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QUANTUM-CLASSICAL CORRESPONDENCE ANDNONCLASSICAL STATES GENERATION IN DISSIPATIVEQUANTUM OPTICAL SYSTEMSK. N. Alekseev*, N. V. AlekseevaKirensky Institute of Physi
s of Russian A
ademy of S
ien
es660036, Krasnoyarsk, RussiaJan Pe°ina**Department of Opti
s and Joint Laboratory of Opti
s, Pala
ký University77207, Olomou
, Cze
h Republi
Submitted 3 September 1999We develop a semi
lassi
al method for the determination of the nonlinear dynami
s of dissipative quantumopti
al systems in the limit of large number of photons N ; it is based on the 1=N -expansion and the quantum-
lassi
al 
orresponden
e. The method is used to ta
kle two problems: to study the dynami
s of non
lassi
alstate generation in higher-order anharmoni
 dissipative os
illators and to establish the di�eren
e between thequantum and 
lassi
al dynami
s of the se
ond-harmoni
 generation in a self-pulsing regime. In addressing the�rst problem, we obtain an expli
it time dependen
e of the squeezing and the Fano fa
tor for an arbitrary degreeof anharmonism in the short-time approximation. For the se
ond problem, we analyti
ally �nd a 
hara
teristi
time s
ale at whi
h the quantum dynami
s di�ers insigni�
antly from the 
lassi
al one.PACS: 05.45.-a, 03.65.Sq, 42.50.Dv1. INTRODUCTIONThe situation when nonlinear intera
tions involve alarge number of photons, N , is quite typi
al of manyproblems in quantum and nonlinear opti
s [1�3℄. Hied-mann et al. suggested [4℄ to use the 1=N -expansionmethod [5℄ to des
ribe the nonlinear dynami
s of themean values and se
ond-order 
umulants of a quan-tum system in the N � 1 limit. Following the generals
heme of that method [5℄, an exa
t or approximatesolution 
an be found in terms of the 
oherent staterepresentation in the 
lassi
al limit as N !1 and 
anthen be adjusted by adding the quantum 
orre
tions.The method proves to be parti
ularly 
onvenient whenthe dynami
s of non
lassi
al state generation must bedetermined [4℄. We have re
ently developed the methodfurther to study the enhan
ed squeezing at the transi-tion to quantum 
haos [6�8℄.Papers [4, 6, 7℄ are 
on
erned with the problems*E-mail: kna�tnp.kras
ien
e.rssi.ru**E-mail: perina�optnw.upol.
z

