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We develop a semiclassical method for the determination of the nonlinear dynamics of dissipative quantum
optical systems in the limit of large number of photons NV; it is based on the 1/N-expansion and the quantum-
classical correspondence. The method is used to tackle two problems: to study the dynamics of nonclassical
state generation in higher-order anharmonic dissipative oscillators and to establish the difference between the
quantum and classical dynamics of the second-harmonic generation in a self-pulsing regime. In addressing the
first problem, we obtain an explicit time dependence of the squeezing and the Fano factor for an arbitrary degree
of anharmonism in the short-time approximation. For the second problem, we analytically find a characteristic
time scale at which the quantum dynamics differs insignificantly from the classical one.

PACS: 05.45.-a, 03.65.Sq, 42.50.Dv

1. INTRODUCTION

The situation when nonlinear interactions involve a
large number of photons, N, is quite typical of many
problems in quantum and nonlinear optics [1-3]. Hied-
mann et al. suggested [4] to use the 1/N-expansion
method [5] to describe the nonlinear dynamics of the
mean values and second-order cumulants of a quan-
tum system in the N > 1 limit. Following the general
scheme of that method [5], an exact or approximate
solution can be found in terms of the coherent state
representation in the classical limit as N — oo and can
then be adjusted by adding the quantum corrections.
The method proves to be particularly convenient when
the dynamics of nonclassical state generation must be
determined [4]. We have recently developed the method
further to study the enhanced squeezing at the transi-
tion to quantum chaos [6-8].

Papers [4, 6, 7] are concerned with the problems
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of nondissipative quantum systems only. In this pa-
per, we extend the method to dissipative quantum sys-
tems. For quantum systems without dissipation, the
lowest order of the 1/N-expansion is equivalent to the
linearization in terms of the classical solution [6, 7],
whereas in dissipative systems, as is demonstrated in
what follows, the solution of the equations of motion
for variations near the classical trajectory cannot pro-
vide complete information on the dynamics of quantum
fluctuations even in the lowest order of 1/N. We show
that the influence of the reservoir on the dynamics of
expectation values and dispersions, which is different
from the energy dissipation, always exists; it has the
quantum nature and cannot be neglected even in the
semiclassical limit. However, specific manifestations of
the effect depend on the type of the attractor in the
underlying classical dynamic system. For systems with
a simple attractor in the classical limit, the «quantum
diffusion» associated with the quantum fluctuations of
the reservoir do not lead to any new physical effects
in the dynamics of the main system, at least in the
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short-time limit. For a stable limit cycle, on the other
hand, such a diffusion appears to be the main mecha-
nism responsible for the difference between the classical
and quantum dynamics for N > 1.

Along with the presentation of a general formal-
ism, we consider two typical examples of quantum op-
tical systems with a simple attractor and a stable limit
cycle in the classical limit as N — oo: the dissipa-
tive higher-order anharmonic oscillator and the self-
pulsing regime of intracavity second-harmonic genera-
tion (SHG). We show how the 1/N-expansion method
can be used to investigate the dynamics of the non-
classical state generation and to determine the time
scale for a correct classical description of the dissipa-
tive quantum dynamics.

The quantum anharmonic oscillator with a Kerr-ty-
pe nonlinearity is one of the simplest and most popular
models used in the description of quantum statistical
properties of light interacting with a nonlinear medium
[1, 9]. The Kerr oscillator model with a third-order
nonlinearity yields an exact solution in both the nondis-
sipative [10] and dissipative limits [9]. However, be-
cause of the complexity of the solution in the dissipa-
tive case, numerical methods or special approximate
analytical methods must be used to determine statis-
tical properties of the radiation in the most relevant
experimental case involving a large number of photons.
Moreover, there are no exact solutions available for the
model of the anharmonic oscillator with a higher-order
nonlinearity.

