, the nonommutativegeometry and espeially the nonommutative toruswere seen to play an important role in the M -theoryompati�ations [1℄ and in string theory (see [2℄ andreferenes therein). The nonommutative geometryalso is very useful in ompati�ations of instantonmoduli spaes [3℄. The way to deal with the urvedquantum spaes is provided by the Kontsevih defor-mation quantization.A very intriguing subjet from nonommutative ge-ometry is the so-alled Morita equivalene [4℄. Roughlyspeaking, it states that ertain bundles on di�erentnonommutative tori are dual to eah other. From thephysial standpoint, this results in the equivalene be-*E-mail: saraikin�itp.a.ru1) In what follows, we use the same notation [ ; ℄ for the or-dinary and the star-ommutator. To avoid onfusion, we supplyall nonommutative quantities with the hats.

tween ertain nonommutative and ordinary gauge the-ories. In what follows, we try to larify this statementusing a set of simple examples.2. NOTATIONThe algebraA� of smooth funtions on the nonom-mutative torus is de�ned using the Moyal star produtf � g(x̂) == exp�i���� ���� ����� f(�)g(�)�����=�=x̂ : (2.1)The main property of this produt is its assoiativ-ity. In appliations, it is useful to deompose funtionson the nonommutative torus into the Fourier ompo-nents2) as f(x̂) = Xk2Zdfkeik�x̂: (2.2)This orresponds to the Weil or symmetri ordering ofoordinates. The exponentialsÛk = eik�x̂an serve as basis elements for the algebra A�.2) Without loosing the generality, we an onsider a torus ofsize 2�.755



K. Saraikin ÆÝÒÔ, òîì 118, âûï. 4 (10), 2000A very intriguing phenomenon ours when the �-tensor omponents beome rational. We �rst onsiderthe two-torus T2,[x̂�; x̂� ℄ = 2�i���� ; �; � = 1; 2; (2.3)with the rational nonommutativity parameter � == M=N , where M and N are oprime integers. Then[Ûn; Ûn0 ℄ =2i sin��M n2n01 � n1n02N � Ûn+n0 == 2i sin(n� n0) Ûn+n0 ; (2.4)where by de�nition, n � n0 � �����n�n0� . We notethat the elements ÛNk generate the enter of A�, thatis, we have �eiNk�x̂; f(x̂)� = 0 (2.5)for any f(x̂). This means that the exponentialsfÛk; k = 0jmodNg entering the deomposition (2.2)an be treated as if they were ordinary exponen-tials de�ned on the ordinary (ommutative) spae.The other N2 � 1 exponentials obtained from the setfÛk; k 6= 0jmodNg after fatorization over the ommu-tative part generate a losed algebra under the star-ommutator. This algebra is isomorphi to SU(N), aswe see momentarily. Therefore, at the rational value ofthe nonommutativity parameter, one an identify thealgebra of funtions on the nonommutative torus withthe algebra of matrix-valued funtions on the ommu-tative torus.We onlude this setion by giving an expliit ma-trix representation for the algebra of the nonommuta-tive exponentials (see also [5℄). This representation hasbeen well-known for many years [6, 7℄. We introduethe lok and shift generatorsQ = 0BBBBBBB� 1 ! !2 . . . !N�1
1CCCCCCCA ;

P = 0BBBBBBBB� 0 1 00 1. . . . . .. . . 11 0
1CCCCCCCCA ; (2.6)

where ! = e2�i�. The matries P and Q are unitary,traeless and satisfy the relationsPN = QN = 1; PQ = ! QP: (2.7)Moreover,Tr(PnQm) == ( N if n = 0jmodN and m=0jmodN ;0 if n 6= 0jmodN or m 6= 0jmodN : (2.8)It is straightforward to verify that the generators de-�ned asJn = !n1n2=2Qn1Pn2 ; n = (n1; n2); (2.9)satisfy ommutation relations (2.4),[Jn; Jn0 ℄ = 2i sin (n� n0) Jn+n0 : (2.10)This identity an be rewritten as the Lie algebra om-mutation relations[Jn; Jm℄ = fknmJk (2.11)with the struture onstantsfknm = 2iÆn+m;k sin(n�m): (2.12)The set of unitary unimodular N �N matries (2.9) issu�ient to span the SU(N) algebra.3. THE MORITA EQUIVALENCE3.1. The two-torus. U(1)j�=M=N ! U(N)To de�ne the Morita map, we use an additional de-omposition of funtion (2.2) on the nonommutativetwo-torusf̂ = Xk2Z2 eiNk�x̂ N�1Xn1; n2=0 fknein1x̂1+in2x̂2 : (3.1)We then de�ne the orresponding U(N)-valued fun-tion on the ordinary two-torus asf = Xk2Z2 eiNk�x N�1Xn1; n2=0 fkn ein�xJn: (3.2)Beause of the relationJnJn0 = ein�n0Jn+n0 ; (3.3)Morita map (3.1), (3.2) takes the star-produt to thematrix produt. Obviously, a general U(N)-valued756