of nondissipative quantum systems only. In this pa-per, we extend the method to dissipative quantum sys-tems. For quantum systems without dissipation, thelowest order of the 1=N -expansion is equivalent to thelinearization in terms of the 
lassi
al solution [6, 7℄,whereas in dissipative systems, as is demonstrated inwhat follows, the solution of the equations of motionfor variations near the 
lassi
al traje
tory 
annot pro-vide 
omplete information on the dynami
s of quantum�u
tuations even in the lowest order of 1=N . We showthat the in�uen
e of the reservoir on the dynami
s ofexpe
tation values and dispersions, whi
h is di�erentfrom the energy dissipation, always exists; it has thequantum nature and 
annot be negle
ted even in thesemi
lassi
al limit. However, spe
i�
 manifestations ofthe e�e
t depend on the type of the attra
tor in theunderlying 
lassi
al dynami
 system. For systems witha simple attra
tor in the 
lassi
al limit, the �quantumdi�usion� asso
iated with the quantum �u
tuations ofthe reservoir do not lead to any new physi
al e�e
tsin the dynami
s of the main system, at least in the682
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lassi
al 
orresponden
e : : :short-time limit. For a stable limit 
y
le, on the otherhand, su
h a di�usion appears to be the main me
ha-nism responsible for the di�eren
e between the 
lassi
aland quantum dynami
s for N � 1.Along with the presentation of a general formal-ism, we 
onsider two typi
al examples of quantum op-ti
al systems with a simple attra
tor and a stable limit
y
le in the 
lassi
al limit as N ! 1: the dissipa-tive higher-order anharmoni
 os
illator and the self-pulsing regime of intra
avity se
ond-harmoni
 genera-tion (SHG). We show how the 1=N -expansion method
an be used to investigate the dynami
s of the non-
lassi
al state generation and to determine the times
ale for a 
orre
t 
lassi
al des
ription of the dissipa-tive quantum dynami
s.The quantum anharmoni
 os
illator with a Kerr-ty-pe nonlinearity is one of the simplest and most popularmodels used in the des
ription of quantum statisti
alproperties of light intera
ting with a nonlinear medium[1, 9℄. The Kerr os
illator model with a third-ordernonlinearity yields an exa
t solution in both the nondis-sipative [10℄ and dissipative limits [9℄. However, be-
ause of the 
omplexity of the solution in the dissipa-tive 
ase, numeri
al methods or spe
ial approximateanalyti
al methods must be used to determine statis-ti
al properties of the radiation in the most relevantexperimental 
ase involving a large number of photons.Moreover, there are no exa
t solutions available for themodel of the anharmoni
 os
illator with a higher-ordernonlinearity.In this paper, we analyti
ally obtain a simple andexpli
it time dependen
e of the degree of squeezing andthe Fano fa
tor in the anharmoni
 os
illator model ofan arbitrary order for the most interesting experimen-tal situation featuring higher intensities (N � 1) andshort-time intera
tions. As another example of appli
a-tion of the 1=N -expansion, we 
onsider the self-pulsingin SHG [11℄. Su
h an os
illatory regime 
orrespondingto the limit 
y
le was observed experimentally in [12℄.There are several papers dealing with the developmentof approximate analyti
al and numeri
al methods withthe purpose of des
ribing di�erent dynami
 regimes inSHG in terms of quantum me
hani
s [13�17℄. In par-ti
ular, Savage [14℄ 
al
ulated the Gaussian approxima-tion of the Q distribution fun
tion about the 
lassi
allimit 
y
le. He demonstrated numeri
ally that in the
lassi
al limit, the initial rapid 
ollapse of the Q dis-tribution in the neighbourhood of the limit 
y
le is fol-lowed by the di�usion around the limit 
y
le. However,the author did not o�er any analyti
al solution of theproblem or an explanation of the physi
s of the e�e
tobserved.