In this paper, we analytically obtain a simple and
explicit time dependence of the degree of squeezing and
the Fano factor in the anharmonic oscillator model of
an arbitrary order for the most interesting experimen-
tal situation featuring higher intensities (N > 1) and
short-time interactions. As another example of applica-
tion of the 1/N-expansion, we consider the self-pulsing
in SHG [11]. Such an oscillatory regime corresponding
to the limit cycle was observed experimentally in [12].
There are several papers dealing with the development
of approximate analytical and numerical methods with
the purpose of describing different dynamic regimes in
SHG in terms of quantum mechanics [13-17]. In par-
ticular, Savage [14] calculated the Gaussian approxima-
tion of the @ distribution function about the classical
limit cycle. He demonstrated numerically that in the
classical limit, the initial rapid collapse of the @ dis-
tribution in the neighbourhood of the limit cycle is fol-
lowed by the diffusion around the limit cycle. However,
the author did not offer any analytical solution of the
problem or an explanation of the physics of the effect
observed.
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In this paper, we show that the diffusion around the
classical limit cycle can be obtained as a solution of the
equations of motion for low-order cumulants by using
the 1/N-expansion technique. This enables us to find
the time scale t < t* with t* ~ 2N~y~! (where v is a
damping constant) for a correct classical description of
self-oscillations in SHG. The resultant estimate is con-
sistent with that obtained for ¢* numerically in [14].
Finally, we interpret the quantum diffusion around the
limit cycle as a diffusion caused by the effect of the
reservoir vacuum on the SHG dynamics.

This paper is organized as follows. In Sec. 2, we
describe a general formalism of the 1/N-expansion ap-
plicable to an arbitrary single-mode quantum dissipa-
tive system and present the solution of the equations
of motion for mean values and second-order cumulants
obtained in the first order of 1/N. In Secs. 3 and 4, we
deal with the nonclassical state generation dynamics
in higher-order anharmonic oscillators and the quan-
tum-classical correspondence for the self-pulsing regime
in SHG, respectively. The final section contains a sum-
mary and concluding remarks.

2. 1/N-EXPANSION AND
QUANTUM-CLASSICAL
CORRESPONDENCE

We begin with generalizing the approach of [7] to
systems with dissipation. As an illustrative example,
we consider a quantum anharmonic oscillator with the
Hamiltonian in the interaction picture

1+1
1 )

(b'D bofl=1, (1)

H = Ablb A
where the operators b and b describe a single quan-
tum field mode and the constant ); is proportional to
a (21 + 1)-order nonlinear susceptibility of a nonlinear
medium (I is an integer), A is the light frequency de-
tuning from the characteristic quantum transition fre-
quency, and i = 1. Everywhere in this paper, we use
the normal ordering of operators. The oscillator inter-
acts with an infinite linear reservoir at a finite tempe-
rature. The Hamiltonians of the reservoir and of the
oscillator-reservoir interaction are defined as

Hy =) w;(did; +1/2),
J

(2)
Hint = Z (K,]d]bf + H. C.) s
J
where the Bose operator d; ([dj,dL] = ;i) describes
an infinite reservoir with the characteristic frequencies
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®; and k; are the coupling constants between reservoir
modes and the oscillator. We introduce new scaled op-
erators a = b/N'/? and ¢; = d;/N'/? and their Hermi-
tian conjugates satisfying the commutation relations
la.al] = 1N, [e.c}] = 3 /N. (3)
In the classical limit as N — oo, we obtain commu-

ting classical c-numbers instead of operators. The full
Hamiltonian

H=Hy+ H, + Hin;
can be rewritten as
H = NH,
where H is as in (1) and (2) but with the replacements

b—a, b —adl, dj = c;j,

N = gi(N) = AN @

T i
d]. = ¢,

It can be shown that the photon-number dependent
constant g;(N) provides a correct time scale of oscilla-
tions for nonlinear oscillator (1) in the classical limit
(for the Kerr nonlinearity with I = 1, see, e.g., [18]).
We note that H can have an explicit time dependence
in the general case [7]. Within a standard Heisenberg-
Langevin approach, the equation of motion has the
form ([1], chap. 7)

a:—i(A—i%)a+V+L(t)., (5)

where V = 0H,/0at, v = 27|k(w)|?*p(w) is the damp-
ing constant, with p(w) being the density function of
reservoir oscillators whose spectrum is considered to be
flat. The Langevin force operator L(t) is in a standard
relation to the operators {c;} of the reservoir [1]. In our
notation (4), the properties of L(t) [1] can be rewritten
as

(LO)n = (L () =0,
(Layn + {at Ly =22, )
(La)R + (aL)R =0.

