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© 2000ADIABATIC INVARIANCE AND SEPARATRIX: SINGLESEPARATRIX CROSSINGB. V. Chirikov*, V. V. Ve
heslavov**Budker Institute of Nu
lear Physi
s Siberian Brau
h of Russian A
ademy of Sien
es630090, Novosibirsk, RussiaSubmitted 22 June 1999Detailed numeri
al experiments on the dynami
s and statisti
s of a single 
rossing the separatrix of a nonlinearresonan
e with a time-varying amplitude are des
ribed. The results are 
ompared with a simple approximatetheory �rst developed by Timofeev and further improved and generalized by Tennyson and 
oworkers. Themain attention is paid to a new, ballisti
, regime of separatrix 
rossing in whi
h the violation of adiabati
ity ismaximal. Some unsolved problems and open questions are also dis
ussed.PACS: 05.45.+b 1. INTRODUCTIONAny 
onservation law, if only approximate, is of agreat importan
e in physi
s. One of those is the adia-bati
 invarian
e that is the 
onservation of the a
tionvariables (J) under a slow parametri
 perturbation. Inthe simplest 
ase of a single arbitrarily large variation ofthe latter the 
orresponding 
hange in J is well knownto be exponentially small in an appropriate adiabati
parameter (ǫ → 0) provided the perturbation is an ana-lyti
 fun
tion of time or of any other dynami
al vari-able.However, in the theory of dynami
al systems amu
h more interesting and important 
ase is a sta-tionary variation of the perturbation (e.g., periodi
,quasiperiodi
 or even 
haoti
). In this 
ase the adia-bati
ity is violated, for su�
iently long time, no matterhow slow is the adiabati
 perturbation. Generi
 me-
hanism of su
h a nonadiabati
ity are resonan
es, bothdriving and 
oupling ones, whi
h always determine thelong-term dynami
s of Hamiltonian os
illator systems.This was �rst dis
overed and explained in 1928 by An-dronov, Leontovi
h and Mandelshtam [1℄. Remarkably,it was su�
ient, for this purpose, to 
arefully examine,from the standpoint of physi
s, the well-known Math-ieu equation and its solutions. Indeed, the instabilityzones (�stop bands�) exist for spe
ial but arbitrarilysmall values of the parameter ǫ where the adiabati
-*E-mail: 
hirikov�inp.nsk.su**E-mail: ve
heslavov�inp.nsk.su

ity is 
ompletely destroyed in a su�
iently long time.This leads to an additional 
ondition for the adiabati
invarian
e: the perturbation must be not only slow butalso nonresonant.At a separatrix � the asymptoti
 traje
tory within�nite period of motion � both 
onditions are vio-lated (see, e.g., Refs. [2, 3℄). This is exa
tly the pla
ewhere the dynami
al 
haos is born, the ultimate originof 
haos. In a Hamiltonian system the separatrix istypi
ally asso
iated with nonlinear resonan
es. The vi-olation of adiabati
ity results in the formation of a nar-row 
haoti
 layer around the unperturbed separatrix.The set of all resonan
es is everywhere dense in phasespa
e, and forms the so-
alled �Arnold web�. For thenumber of freedoms N > 2 (in a 
onservative system)the united 
haoti
 
omponent of motion is formed alongwhi
h a 
haoti
 (but nonergodi
!) traje
tory is 
overingthe whole energy surfa
e. This very intri
ate pro
esswas termed the �Arnold di�usion� whi
h is an univer-sal instability of many-dimensional nonlinear os
illa-tions [3�5℄. However, the rate of this di�usion as well asthe total measure of the web is typi
ally exponentiallysmall in perturbation parameter ǫ. For large N or for adriving quasiperiodi
 perturbation with many frequen-
ies these nonadiabati
 e�e
ts de
ay with ǫ as a powerlaw but only within a �nite range ǫcr . ǫ ≪ 1 (theso-
alled fast Arnold di�usion [6℄). Asymptoti
ally, as
ǫ → 0 the de
ay is always exponential [7℄, the 
rossovervalue being the smaller the larger is the number of theunperturbed frequen
ies.644
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 Invarian
e and Separatrix. . .A more serious violation of adiabati
ity was foundfor the 
rossing of separatrix by a traje
tory. In this
ase, the 
hange of J is always a power law in ǫ, andmoreover the measure of 
haoti
 
omponent does notdepend on ǫ at all and is always large. This is truefor the slow resonan
e 
rossing [8, 9℄ as well as for the
rossing of a single separatrix [9�13℄. Interestingly, forthe linear os
illator with the frequen
y value 
rossingzero, the 
hange of J may be large independent of ǫ[14℄.In this paper, we present the results of numeri
alexperiments for a single 
rossing of a single separatrix.The present work was stimulated by an interestingstudy of the 
orresponding quantum adiabati
ity [15℄.We use the same 
lassi
al model des
ribed in the nextSe
tion. 2. MODELThe model in Ref. [15℄ we use here is determined bythe Hamiltonian
H(x, p, t) =