In this paper, we show that the di�usion around the
lassi
al limit 
y
le 
an be obtained as a solution of theequations of motion for low-order 
umulants by usingthe 1=N -expansion te
hnique. This enables us to �ndthe time s
ale t � t� with t� ' 2N
�1 (where 
 is adamping 
onstant) for a 
orre
t 
lassi
al des
ription ofself-os
illations in SHG. The resultant estimate is 
on-sistent with that obtained for t� numeri
ally in [14℄.Finally, we interpret the quantum di�usion around thelimit 
y
le as a di�usion 
aused by the e�e
t of thereservoir va
uum on the SHG dynami
s.This paper is organized as follows. In Se
. 2, wedes
ribe a general formalism of the 1=N -expansion ap-pli
able to an arbitrary single-mode quantum dissipa-tive system and present the solution of the equationsof motion for mean values and se
ond-order 
umulantsobtained in the �rst order of 1=N . In Se
s. 3 and 4, wedeal with the non
lassi
al state generation dynami
sin higher-order anharmoni
 os
illators and the quan-tum-
lassi
al 
orresponden
e for the self-pulsing regimein SHG, respe
tively. The �nal se
tion 
ontains a sum-mary and 
on
luding remarks.2. 1=N -EXPANSION ANDQUANTUM-CLASSICALCORRESPONDENCEWe begin with generalizing the approa
h of [7℄ tosystems with dissipation. As an illustrative example,we 
onsider a quantum anharmoni
 os
illator with theHamiltonian in the intera
tion pi
tureH = �byb+ �ll + 1 �byb�l+1 ; [b; by℄ = 1; (1)where the operators b and by des
ribe a single quan-tum �eld mode and the 
onstant �l is proportional toa (2l + 1)-order nonlinear sus
eptibility of a nonlinearmedium (l is an integer), � is the light frequen
y de-tuning from the 
hara
teristi
 quantum transition fre-quen
y, and ~ � 1. Everywhere in this paper, we usethe normal ordering of operators. The os
illator inter-a
ts with an in�nite linear reservoir at a �nite tempe-rature. The Hamiltonians of the reservoir and of theos
illator-reservoir intera
tion are de�ned asHr = Xj  j(dyjdj + 1=2);Hint = Xj ��jdjby +H. 
.� ; (2)where the Bose operator dj ([dj ; dyk℄ = Æjk) des
ribesan in�nite reservoir with the 
hara
teristi
 frequen
ies683
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oupling 
onstants between reservoirmodes and the os
illator. We introdu
e new s
aled op-erators a = b=N1=2 and 
j = dj=N1=2 and their Hermi-tian 
onjugates satisfying the 
ommutation relations[a; ay℄ = 1=N; [
j ; 
yk℄ = Æjk=N: (3)In the 
lassi
al limit as N ! 1, we obtain 
ommu-ting 
lassi
al 
-numbers instead of operators. The fullHamiltonian H = H0 +Hr +Hint
an be rewritten as H = NH;where H is as in (1) and (2) but with the repla
ementsb! a; by ! ay; dj ! 
j ;dyj ! 
yj ; �l ! gl(N) � �N l: (4)It 
an be shown that the photon-number dependent
onstant gl(N) provides a 
orre
t time s
ale of os
illa-tions for nonlinear os
illator (1) in the 
lassi
al limit(for the Kerr nonlinearity with l = 1, see, e.g., [18℄).We note that H 
an have an expli
it time dependen
ein the general 
ase [7℄. Within a standard Heisenberg�Langevin approa
h, the equation of motion has theform ([1℄, 
hap. 7)_a = �i��� i
2�a+ V + L(t); (5)where V = �H0=�ay, 
 = 2�j�(!)j2�(!) is the damp-ing 
onstant, with �(!) being the density fun
tion ofreservoir os
illators whose spe
trum is 
onsidered to be�at. The Langevin for
e operator L(t) is in a standardrelation to the operators f
jg of the reservoir [1℄. In ournotation (4), the properties of L(t) [1℄ 
an be rewrittenas hL(t)iR = hLy(t)iR = 0;hLyaiR + hayLiR = 
 hndiN ;hLaiR + haLiR = 0: (6)Here the averaging is performed over the reservoir vari-ables and hndi is a single-mode mean number of thereservoir quanta (phonons) related to temperature T ashndi = hexp� !kT �� 1i�1 ;