Here the averaging is performed over the reservoir vari-
ables and (ng4) is a single-mode mean number of the
reservoir quanta (phonons) related to temperature T' as

= o (25) 1)

where k is the Boltzmann constant and w is the char-
acteristic phonon frequency. From the Heisenberg—
Langevin equations for a, a®> and the Hermitian con-
jugated equations, using Eqs. (5) and (6), we obtain

. d _ Y
i) = (V) — i (a),

i%((fm)?) = 2(Vda) + (W) —in((6a)”), ()

i-Lisa 50y = —(V*8a) + (50" V) —

dt
o * . (na)
iy(da*da) + Wy

3

where

W = (1/N)aV/da',
((60)%) = (a®) = 2%,

2 = (a),
(5a*da) = {ata) - |22,

and the averaging is performed over both the reservoir
variables and the coherent state

la) = exp(Naa® — Na*a)|0)

corresponding to the mean photon number ~ N. In
deriving Eq. (7), we neglect the insignificant additional
detuning introduced to A by the interaction with the
reservoir [1]. In the absence of damping, v = 0, our
equations for the mean values and the second-order cu-
mulants (7) are reduced to the corresponding equations
in [4, 7].

The set of equations (7) is not closed and is basi-
cally equivalent to the infinite dynamical hierarchy sys-
tem for the cumulants of a different order. To truncate
the system to the second-order cumulants, we make the
substitution a — z + da, where, at least initially, the
mean value is z ~ 1 and the quantum correction are

ba(t = 0)| ~ N~'/? <« 1.

Using the Taylor expansion of the functions V and W
and after some algebra analogous to that used in [7], we
obtain from (7) in the first order of 1/N the following
self-consistent system of equations for the mean value
and the second-order cumulants (for details see [19]):

T 1 N .
tz = Z2Z+<V>Z+ NQ(Zaz 7070 7B)7 (8)

. ov ov 4
ZC_2<6_Q>ZC+2<W>ZB_WC’ (9)

684



MITD, Tom 117, Bem. 4, 2000

Quantum-classical correspondence ...

ov*
da

ov
da*

iB:-( )Zc+< )ZC*—m(B—B(O)).

(10)

The corresponding equation for C*(t) can be obtained

from Eq. (9) by complex conjugation. The quantum

correction to the classical motion @) in Eq. (8) has the
1 /0%V 1

form
@=3 (aT)C 5 (aw)zc +

(o). (7-3)

da*da 2
In Eqgs. (8)—(11), the subscript z means that the val-
ues of V' and its derivatives are calculated for the mean
value z; we have introduced

o*V

(11)

B = N{6a*6a) +1/2, C = N{((6a)?). (12)
The initial conditions for system (8)—(10) are of the

form

B(0)=1/2, C(0)

=0, (13)
and an arbitrary z(0) = 2o which is of the order of
unity. The equilibrium value of the cumulant B in
Eq. (10) is determined by the mean number of the reser-

voir quanta and its zero-point energy as

BO = (ng) +1/2. (14)
We note that the zero-point energy of the reservoir ap-
pears in the equations of motion for the cumulants,
though it is not present in the Heisenberg equations of
motion and can even be dropped from the Hamiltonian
by redefining a zero of energy. Such a «reappearance»
of a zero-point field energy is quite common in other
quantum theory problems where the vacuum is respon-
sible for physical effects [20].

