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It is known that the noncommutative Yang—Mills (YM) theory with periodical boundary conditions on a torus
at the rational value of the noncommutativity parameter is Morita equivalent to the ordinary YM theory with
twisted boundary conditions on the dual torus. We give a simple derivation of this fact. We describe the
one-to-one correspondence between these two theories and the corresponding gauge invariant observables. In
particular, we show that under the Morita map, the Polyakov loops in the ordinary YM theory go into the open
noncommutative Wilson loops discovered by Ishibashi, Iso, Kawai, and Kitazawa.
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1. INTRODUCTION

Noncommutative geometry deals with functions on
a deformation of the ordinary space where the coordi-
nates do not commutel),

[Z,,2,] =270, prv=1,...,d (1.1)
The antisymmetric tensor 6, is called the noncommu-
tativity parameter. The deformed flat (6,, = const)
and compact space is called the noncommutative
(quantum) torus T¢. Recently, the noncommutative
geometry and especially the noncommutative torus
were seen to play an important role in the M-theory
compactifications [1] and in string theory (see [2] and
references therein). The noncommutative geometry
also is very useful in compactifications of instanton
moduli spaces [3]. The way to deal with the curved
quantum spaces is provided by the Kontsevich defor-
mation quantization.

A very intriguing subject from noncommutative ge-
ometry is the so-called Morita equivalence [4]. Roughly
speaking, it states that certain bundles on different
noncommutative tori are dual to each other. From the
physical standpoint, this results in the equivalence be-
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D In what follows, we use the same notation [, ] for the or-
dinary and the star-commutator. To avoid confusion, we supply
all noncommutative quantities with the hats.
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tween certain noncommutative and ordinary gauge the-
ories. In what follows, we try to clarify this statement
using a set of simple examples.

2. NOTATION

The algebra Ay of smooth functions on the noncom-
mutative torus is defined using the Moyal star product

frgx) =

) 0 0
= exp <z7ﬂ9u,,¥ W
" v

The main property of this product is its associativ-
ity. In applications, it is useful to decompose functions
on the noncommutative torus into the Fourier compo-
nents?) as

wmw (2.1)

£=n=%

&)=Y fee™® (2:2)

kecZd

This corresponds to the Weil or symmetric ordering of
coordinates. The exponentials

Uk — eik-f{

can serve as basis elements for the algebra Ay.

2) Without loosing the generality, we can consider a torus of

size 2.
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A very intriguing phenomenon occurs when the 6-
tensor components become rational. We first consider
the two-torus T2,

(2.3)

[y, 2] = 2mibeyy, p,v=1,2,

with the rational noncommutativity parameter 6
= M/N, where M and N are coprime integers. Then

[Una Un’] -
. nany —ninb\ -
P il Sk ELL R Y S
isin <7r N n
=2isin(n x n') Upynr, (2.4)
where by definition, n x n' = —76,,n,n,. We note

that the elements Uni generate the center of Ay, that
is, we have

[eNEX f(%)] =0 (2.5)
for any f(x). This means that the exponentials
{Ux, kX = Olmoan} entering the decomposition (2.2)
can be treated as if they were ordinary exponen-
tials defined on the ordinary (commutative) space.
The other N2 — 1 exponentials obtained from the set
{Uk, k # Olmoa N} after factorization over the commu-
tative part generate a closed algebra under the star-
commutator. This algebra is isomorphic to SU(N), as
we see momentarily. Therefore, at the rational value of
the noncommutativity parameter, one can identify the
algebra of functions on the noncommutative torus with
the algebra of matrix-valued functions on the commu-
tative torus.

We conclude this section by giving an explicit ma-
trix representation for the algebra of the noncommuta-
tive exponentials (see also [5]). This representation has
been well-known for many years [6, 7]. We introduce
the clock and shift generators

1
w
Q = (JJ2
OJN_l
2.6
0 1 0 26)
0 1
P = ,
1 0
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where w = €™, The matrices P and @ are unitary,

traceless and satisfy the relations

PN =QN =1, PQ=wQP. (2.7)
Moreover,
Te(P"Q™) =
_ N if n= O‘modN and m:O\modN, (2 8)
0 if n;ﬁO|m0dN or m;«éO\modN.

It is straightforward to verify that the generators de-
fined as

Jo = wM"22QM P = (ny,n,), (2.9)
satisfy commutation relations (2.4),
[Jn, Jnr] = 2isin (n x n') Jpin (2.10)

This identity can be rewritten as the Lie algebra com-
mutation relations

[Jn-, Jm] = fo:ka (2'11)
with the structure constants
k= 2i0n s misin(n x m). (2.12)

The set of unitary unimodular N x N matrices (2.9) is
sufficient to span the SU(N) algebra.