where k is the Boltzmann 
onstant and ! is the 
har-a
teristi
 phonon frequen
y. From the Heisenberg�Langevin equations for a, a2 and the Hermitian 
on-jugated equations, using Eqs. (5) and (6), we obtaini ddt h�i = hV i � i
2 h�i;i ddt h(Æ�)2i = 2hV Æ�i+ hW i � i
h(Æ�)2i; (7)i ddthÆ��Æ�i = �hV �Æ�i+ hÆ��V i �� i
hÆ��Æ�i+ i
 hndiN ;where W = (1=N)�V=�ay; z � hai;h(Æ�)2i = ha2i � z2; hÆ��Æ�i = hayai � jzj2;and the averaging is performed over both the reservoirvariables and the 
oherent statej�i = exp(N�ay �N��a)j0i
orresponding to the mean photon number ' N . Inderiving Eq. (7), we negle
t the insigni�
ant additionaldetuning introdu
ed to � by the intera
tion with thereservoir [1℄. In the absen
e of damping, 
 = 0, ourequations for the mean values and the se
ond-order 
u-mulants (7) are redu
ed to the 
orresponding equationsin [4, 7℄.The set of equations (7) is not 
losed and is basi-
ally equivalent to the in�nite dynami
al hierar
hy sys-tem for the 
umulants of a di�erent order. To trun
atethe system to the se
ond-order 
umulants, we make thesubstitution a ! z + Æ�, where, at least initially, themean value is z ' 1 and the quantum 
orre
tion arejÆ�(t = 0)j ' N�1=2 � 1:Using the Taylor expansion of the fun
tions V and Wand after some algebra analogous to that used in [7℄, weobtain from (7) in the �rst order of 1=N the followingself-
onsistent system of equations for the mean valueand the se
ond-order 
umulants (for details see [19℄):i _z = �i
2 z + hV iz + 1NQ(z; z�; C; C�; B); (8)i _C = 2��V���z C + 2� �V����z B � i
C; (9)684
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lassi
al 
orresponden
e : : :i _B = ���V ��� �z C+� �V����z C��i
 �B�B(0)� :(10)The 
orresponding equation for C�(t) 
an be obtainedfrom Eq. (9) by 
omplex 
onjugation. The quantum
orre
tion to the 
lassi
al motion Q in Eq. (8) has theform Q = 12 ��2V��2 �z C + 12 � �2V���2�z C� ++� �2V������z �B � 12� : (11)In Eqs. (8)�(11), the subs
ript z means that the val-ues of V and its derivatives are 
al
ulated for the meanvalue z; we have introdu
edB = NhÆ��Æ�i+ 1=2; C = Nh(Æ�)2i: (12)The initial 
onditions for system (8)�(10) are of theform B(0) = 1=2; C(0) = 0; (13)and an arbitrary z(0) � z0 whi
h is of the order ofunity. The equilibrium value of the 
umulant B inEq. (10) is determined by the mean number of the reser-voir quanta and its zero-point energy asB(0) = hndi+ 1=2: (14)We note that the zero-point energy of the reservoir ap-pears in the equations of motion for the 
umulants,though it is not present in the Heisenberg equations ofmotion and 
an even be dropped from the Hamiltonianby rede�ning a zero of energy. Su
h a �reappearan
e�of a zero-point �eld energy is quite 
ommon in otherquantum theory problems where the va
uum is respon-sible for physi
al e�e
ts [20℄.The equations of motion for the se
ond-order 
umu-lants B and C [Eqs. (9), (10)℄ are linear inhomogeneousequations. Their solution 
onsists of two parts: a gen-eral solution of the homogeneous set of equations (i.e.,without the term +i
B(0) in Eq. (10)) that we denoteas �B(t); C(t)�, and the parti
ular solution of the in-homogeneous equations(B(t); C(t)) = �B(t); C(t)�+ �
B(0)t; 0� : (15)To �nd �B(t); C(t)�, we use the perturbation theoryfor N � 1 and as a �rst step, negle
t the quantum
orre
tion Q=N in Eq. (8). It is easy to see that thehomogeneous equations of motion for 
umulants (9)

and (10) 
an be obtained from the 
lassi
al equation(i.e., from (8) with Q=N ! 0) by linearization aroundz (whi
h goes by substituting z ! z+Æz, jÆzj � jzj), ifone writes the dynami
 equations for the variables (Æz)2and jÆzj2. The only di�eren
e between the linearizationof the 
lassi
al equations of motion and equations forquantum 
umulants (9), (10) lies in the impossibility toobtain the initial 
onditions (13) for C and B from onlythe initial 
onditions for the linearized 
lassi
al equa-tions of motion (see also the dis
ussion of this problemin [7℄). Hen
e, we �rst need to know the 
lassi
al solu-tion z
l(t), �nd the di�erentials dz
l and dz�
l, and thenuse the substitution�B(t); C(t)�! �jdzj2; (dz)2� :Thus, it has be
ome apparent that assuming thea
tual �eld deviations from the 
oherent state to besmall and treating the small deviation as a �rst-order
orre
tion is not equivalent to the dire
t linearizationaround the 
lassi
al traje
tory. Even in the limit asN !1, we always deal with the e�e
t of reservoir onthe dynami
s of the quantum system via the se
ond-order 
umulant B, whi
h has the form of the quantumdi�usion B(t) = B(t) + (hndi+ 1=2)
t; (16)where B is obtained by linearizing around a large mean�eld. In parti
ular, as follows from Eq. (16), the quan-tum di�usion also exists for a quiet reservoir hndi = 0.We now dis
uss the validity range of the 1=N -expansion and the role of the quantum di�usion in dif-ferent 
lassi
al dynami
al regimes. The validity 
rite-rion of the 1=N -expansion 
an be represented in twoforms. First, the 1=N -expansion works well, providedthe di�eren
e between the 
lassi
al and quantum solu-tions is small,����z(t)� z
l(t)z
l(t) ���� ' 1N ���R tQ(t0)dt0���jz(t)j � 1; (17)where z
l(t) is the solution of Eq. (8) for N ! 1.To write the se
ond form of the validity 
riterion ofthe 1=N -expansion, we follow [6, 7℄ in introdu
ing the�
onvergen
e radius�R = �[Re(Æ�)℄2 + [Im(Æ�)℄2	1=2 :The expansion is then 
orre
t over a time interval whenR(t)jz(t)j ' B1=2(t)N1=2jz(t)j � 1: (18)685
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onditions (17) and (18) determine thesame time interval for the validity of the 1=N -expan-sion [6, 7℄. (For a physi
ally interesting ex
eption, theproblem of SHG, see Se
. 4.)For dissipative systems with a simple attra
tor, the
lassi
al �eld intensity jz
l(t)j2 as well as the 
umu-lants B(t), C(t) and the quantum 
orre
tion Q(t) areproportional to the fa
tor exp(�
t); therefore, as fol-lows from Eqs. (17) and (18), with Eq. (16) taken intoa