The equations of motion for the second-order cumu-
lants B and C [Eqs. (9), (10)] are linear inhomogeneous
equations. Their solution consists of two parts: a gen-
eral solution of the homogeneous set of equations (i.e.,
without the term +iyB(® in Eq. (10)) that we denote
as (B(t),C(t)), and the particular solution of the in-
homogeneous equations

(B().C(1) = (B(1),C(1) + (yBO,0). (1)
To find (F(t),@(t)), we use the perturbation theory
for N > 1 and as a first step, neglect the quantum
correction @/N in Eq. (8). It is easy to see that the

homogeneous equations of motion for cumulants (9)
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and (10) can be obtained from the classical equation
(i.e., from (8) with /N — 0) by linearization around
2 (which goes by substituting z — z+ 4z, |[02] < |z]), if
one writes the dynamic equations for the variables (5z)?
and |§z|%. The only difference between the linearization
of the classical equations of motion and equations for
quantum cumulants (9), (10) lies in the impossibility to
obtain the initial conditions (13) for C' and B from only
the initial conditions for the linearized classical equa-
tions of motion (see also the discussion of this problem
in [7]). Hence, we first need to know the classical solu-
tion z¢(t), find the differentials dzy and dz},, and then
use the substitution

(B(t),C(1) = (|d=I7, (d2)*) .

Thus, it has become apparent that assuming the
actual field deviations from the coherent state to be
small and treating the small deviation as a first-order
correction is not equivalent to the direct linearization
around the classical trajectory. Even in the limit as
N — oo, we always deal with the effect of reservoir on
the dynamics of the quantum system via the second-
order cumulant B, which has the form of the quantum
diffusion

B(t) = B(t) + ((na) + 1/2)7t, (16)
where B is obtained by linearizing around a large mean
field. In particular, as follows from Eq. (16), the quan-
tum diffusion also exists for a quiet reservoir (ng) = 0.

We now discuss the validity range of the 1/N-
expansion and the role of the quantum diffusion in dif-
ferent classical dynamical regimes. The validity crite-
rion of the 1/N-expansion can be represented in two
forms. First, the 1/N-expansion works well, provided
the difference between the classical and quantum solu-
tions is small,

e
“N RO

where z(t) is the solution of Eq. (8) for N — oo.
To write the second form of the validity criterion of
the 1/N-expansion, we follow [6, 7] in introducing the
«convergence radiusy

<1, (17

2(t) — zer (1) ‘
ch(t)

R = {[Re(6a)]? + [Im(da)]2}""*.
The expansion is then correct over a time interval when

Bl/Z(t)

1.
REEEGI

~

(18)
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As a rule, both conditions (17) and (18) determine the
same time interval for the validity of the 1/N-expan-
sion [6, 7]. (For a physically interesting exception, the
problem of SHG, see Sec. 4.)

For dissipative systems with a simple attractor, the
classical field intensity |zq(t)|?> as well as the cumu-
lants B(t), C(t) and the quantum correction Q(t) are
proportional to the factor exp(—~t); therefore, as fol-
lows from Eqs. (17) and (18), with Eq. (16) taken into
account, the 1/N-expansion is well-defined only in the
time interval of the order of several relaxation times:

t* ~ Ayl
(see [19]). Moreover, during this time interval, the ef-
fect of quantum diffusion on the system dynamics is
small.

A quite different behavior is characteristic of the
stable limit cycle. Here, a variation near the classical
trajectory collapses to zero (6o — 0), hence,

B(t) ~ a2 =0, C(t) = (6a)? — 0.

However, |z.(t)| ~ 1 for the limit cycle and, as a result,
the time interval of the validity of the 1/N-expansion
is rather large,
t* ~ Ny~ 1,

It is important that the diffusion is a major physical
mechanism responsible for the difference between the
classical and quantum dynamics for a stable limit cycle.
In the following two sections, we consider two typical
examples of dissipative optical systems with a simple
attractor and a limit cycle.