ÆÝÒÔ, òîì 118, âûï. 4 (10), 2000 Comments on the Morita Equivalenefuntion annot be represented in form (3.2). It turnsout that this partiular form orresponds to the fun-tions with nontrivial boundary onditions. This meansthat under shifts of their arguments, these funtionstransform asf �x1 + 2�MN ; x2� = 
1 f(x1; x2) 
y1;f �x1; x2 + 2�MN � = 
2 f(x1; x2) 
y2; (3.4)where 
1 = (P )M ; 
2 = (Qy)M : (3.5)This an be onsidered as a onstant gauge transforma-tion. The size 2�M=N of the dual torus an be �xedby the requirement for the Morita map to be single-valued3). To illustrate this, we onsider a torus of thesize 2�(M=N)n (where n 2 N; there are no other pos-sibilities if the funtions of type (3.2) are required to begauge-onjugate by a onstant matrix when translatedalong the torus lattie). In this ase, obviously, thereare funtions that annot be represented in form (3.2).These funtions are not onjugated when translatedalong the vetors (2�M=N; 0) and (0; 2�M=N).Therefore, having a set of Fourier oe�ients fkn,we an onstrut a funtion on the nonommutativetorus of the size l and a matrix-valued funtion withtwisted boundary onditions (3.4) on the ommutativetorus of the size (M=N)l as follows:( einx̂ $ ein�xJn; n1; n2 < N;eiNk�x̂ $ eiNk�x1: (3.6)3.2. Td. U(1)j� ! U(N1)� � � � � U(Nr)The generalization to the d-dimensional ase goesby simple modi�ations of the formulas from the previ-ous subsetion. It is always possible to rotate ��� intothe anonial skew-diagonal form
��� = 0BBBBBBBBBB�

0 �1��1 0 . . . 0 �r��r 0 0d�2r
1CCCCCCCCCCA ; (3.7)

where r is the rank of ��� . The algebra of a higherdimensional nonommutative torus is thereby embed-ded into a d-fold tensor produt of r nonommutative3) I am indebted to K. Selivanov for this omment.

two-torus algebras and the ordinary (d�2r)-torus om-mutative algebra. This immediately leads to other ex-amples of the Morita equivalene, where some of thesenonommutative two-tori are mapped to the ommuta-tive ones via (3.6). If �i = MiNi ;the Morita map results in the ordinary Yang�Mills(YM) theory with the gauge group U(N1)�� � ��U(Nr).3.3. Td. U(1)j� ! U(N)The algebra of nonommutative exponentials analso be realized using a set of SU(N)-valued matries
�, � = 1; : : : ; d, obeying the relations
�
� = e2�i���
�
�: (3.8)An expliit onstrution of these matries an be foundin [8℄. We de�ne the generators Jn asJn = exp X�<� ���n�n�!
n11 : : :
ndd : (3.9)Then [Jn; Jm℄ = 2i sin (n�m)Jn+m; (3.10)whih oinides with the algebra of the nonommuta-tive exponentials. In this ase, therefore, the Moritamap takes the formf̂ = Xk2ZdeiNk�x̂ Xn<N
d fknein�x̂ $$ f = Xk2Zd eiNk�x Xn<N
d fknein�xJn: (3.11)4. THE NONCOMMUTATIVE YANG�MILLSTHEORY VS THE ORDINARYYANG�MILLS THEORYWe now turn to physial appliations of the Moritamap. One an de�ne a nonommutative version of theYM theory with the ationSYM = 14�g2YM Z dx Tr(F��F��) (4.1)by simply replaing the matrix produt by the Moyalstar-produt in all formulas and supplementing allquantities with the hats. Therefore, the nonommu-tative U(1) YM ation isŜ = 14�g2NCYM Z dx̂ F̂�� � F̂�� ; (4.2)757