3. THE MORITA EQUIVALENCE

3.1. The two-torus. U(1)|g=nr/n — U(N)

To define the Morita map, we use an additional de-
composition of function (2.2) on the noncommutative
two-torus

N-1
£ E : iNk-x § : iny&1+ined
f — e fkne 1Z1+inals

keZ?

(3.1)

ni, n2:0

We then define the corresponding U(N)-valued func-
tion on the ordinary two-torus as

N—-1
f — Z eiNk-x Z fkn ein-x(]n.

(3.2)
keZ2 ni, na=0
Because of the relation
Jadw = ™™ T (3.3)

Morita map (3.1), (3.2) takes the star-product to the
matrix product. Obviously, a general U(N)-valued
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function cannot be represented in form (3.2). It turns
out that this particular form corresponds to the func-
tions with nontrivial boundary conditions. This means
that under shifts of their arguments, these functions
transform as

M
f (331 +27r—,xz> = flzr,22) O,

N
y (3.4)
f (331,332 +27ﬁ) =0y f(z1,22) Q,
where
0= (P, Q= (QHY. (3.5)

This can be considered as a constant gauge transforma-
tion. The size 27 M /N of the dual torus can be fixed
by the requirement for the Morita map to be single-
valued?®). To illustrate this, we consider a torus of the
size 2m(M/N)n (where n € N; there are no other pos-
sibilities if the functions of type (3.2) are required to be
gauge-conjugate by a constant matrix when translated
along the torus lattice). In this case, obviously, there
are functions that cannot be represented in form (3.2).
These functions are not conjugated when translated
along the vectors (2rM/N,0) and (0,27 M/N).

Therefore, having a set of Fourier coefficients fxn,
we can construct a function on the noncommutative
torus of the size | and a matrix-valued function with
twisted boundary conditions (3.4) on the commutative
torus of the size (M/N)l as follows:

{

3.2. T U(1)|g = U(Ny) x --- x U(N,)

eznx <_> ell’l'xJn./

eiNk-ﬁc o eiNk-xl.

9 < N7
e (3.6)

The generalization to the d-dimensional case goes
by simple modifications of the formulas from the previ-
ous subsection. It is always possible to rotate 6, into
the canonical skew-diagonal form

0
—6,

61
0

-0,

0d—2r

where 7 is the rank of 6,,. The algebra of a higher
dimensional noncommutative torus is thereby embed-
ded into a d-fold tensor product of r noncommutative

3) I am indebted to K. Selivanov for this comment.
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two-torus algebras and the ordinary (d—2r)-torus com-
mutative algebra. This immediately leads to other ex-
amples of the Morita equivalence, where some of these
noncommutative two-tori are mapped to the commuta-
tive ones via (3.6). If

the Morita map results in the ordinary Yang—Mills
(YM) theory with the gauge group U(Ny)x---xU(N,).

3.3. T4 U(1)|¢ — U(N)

The algebra of noncommutative exponentials can
also be realized using a set of SU(N)-valued matrices
Q,, p=1,...,d, obeying the relations

0,0, =¥ 0,0, (3.8)

An explicit construction of these matrices can be found
in [8]. We define the generators .J, as

Jn = exp (Z Oyununy
v<pu

Then

) Qr.Qt.(3.9)

[Jn, Jm] = 2isin (n X m) Jpim, (3.10)

which coincides with the algebra of the noncommuta-
tive exponentials. In this case, therefore, the Morita
map takes the form

f': Z eiNk-ﬁc Z fknein-fc o

keZd n<N@d
_ iNk-x in-x
“ f= e Sfxn€™ T, (3.11)
keZd n<N©®d

4. THE NONCOMMUTATIVE YANG—MILLS
THEORY VS THE ORDINARY
YANG—MILLS THEORY

We now turn to physical applications of the Morita
map. One can define a noncommutative version of the
YM theory with the action

1
S =——— [ dx Tx(F,, F* 4.1
Y M 471_9% o / X ( pv ) ( )
by simply replacing the matrix product by the Moyal
star-product in all formulas and supplementing all

quantities with the hats. Therefore, the noncommu-

tative U(1) YM action is
~ 1 N .

Szi/dchy*FW, 4.2
Amgley " 2
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where
F,, =0,A, —8,A, —i[A,, A]..

For simplicity, we consider only two-torus in this sec-
tion. The generalization to the higher-dimensional case
is straightforward.

The Morita map takes noncommutative U (1) gauge
fields to the U(N) gauge fields with nontrivial bound-
ary conditions. In general, functions on the torus can
be gauge-conjugate when shifted by the period of the
torus,

AA(X + lu) = QM(X)A)\(X) Q;l(X) +

+i,(x) 0, (%),  (4.3)

where Q,(x) are the elements of the U(N) group that
are known as the twist matrices. They must satisfy the
consistency conditions

Qu(x+1,) 2 (x)

= exp (m‘%e,ﬂ,) Oy (x +1,) Qu(x). (4.4)

The integer M entering this formula is the so-called
't Hooft flux. Only three types of possible boundary
conditions (solutions of Eqs. (4.4)) are known::

1. twist eaters: €, = const;

2. abelian twists;

3. nonabelian twists.