3. NON-CLASSICAL STATES GENERATION IN
HIGHER-ORDER ANHARMONIC
OSCILLATORS

We start by defining the squeezing and the Fano
factor. We define the general field quadrature as

Xy = aexp(—if) + a’ exp(if),

where 6 is the local oscillator phase. A state is called
squeezed if there exists a value of 8 for which the vari-
ance of Xy is smaller than the variance for the coherent
state or the vacuum [1, 9]. Minimizing the variance of
Xy over 6, we obtain the condition of the so-called prin-
cipal squeezing [1, 9, 10] in the form

S = 142N ((|3al?) = ((3a)?)]) = 2(B-[C)<1. (19)

The determination of the principal squeezing S is very
useful because it gives the maximum squeezing mea-
surable by the homodyne detection [1, 9].
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Another important characteristic of non-classical
properties of light is the Fano factor

F=((n*) = (n)*)/(n)

that determines the deviation of the probability distri-
bution from the Poisson distribution [1, 9]. After the
substitution a — z + da in the expressions

(n) = N{a'a)
and
(n*) = N?(ataa'a) = N*(a™?a®) + (n),

and after the Talor expansions to the first order of 1/,
we obtain

F=2B+ (%C—l—c.c.). (20)
We see that in order to determine the time dependence
of the principal squeezing S in (19) and the Fano fac-
tor (20) for nonlinear oscillators, we must find the time
dependence of z, C, and B in Egs. (8)—(10) for Hamil-
tonian (1). Following the general procedure described
in previous section, we first neglect the quantum cor-
rection (/N in Eq. (8). In this case, equation (8) has
the exact solution

z(t) = zg exp [(—iA — v/2)t] x
X exp [—igl|20\2[m (t)] ,
i (t) = [1 = exp(=71t)] /71

We find the differentials dz and dz* of classiczil solu-
tion (21), and using the substitutions |dz|> + B — B
and (dz)? — C, we obtain

(21)

o)

125]20*" M guu(t) (120> gupu(t)+i) x
X exp [(—7—i2A)t—i2|zo|2lglm ®],
B(t) = exp(—7t) [1/2 + |z0|" g7 i ()] +
+ ({na) + 1/2) 71,

(22)

where we took the initial conditions for B and C,
Eq. (13), into account. Inserting (22) in Eq. (19), we
obtain in the limits 7 = ¢;(N)t < 1 and y¢t < 1 a very
simple time dependence of S,

S() =1- [lad = (v/g)na)] 27 < 1. (23)

where for the sake of simplicity we assume that the ini-
tial value zy is real, xyp = Rezg, and only the terms
that are linear in 7 and ~t are taken into account. The
short-time approximation 7 < 1 and the limit of a
large photon number N > 1 are quite realistic for a
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nonlinear medium modelled by the anharmonic oscilla-
tors (for numerical estimates, see [1, chap. 10] and [10]).
Tt should be noted that our formula (23) coincides with
the corresponding formula for S(¢) in [10] for the Kerr
nonlinearity (I = 1) with zero loss (7 = 0). In the case
where v = 0, our formula (23) shows that the rate of
squeezing is determined by the factor

A2\ Nt = 2P+,

Since \; is proportional to the (2] 4+ 1)-order nonlinear
susceptibility, the factor P+ has a physical mean-
ing of nonlinear polarization. Therefore, the stronger
is the nonlinear polarization induced by light in the
medium, the more effective squeezing of light is pos-
sible. For a finite dissipation 7y # 0, the squeezing is
determined by an interplay between the polarization
of nonlinear medium modelled by the anharmonic os-
cillator and the thermal fluctuations of the reservoir.
As follows from (23), there exists a critical number of
phonons

(na)(") = (1/7)yPEH

such that the squeezing is no longer possible for
(na) > (na)t".

In the same approximation, we obtain from (20) the
following time dependence of the Fano factor

F(t) =14 2(ng)vt. (24)
Thus, the statistics is super-Poissonian for any v # 0
and is independent of the degree of nonlinearity I. This
is in a good agreement with the earliest result of [9] for
a dissipative Kerr oscillator (I = 1), where the impos-
sibility of sub-Poissonian statistics and antibunching
were found from the exact solution.