K. Saraikin ÆÝÒÔ, òîì 118, âûï. 4 (10), 2000where F̂�� = ��Â� � ��Â� � i[Â�; Â� ℄�:For simpliity, we onsider only two-torus in this se-tion. The generalization to the higher-dimensional aseis straightforward.The Morita map takes nonommutative U(1) gauge�elds to the U(N) gauge �elds with nontrivial bound-ary onditions. In general, funtions on the torus anbe gauge-onjugate when shifted by the period of thetorus,A�(x+ l�) = 
�(x)A�(x) 
�1� (x) ++ i
�(x) ��
�1� (x); (4.3)where 
�(x) are the elements of the U(N) group thatare known as the twist matries. They must satisfy theonsisteny onditions
�(x+ l�) 
�(x) == exp�2�iMN ����
�(x+ l�) 
�(x): (4.4)The integer M entering this formula is the so-alled't Hooft �ux. Only three types of possible boundaryonditions (solutions of Eqs. (4.4)) are known::1. twist eaters: 
� = onst;2. abelian twists;3. nonabelian twists.For more details, see the reent review [9℄.The map (3.6) preisely orresponds to the �rstase. It is not well understood how to realize theMorita map orresponding to other boundary ondi-tions. Roughly speaking, when working in the Fourierbasis (2.2), after shifts one an only multiply funtionswith numbers and annot add quantities of the form
�(x) ��
�1� (x). To do this, one needs another basisfor the funtions on the nonommutative torus (re-ation/annihilation operators, nonommutative theta-funtions?).Under the Morita map de�ned in the previous se-tion, ations go into ations, equations of motions gointo equations of motions, and solutions (e.g., instan-tons) also go into solutions, even at the quantum level.These properties of the Morita map an be enoded inthe identityZ dx̂Â� � Â� � � � � � Â� == 1N Z dx Tr(A�A� : : : A�); (4.5)

whih is straightforward to prove using the de�nitionZ dx̂eik�x̂ = Æk;0 (4.6)and property (2.8) of the lok and shift generators. Infat, one an insert an arbitrary number of derivativesinto the integrals in (4.5) and thus obtain equivalentgauge-invariant quantities in the nonommutative andordinary gauge theories. Using identity (4.5), we anrelate the orrelators asZ DA�k;n exp�Ŝ �� = MN �� Ô1 : : : Ôl == Z DA�k;n exp(SYM )���fxd bndry onds; flux=M ��O1 : : :Ol; (4.7)where g2NCYM = Ng2YM andÔ = Z dx̂(F̂��)�n;O = 1N Z dx Tr (F��)n: (4.8)Other important gauge-invariant quantities of the YMtheory are the Wilson loopsW [C℄ = Tr P exp0�i IC A�(x)dx�1A (4.9)orresponding to a losed path C. On the torus, thereare paths from di�erent homotopy lasses, whih anbe lassi�ed by winding numbers w� around the �-thdiretion. The orresponding Wilson loops are alledthe Polyakov loops. The simplest Polyakov loop orre-sponds to the straight line along the �-th diretion,WP [x; �℄ == Tr264P exp0B�i x+l�Zx A�(x)dx�1CA
�eix�375 ; (4.10)where the insertion of twist matrix (3.5) is neessary toguarantee gauge invariane.Wilson lines were onstruted in the nonommu-tative YM theory by Ishibashi, Iso, Kawai, and Ki-tazawa [10℄ (see also [11; 12℄). This onstrution goesas follows. One �rst introdues an oriented urve Cin the auxiliary ommutative two-dimensional spaeparametrized by the funtions �(�) with 0 � � � 1.One �xes the starting point ��(0) = 0 and the end-point ��(1) = v�. One then assigns to this urve a758



ÆÝÒÔ, òîì 118, âûï. 4 (10), 2000 Comments on the Morita Equivalenenonommutative analog of the parallel transport oper-atorU [x̂; C℄ = 1 + 1Xn=1 in 1Z0 d�1 1Z�1 d�2 : : :� � � 1Z�n�1 d�n d��1(�1)d�1 : : : d��n(�n)d�n ��A�1(x̂+ �(�1)) � � � � �A�n(x̂+ �(�n)): (4.11)The series in (4.11) is a nonommutative analog of theP -exponential. The star-gauge invariant quantity isthen Ô[C℄ = Z dx̂ U [x̂; C℄ � S[x̂; C℄; (4.12)where S[x̂; C℄ = 1 if the path C is losed andS[x̂; C℄ = exp �i(��1)��v� x̂�� (4.13)if the path is open. Gauge invariane requires that theendpoint oordinates must be equal tov� = 2�r�MN ; r� = 0; : : : ; N � 1:In the simplest ase where C� is the straight line alongthe �-th diretion and v� = 2�M=N , the funtionS[x̂; C�℄ goes to the twist funtion 
�eix� under Moritamap (3.6). Therefore, identity (4.5) allows us to obtainthe following relation between the Polyakov loops in theordinary YM theory and open nonommutative Wilsonloops: 1N Z dx WP [x; �℄ = Ô[C�℄: (4.14)5. CONCLUSIONSIn this paper, we have made some omments onthe Morita equivalene between nonommutative andordinary gauge theories. We present a simple pre-sription whereby gauge �elds and orrelators of thegauge-invariant observables in the U(1) nonommuta-tive YM theory on a torus at the rational value of the�-parameter an be identi�ed with those in the ordi-nary U(N) or U(N1) � � � � � U(Nr) YM theory withnontrivial boundary onditions on the dual torus. Thesize of the dual torus is determined by the requirementfor the Morita map to be single-valued. We also showthat under the Morita map, the Polyakov loops in the
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