ount, the 1=N -expansion is well-de�ned only in thetime interval of the order of several relaxation times:t� ' 
�1(see [19℄). Moreover, during this time interval, the ef-fe
t of quantum di�usion on the system dynami
s issmall.A quite di�erent behavior is 
hara
teristi
 of thestable limit 
y
le. Here, a variation near the 
lassi
altraje
tory 
ollapses to zero (Æ�! 0), hen
e,B(t) ' jÆ�j2 ! 0; C(t) ' (Æ�)2 ! 0:However, jz
l(t)j ' 1 for the limit 
y
le and, as a result,the time interval of the validity of the 1=N -expansionis rather large, t� ' N
�1:It is important that the di�usion is a major physi
alme
hanism responsible for the di�eren
e between the
lassi
al and quantum dynami
s for a stable limit 
y
le.In the following two se
tions, we 
onsider two typi
alexamples of dissipative opti
al systems with a simpleattra
tor and a limit 
y
le.3. NON-CLASSICAL STATES GENERATION INHIGHER-ORDER ANHARMONICOSCILLATORSWe start by de�ning the squeezing and the Fanofa
tor. We de�ne the general �eld quadrature asX� = a exp(�i�) + ay exp(i�);where � is the lo
al os
illator phase. A state is 
alledsqueezed if there exists a value of � for whi
h the vari-an
e of X� is smaller than the varian
e for the 
oherentstate or the va
uum [1, 9℄. Minimizing the varian
e ofX� over �, we obtain the 
ondition of the so-
alled prin-
ipal squeezing [1, 9, 10℄ in the formS � 1+2N(hjÆ�j2i�jh(Æ�)2ij) = 2(B�jCj)<1: (19)The determination of the prin
ipal squeezing S is veryuseful be
ause it gives the maximum squeezing mea-surable by the homodyne dete
tion [1, 9℄.

Another important 
hara
teristi
 of non-
lassi
alproperties of light is the Fano fa
torF = (hn2i � hni2)=hnithat determines the deviation of the probability distri-bution from the Poisson distribution [1, 9℄. After thesubstitution a! z + Æ� in the expressionshni = Nhayaiand hn2i = N2hayaayai = N2hay2a2i+ hni;and after the Talor expansions to the �rst order of 1=N ,we obtain F = 2B +�z�z C + 
.
.� : (20)We see that in order to determine the time dependen
eof the prin
ipal squeezing S in (19) and the Fano fa
-tor (20) for nonlinear os
illators, we must �nd the timedependen
e of z, C, and B in Eqs. (8)�(10) for Hamil-tonian (1). Following the general pro
edure des
ribedin previous se
tion, we �rst negle
t the quantum 
or-re
tion Q=N in Eq. (8). In this 
ase, equation (8) hasthe exa
t solutionz(t) = z0 exp [(�i�� 
=2)t℄�� exp ��igljz0j2l�l(t)� ;�l(t) � [1� exp(�
lt)℄ =
l: (21)We �nd the di�erentials dz and dz� of 
lassi
al solu-tion (21), and using the substitutions jdzj2 + ~B ! Band (dz)2 ! C, we obtainC(t) = �lz20 jz0j2(l�1)gl�l(t) �ljz0j2lgl�l(t)+i��� exp �(�
�i2�)t�i2jz0j2lgl�l(t)� ;B(t) = exp(�
t) �1=2 + l2jz0j4lg2l �2l (t)�++ (hndi+ 1=2) 
t; (22)where we took the initial 
onditions for B and C,Eq. (13), into a