We now discuss the validity ranges of our approach.
It is easy to see that in terms of our approach, the time
dependence of the number of quanta for [ = 1 is

(n)(t) +1/2=N|z* + B~

~ Nlzo*(1 = yt) + (na)t,
Ll gt<l1,

(25)

where we have used Eqs. (22) for cumulants B and C.
It is instructive to compare Eq. (25) with the exact
solution for (n)(t) for the Kerr nonlinearity [9],

(n)(t)

Equations (25) and (26) both describe the evolution
of an initially coherent state to a final chaotic state
that is characteristic of the reservoir. It is evident
that Eqgs. (26) and (25) coincide when 7t < 1 and

(no) exp(—vt) + [1 — exp(—~t)[(na).  (26)
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(ng) ~ N > 1. A more accurate analysis of the va-
lidity condition of the 1/N-expansion should include a
comparison of the solution of quantum motion equa-
tion (8), which takes into account the quantum correc-
tion Q/N given by (11), with the solution of classical
motion equation (21). It may be shown after some al-
gebra, that if v < 1 and 7 < 1, the effect of the
quantum correction /N on the dynamics of the mean
value z is of the order of 1/N and, therefore, our cu-
mulant expansion is well-defined for NV > 1. The same
conclusion could be obtained from another criterion of
validity (18).

4. QUANTUM-CLASSICAL
CORRESPONDENCE IN SELF-PULSING
REGIME OF SECOND-HARMONIC
GENERATION

We now consider another example of a quantum
optical system, namely intracavity SHG. The Hamilto-
nian describing two interacting quantum modes in the
interaction picture has the form [11, 14]

2
H =Y Ajblb; +iEN'2(b] — by) +
j=1

; (27)

1
+ 5 (06 — b}bd)

where the boson operators b; (j = 1,2) describe the
fundamental and second-harmonic modes, respectively,
Aj is the cavity detuning of mode j, EN'/? is the classi-
cal field driving first mode (E is of the order of unity),
Y is a second-order nonlinear susceptibility. The li-
near reservoir and its interaction with a second-order
nonlinear medium are described by Hamiltonians (2).
Now we can rewrite full Hamiltonian of the problem as
H = NH, where H has the same form as (27) and (2)
with replacements analogous to (4) taking into account
and with the new coupling constant defined by

g=xVN,

which is of the order of unity. Formally, the 1/N-expan-
sion procedure developed in Sec. 2 cannot be applied to
the problem of SHG, however its straightforward gen-
eralization to two interacting modes gives in the first
order of 1/N the following self-consistent set of equa-
tions

(28)

1
2 = —%zl +E+ gz{z0 + NgBlg7 (29)
=22, 92 140 30
2 = 222 221 N2 15 ( )
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Bl = -7 (Bl — B(O)) + ngZzl +

+ gB1227+CF 294+C4 25, (31)

By = —75(By — B®)) — gBfyz1 — gBiozf,  (32)
C1 = —1C1 + 29(Cha2} + Bi22), (33)

02 = —7202 — 29C1221, (34)

Ci2 = —0.5(71+72)C12+gBi2za—Crz1+Cazf,  (35)

Blg = —0.5(’)/1+72)312+90122;+921(Bz—Bl), (36)
where

z; = (a;) = NY2(b;), Bj = N{(dajda;) + 0.5,

Cj = N{(6a;)*) (j =1,2),
Blg = N<(SO£I(SO£2>, 012 = N<(50(1(5042>,

and B is defined in Eq. (14). The initial conditions
for system (29)—(36) are

B;(0) =1/2, C;(0) = C12(0) = Bi2(0) =0,

22(0) =0, 2z1(0) = zo,

where zq is of the order of unity. In this work, we limit
ourselves by the values of the field strength zy corre-
sponding to self-oscillations [11] and Ay = Ay = 0.

It is easy to see that in the limit as N — oo and
for g = const ~ 1, we obtain from Eqs. (29) and (30)
the correct classical equations of motion for the scaled
field amplitudes. The solution of equations of motion
(31)—(36) for the second-order cumulants has the form

X (1) = X(t) + (vB(O)t,vB(O)t,O,O,O,O) ,
X(H)=[Bi(t), B2(t), C1(t), C2(t), Bi2(t), C12(t)] ,

(37)

where the vector X describes the part of X that can
be obtained by linearization around the classical tra-
jectory. Variations near a stable limit cycle rapidly
approach zero and, therefore, X(t) — 0. As a re-
sult, we have only a diffusive growth of cumulants B;
(j =1,2) as

B]'(t) = 0.5’}/jt, (38)

where we considered the case of a quiet reservoir (ng).
This result indicates that the effect of reservoir ze-
ro-point energy on the dynamics of the nonlinear sys-
tem is principal physical mechanism responsible for the

688

difference between the classical and quantum dynam-
ics in the semiclassical limit. A time scale t* for a
correct description of the quantized SHG dynamics in
terms of classical electrodynamics can be found using
criterion (18). Taking into account that |z(t)| ~ 1, we
obtain t* ~ 2Ny~1.