For more details, see the recent review [9].

The map (3.6) precisely corresponds to the first
case. It is not well understood how to realize the
Morita map corresponding to other boundary condi-
tions. Roughly speaking, when working in the Fourier
basis (2.2), after shifts one can only multiply functions
with numbers and cannot add quantities of the form
Q,(x) 0,2, ' (x). To do this, one needs another basis
for the functions on the noncommutative torus (cre-
ation/annihilation operators, noncommutative theta-
functions?).

Under the Morita map defined in the previous sec-
tion, actions go into actions, equations of motions go
into equations of motions, and solutions (e.g., instan-
tons) also go into solutions, even at the quantum level.
These properties of the Morita map can be encoded in
the identity

/diﬁu*ﬁu*-u*A)\:
1

- N/dx Tr(A Ay ... Ay),  (4.5)
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which is straightforward to prove using the definition

/ dxe™* = 6 o

and property (2.8) of the clock and shift generators. In
fact, one can insert an arbitrary number of derivatives
into the integrals in (4.5) and thus obtain equivalent
gauge-invariant quantities in the noncommutative and
ordinary gauge theories. Using identity (4.5), we can
relate the correlators as

(4.6)

DAY S 1= — 1.0, =
fokem(sp-2])or o
= / DAﬁ nexp(SYM) X

fxd bndry conds, fluz=M
x O ...O[, (47)
where g% oy = Ng¥y, and
0= / dx(F,)™,
(4.8)

0= %/dx Tr (Fuu)".

Other important gauge-invariant quantities of the YM
theory are the Wilson loops

WI[C] =Tr Pexp i%A“(X)daf:u (4.9)
c

corresponding to a closed path C. On the torus, there
are paths from different homotopy classes, which can
be classified by winding numbers w, around the p-th
direction. The corresponding Wilson loops are called
the Polyakov loops. The simplest Polyakov loop corre-
sponds to the straight line along the u-th direction,

Wp[x, 1]
x+1,
=Tr | Pexp i/Au(x)dacu Que®e |, (4.10)

where the insertion of twist matrix (3.5) is necessary to
guarantee gauge invariance.

Wilson lines were constructed in the noncommu-
tative YM theory by Ishibashi, Iso, Kawai, and Ki-
tazawa [10] (see also [11,12]). This construction goes
as follows. One first introduces an oriented curve C
in the auxiliary commutative two-dimensional space
parametrized by the functions £(o) with 0 < o < 1.
One fixes the starting point £,(0) = 0 and the end-
point &,(1) = v,. One then assigns to this curve a
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noncommutative analog of the parallel transport oper-

ator
1 1
"/dal/daz...
0

dfm (01)
dor -

Z/{[&,C]:1+ii

n=1

1
N / da’n
On—1

X Ay (X +&(01)) %% Ay, (X +E(0n)).

gy, (0n) %

do,
(4.11)

The series in (4.11) is a noncommutative analog of the
P-exponential. The star-gauge invariant quantity is

then

olc] = /dfc UK, Cl« S, Cl, (4.12)
where S[%,C] =1 if the path C is closed and

S[%. Cl=exp (i(0 ") uvuy) (4.13)

if the path is open. Gauge invariance requires that the
endpoint coordinates must be equal to

M
Uu=27”'uﬁa r,=0,...,

N —1.

In the simplest case where C), is the straight line along
the p-th direction and v, = 27M/N, the function
S[x,C,] goes to the twist function €,e'» under Morita
map (3.6). Therefore, identity (4.5) allows us to obtain
the following relation between the Polyakov loops in the
ordinary YM theory and open noncommutative Wilson
loops:

%/dx Welx, u] = O[C,]. (4.14)

5. CONCLUSIONS

In this paper, we have made some comments on
the Morita equivalence between noncommutative and
ordinary gauge theories. We present a simple pre-
scription whereby gauge fields and correlators of the
gauge-invariant observables in the U(1) noncommuta-
tive YM theory on a torus at the rational value of the
f-parameter can be identified with those in the ordi-
nary U(N) or U(Ny) x --- x U(N,) YM theory with
nontrivial boundary conditions on the dual torus. The
size of the dual torus is determined by the requirement
for the Morita map to be single-valued. We also show
that under the Morita map, the Polyakov loops in the
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ordinary YM theory go into the open noncommutative
Wilson loops®).

An open question is to generalize the Morita equiv-
alence to boundary conditions of the non-twist-eater
type. Another interesting direction is to link three dif-
ferent descriptions of the Morita equivalence: the field
theory approach using the Fourier components, the
string theory approach using T-duality and the brane
language [13,14], and the mathematical approach via
twisted bundles over the noncommutative torus [4, 15].
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