ount. Inserting (22) in Eq. (19), weobtain in the limits � � gl(N)t� 1 and 
t� 1 a verysimple time dependen
e of S,S(t) = 1� �lx2l0 � (
=gl)hndi� 2� < 1; (23)where for the sake of simpli
ity we assume that the ini-tial value z0 is real, x0 = Re z0, and only the termsthat are linear in � and 
t are taken into a

ount. Theshort-time approximation � � 1 and the limit of alarge photon number N � 1 are quite realisti
 for a686
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lassi
al 
orresponden
e : : :nonlinear medium modelled by the anharmoni
 os
illa-tors (for numeri
al estimates, see [1, 
hap. 10℄ and [10℄).It should be noted that our formula (23) 
oin
ides withthe 
orresponding formula for S(t) in [10℄ for the Kerrnonlinearity (l = 1) with zero loss (
 = 0). In the 
asewhere 
 = 0, our formula (23) shows that the rate ofsqueezing is determined by the fa
tor2lx2l0 �lN l � 2lP(2l+1):Sin
e �l is proportional to the (2l+ 1)-order nonlinearsus
eptibility, the fa
tor P(2l+1) has a physi
al mean-ing of nonlinear polarization. Therefore, the strongeris the nonlinear polarization indu
ed by light in themedium, the more e�e
tive squeezing of light is pos-sible. For a �nite dissipation 
 6= 0, the squeezing isdetermined by an interplay between the polarizationof nonlinear medium modelled by the anharmoni
 os-
illator and the thermal �u
tuations of the reservoir.As follows from (23), there exists a 
riti
al number ofphonons hndi(
r) = (l=
)P(2l+1)su
h that the squeezing is no longer possible forhndi � hndi(
r).In the same approximation, we obtain from (20) thefollowing time dependen
e of the Fano fa
torF (t) = 1 + 2hndi
t: (24)Thus, the statisti
s is super-Poissonian for any 
 6= 0and is independent of the degree of nonlinearity l. Thisis in a good agreement with the earliest result of [9℄ fora dissipative Kerr os
illator (l = 1), where the impos-sibility of sub-Poissonian statisti
s and antibun
hingwere found from the exa
t solution.We now dis
uss the validity ranges of our approa
h.It is easy to see that in terms of our approa
h, the timedependen
e of the number of quanta for l = 1 ishni(t) + 1=2 = N jzj2 +B �� N jz0j2(1� 
t) + hndi
t;
t� 1; glt� 1; (25)where we have used Eqs. (22) for 
umulants B and C.It is instru
tive to 
ompare Eq. (25) with the exa
tsolution for hni(t) for the Kerr nonlinearity [9℄,hni(t) = hn0i exp(�
t) + [1� exp(�
t)℄hndi: (26)Equations (25) and (26) both des
ribe the evolutionof an initially 
oherent state to a �nal 
haoti
 statethat is 
hara
teristi
 of the reservoir. It is evidentthat Eqs. (26) and (25) 
oin
ide when 
t � 1 and

hn0i ' N � 1. A more a

urate analysis of the va-lidity 
ondition of the 1=N -expansion should in
lude a
omparison of the solution of quantum motion equa-tion (8), whi
h takes into a