We note that the quantum corrections to the classi-
cal equations of motion (29) and (30) do not include the
cumulants By 2. Therefore, in the first order of 1/N,
there is no difference between the evolution of quantum
mean values and the classical limit cycle dynamics. In
other words, the quantum correction ) — 0, and there-
fore, criterion (17) of the 1/N-expansion validity does
not work. In this respect, the quantized SHG is a some-
what singular problem. In other quantum optical sys-
tems, for instance, for a nonlinear oscillator with [ > 1,
both validity criteria (18) and (17) typically give the
same result.

Over a decade ago, Savage addressed the same
quantum-classical correspondence problem for self-os-
cillations in SHG numerically [14]. He calculated the
@ distribution function in the Gaussian approximation
centered at a deterministic trajectory corresponding to
a limit cycle. He worked in a large field and small
nonlinearity limits, x/v12 — 0, which correspond to
the classical limit [14]. Tt is easy to see that the con-
dition x/m,2 — 0 is consistent with our condition
N > 1, if one additionally considers the natural condi-
tion of a not very strong dissipation in Eqs. (29)-(36),
Y.2/9 < 1 together with ¢ ~ 1 (Eq. (28)). In other
words, Savage’s small parameter y/v corresponds to
our large parameter N as x/v — N~'/2. To estab-
lish the difference between the classical and quantum
dynamics, the equations of motion for low-order cumu-
lants were obtained in [14] and solved numerically for
particular values of the parameters [21]. Based on the
results of numerical simulations, Savage concluded that
it is a quantum diffusion that is mostly responsible for
the difference between the classical and quantum dy-
namics in the semiclassical limit. Moreover, his numeri-
cal estimate for a characteristic time for the classical de-
scription scales as (v/x)?, which is in a good agreement
with our analytical result t* = 297! N. In summary,
our analytical results for the quantum-classical corre-
spondence at self-pulsing in SHG are consistent with
the previous numerical investigation of same problem
in [14].
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5. CONCLUSION

We developed the 1/N-expansion method to con-
sider the nonlinear dynamics and nonclassical proper-
ties of light in dissipative optical systems in the limit
of a large number of photons. The method was applied
to the investigation of squeezing in higher-order dissi-
pative nonlinear oscillators. We would like to note that
our method can also be directly applied to an impor-
tant case of the generation of nonclassical states in a
medium involving competing nonlinearities [22].

We found a time scale of validity of the 1/N-ex-
pansion for a classical description of the dynamics of
nonlinear optical systems with a simple attractor and
with a limit cycle. For systems with a simple attractor,
this time scale is of the order of unity, and for the
limit cycle, is proportional to large N. Qualitatively,
this result can be understood as follows. For time
of the order of unity, the trajectory spirals around a
stable stationary point with a small amplitude, and
therefore, by virtue of the uncertainty principle, the
contribution of quantum corrections to the classical
equations of motion becomes very important. Unlike
the previous case, the oscillations corresponding to the
limit cycle are often close to harmonic and, thus, their
quantum and classical descriptions can coincide for a
sufficiently long period of time. The basic difference
between the classical and quantum dynamics in the
latter case originates from the influence of reservoir
zero-point fluctuations, which in our notations are of
the order of 1/N. This result is in a good agreement
with the result of earlier numerical simulations of
self-oscillations in the quantized second-harmonic
generation [14]. Finally, it should be noted that our
findings are of a rather general nature and can be
applied to the investigations of self-oscillations in other
optical systems, for example, in those involing optical
bistability [23-25].
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