ount the quantum 
orre
-tion Q=N given by (11), with the solution of 
lassi
almotion equation (21). It may be shown after some al-gebra, that if 
t � 1 and � � 1, the e�e
t of thequantum 
orre
tion Q=N on the dynami
s of the meanvalue z is of the order of 1=N and, therefore, our 
u-mulant expansion is well-de�ned for N � 1. The same
on
lusion 
ould be obtained from another 
riterion ofvalidity (18).4. QUANTUM-CLASSICALCORRESPONDENCE IN SELF-PULSINGREGIME OF SECOND-HARMONICGENERATIONWe now 
onsider another example of a quantumopti
al system, namely intra
avity SHG. The Hamilto-nian des
ribing two intera
ting quantum modes in theintera
tion pi
ture has the form [11, 14℄H = 2Xj=1�jbyjbj + iEN1=2(by1 � b1) ++ i�2 (by21 b2 � b21by2); (27)where the boson operators bj (j = 1; 2) des
ribe thefundamental and se
ond-harmoni
 modes, respe
tively,�j is the 
avity detuning of mode j, EN1=2 is the 
lassi-
al �eld driving �rst mode (E is of the order of unity),� is a se
ond-order nonlinear sus
eptibility. The li-near reservoir and its intera
tion with a se
ond-ordernonlinear medium are des
ribed by Hamiltonians (2).Now we 
an rewrite full Hamiltonian of the problem asH = NH, where H has the same form as (27) and (2)with repla
ements analogous to (4) taking into a

ountand with the new 
oupling 
onstant de�ned byg = �pN; (28)whi
h is of the order of unity. Formally, the 1=N -expan-sion pro
edure developed in Se
. 2 
annot be applied tothe problem of SHG, however its straightforward gen-eralization to two intera
ting modes gives in the �rstorder of 1=N the following self-
onsistent set of equa-tions _z1 = �
12 z1 +E + gz�1z2 + 1N gB12; (29)_z2 = �
22 z2 � g2z21 � 1N g2C1; (30)687
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1(B1 �B(0)) + gB�12z1 ++ gB12z�1+C�1z2+C1z�2 ; (31)_B2 = �
2(B2 �B(0))� gB�12z1 � gB12z�1 ; (32)_C1 = �
1C1 + 2g(C12z�1 +B1z2); (33)_C2 = �
2C2 � 2gC12z1; (34)_C12 = �0:5(
1+
2)C12+gB12z2�C1z1+C2z�1 ; (35)_B12 = �0:5(
1+
2)B12+gC12z�2+gz1(B2�B1); (36)wherezj � haji = N1=2hbji; Bj = NhÆ��j Æ�ji+ 0:5;Cj = Nh(Æ�j)2i (j = 1; 2);B12 = NhÆ��1Æ�2i; C12 = NhÆ�1Æ�2i;and B(0) is de�ned in Eq. (14). The initial 
onditionsfor system (29)�(36) areBj(0) = 1=2; Cj(0) = C12(0) = B12(0) = 0;z2(0) = 0; z1(0) = z0;where z0 is of the order of unity. In this work, we limitourselves by the values of the �eld strength z0 
orre-sponding to self-os
illations [11℄ and �1 = �2 = 0.It is easy to see that in the limit as N ! 1 andfor g = 
onst ' 1, we obtain from Eqs. (29) and (30)the 
orre
t 
lassi
al equations of motion for the s
aled�eld amplitudes. The solution of equations of motion(31)�(36) for the se
ond-order 
umulants has the formX(t) = X(t) + �
B(0)t; 
B(0)t; 0; 0; 0; 0� ;X(t)� [B1(t); B2(t); C1(t); C2(t); B12(t); C12(t)℄ ; (37)where the ve
tor X des
ribes the part of X that 
anbe obtained by linearization around the 
lassi
al tra-je
tory. Variations near a stable limit 
y
le rapidlyapproa
h zero and, therefore, X(t) ! 0. As a re-sult, we have only a di�usive growth of 
umulants Bj(j = 1; 2) as Bj(t) = 0:5
jt; (38)where we 
onsidered the 
ase of a quiet reservoir hndi.This result indi
ates that the e�e
t of reservoir ze-ro-point energy on the dynami
s of the nonlinear sys-tem is prin
ipal physi
al me
hanism responsible for the

di�eren
e between the 
lassi
al and quantum dynam-i
s in the semi
lassi
al limit. A time s
ale t� for a
orre
t des
ription of the quantized SHG dynami
s interms of 
lassi
al ele
trodynami
s 
an be found using
riterion (18). Taking into a

ount that jz(t)j ' 1, weobtain t� ' 2N
�1.We note that the quantum 
orre
tions to the 
lassi-
al equations of motion (29) and (30) do not in
lude the
umulants B1;2. Therefore, in the �rst order of 1=N ,there is no di�eren
e between the evolution of quantummean values and the 
lassi
al limit 
y
le dynami
s. Inother words, the quantum 
orre
tionQ! 0, and there-fore, 
riterion (17) of the 1=N -expansion validity doesnot work. In this respe
t, the quantized SHG is a some-what singular problem. In other quantum opti
al sys-tems, for instan
e, for a nonlinear os
illator with l � 1,both validity 
riteria (18) and (17) typi
ally give thesame result.Over a de
ade ago, Savage addressed the samequantum-
lassi
al 
orresponden
e problem for self-os-
illations in SHG numeri
ally [14℄. He 
al
ulated theQ distribution fun
tion in the Gaussian approximation
entered at a deterministi
 traje
tory 
orresponding toa limit 
y
le. He worked in a large �eld and smallnonlinearity limits, �=
1;2 ! 0, whi
h 
orrespond tothe 
lassi
al limit [14℄. It is easy to see that the 
on-dition �=
1;2 ! 0 is 
onsistent with our 
onditionN � 1, if one additionally 
onsiders the natural 
ondi-tion of a not very strong dissipation in Eqs. (29)�(36),
1;2=g < 1 together with g ' 1 (Eq. (28)). In otherwords, Savage's small parameter �=
 
orresponds toour large parameter N as �=
 ! N�1=2. To estab-lish the di�eren
e between the 
lassi
al and quantumdynami
s, the equations of motion for low-order 
umu-lants were obtained in [14℄ and solved numeri
ally forparti
ular values of the parameters [21℄. Based on theresults of numeri
al simulations, Savage 
on
luded thatit is a quantum di�usion that is mostly responsible forthe di�eren
e between the 
lassi
al and quantum dy-nami
s in the semi
lassi
al limit. Moreover, his numeri-
al estimate for a 
hara
teristi
 time for the 
lassi
al de-s
ription s
ales as (
=�)2, whi
h is in a good agreementwith our analyti
al result t� = 2
�1N . In summary,our analyti
al results for the quantum-
lassi
al 
orre-sponden
e at self-pulsing in SHG are 
onsistent withthe previous numeri
al investigation of same problemin [14℄.
688
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lassi
al 
orresponden
e : : :5. CONCLUSIONWe developed the 1=N -expansion method to 
on-sider the nonlinear dynami
s and non
lassi
al proper-ties of light in dissipative opti
al systems in the limitof a large number of photons. The method was appliedto the investigation of squeezing in higher-order dissi-pative nonlinear os
illators. We would like to note thatour method 
an also be dire
tly applied to an impor-tant 
ase of the generation of non
lassi
al states in amedium involving 
ompeting nonlinearities [22℄.We found a time s
ale of validity of the 1=N -ex-pansion for a 
lassi
al des
ription of the dynami
s ofnonlinear opti
al systems with a simple attra
tor andwith a limit 
y
le. For systems with a simple attra
tor,this time s
ale is of the order of unity, and for thelimit 
y
le, is proportional to large N . Qualitatively,this result 
an be understood as follows. For timeof the order of unity, the traje
tory spirals around astable stationary point with a small amplitude, andtherefore, by virtue of the un
ertainty prin
iple, the
ontribution of quantum 
orre
tions to the 
lassi
alequations of motion be
omes very important. Unlikethe previous 
ase, the os
illations 
orresponding to thelimit 
y
le are often 
lose to harmoni
 and, thus, theirquantum and 
lassi
al des
riptions 
an 
oin
ide for asu�
iently long period of time. The basi
 di�eren
ebetween the 
lassi
al and quantum dynami
s in thelatter 
ase originates from the in�uen
e of reservoirzero-point �u
tuations, whi
h in our notations are ofthe order of 1=N . This result is in a good agreementwith the result of earlier numeri
al simulations ofself-os
illations in the quantized se
ond-harmoni
generation [14℄. Finally, it should be noted that our�ndings are of a rather general nature and 
an beapplied to the investigations of self-os
illations in otheropti
al systems, for example, in those involing opti
albistability [23�25℄.We would like to thank Antoine Heidmann, EvgenyBulgakov and Zdenek Hradil for useful dis
ussions. Thework was partially supported by Cze
h Grant Agen
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