p2

2
+ A0 sin (ωt) cosx =

=
p2

2
+

A0

2
[sin (x + ωt) − sin (x − ωt)] . (2.1)The �rst expression des
ribes a single nonlinear re-sonan
e in the pendulum approximation (see, e.g.,Refs. [3, 5℄) with a time-varying amplitude
A(t) = A0 sin (ωt). (2.2)Alternatively, the model represents the intera
tion oftwo stationary resonan
es (the se
ond expression inEq. (2.1)) as suggested in Refs. [16, 17℄. In the lat-ter 
ase, the formal resonan
e overlap parameter [5℄

s =
(∆p)r

ω
(2.3)inde�nitely in
eases as ω → 0. Here, (∆p)r is the widthof ea
h resonan
e, and 2ω is the distan
e between them.The adiabati
 limit ω → 0 
orresponding to in�niteresonan
e overlap was suggested in Ref. [17℄ as a newparadigm of the �pure� 
haos. However, this 
haos isnot ergodi
 generally.Below we keep to the �rst interpretation of themodel as a single pulsating nonlinear resonan
e.The dimensionless adiabati
ity parameter is de�nedin the usual way as the ratio of perturbation/os
illationfrequen
ies. A
tually we 
an introdu
e two su
h pa-rameters:

ǫ =
ω√
A0

and ǫ̃ =
ω

√

|A(t)|
. (2.4)

Here√A0 is a
onstant frequen
y of the small resonan
eos
illation for the maximal amplitude while √A(t) isthe 
urrent frequen
y, parti
ularly at the instant ofseparatrix 
rossing. Correspondingly, we 
all ǫ theglobal parameter of adiabati
ity, and ǫ̃ the lo
al one.Two bran
hes of the instant, or �frozen�, separatrixat some t = 
onst is de�ned by the relation
ps(x̃; t) = ±2

√

|A(t)| sin (x̃/2),

x̃ =

{

x, A(t)>0,
x − π, A(t)<0. (2.5)Following previous studies of the separatrix 
rossing,we restri
t ourselves to this frozen approximation inwhat follows. As we shall see the latter provides quitegood a

ura
y of rather simple theoreti
al relations.In this approximation, the a
tion variable is de�nedin the standard way as

J =
1

2π

∮

p(x)dx, (2.6)where the integral is taken over the whole period for xrotation (o� the resonan
e) and over a half of that for
x os
illation (inside the resonan
e). This disti
tion isne
essary to avoid the dis
ontinuity of J at the sepa-ratrix where the a
tion is given by a simple expression

J = Js(t) =
4

π

√

|A(t)| ≤ Jmax =
4

π

√

A0. (2.7)At ωt = 0 (mod π), the a
tion is J = |p|, and the 
on-jugated phase is θ = x. Note that unlike p, the a
tion
J ≥ 0 is never negative.It is 
onvenient to set A0 = 1 and to intro-du
e the dimensionless a
tion by the transformation
J/Jmax → J . The 
rossing region then is the unitinterval, and J is simply related to the 
rossing time
t = tcr by

|A(tcr)| = J2, 0 ≤ J ≤ 1 , (2.8)while the adiabati
ity parameters be
ome
ǫ = ω and ǫ̃ = ǫ/J. (2.9)Numeri
al integration of the equations of motionfor Hamiltonian (2.1) was performed in (x, p) variablesusing the so-
alled bilateral symple
ti
 algorithm sug-gested in Ref. [18℄ and based on the symple
ti
 fourth-order Runge-Kutta method in Ref. [19℄. A typi
al num-ber of iterations was ∼ 100 per the minimal motion(os
illation) period 2π. This provides the 
onservationof the Hamltonian in extended phase spa
e [3℄ betterthan 10−6.645



B. V. Chirikov, V. V. Ve
heslavov ÆÝÒÔ, òîì 117, âûï. 3, 2000As is well known the variation of J under an adia-bati
 perturbation 
onsists of one to two qualitativelydi�erent parts: (i) the average a
tion, whi
h is nearly
onstant between the 
rossings up to exponentiallysmall 
orre
tions, and whi
h is of primary interest inour problem, and (ii) the rapid os
illations with themotion frequen
y (see, e.g., Fig. 7
 in Ref. [20℄). Theratio of the two time s
ales is ∼ ǫ̃ ≪ 1, whi
h allowse�
iently suppress the se
ond unimportant part of the
J variation by simply averaging J(t) over a long timeinterval ∼ 1/ǫ, the suppression fa
tor being ∼ 1/ǫ̃ ≫ 1fairly large.3. DYNAMICS OF SEPARATRIX CROSSING:DIFFUSIVE REGIME, J &&& ǫ

1/3To the best of our knowledge, the �rst analyti
al es-timates for the 
hange in J due to separatrix 
rossinghave been 
al
ulated in Ref. [11℄ followed shortly by amore a

urate [12℄ and, later, by a more general [9℄ ap-proximate (asymptoti
 in ǫ) theory. For model (2.1) un-der 
onsideration here these results (see also Ref. [21℄)
an be represented in the form:
∆J(J, M, ǫ) = F (J)Φ(M). (3.1)Here ∆J = Jf − Ji is the di�eren
e between the �naland initial averaged values of J ,

F (J) = − ǫ

2

√
1 − J4

J2
sign(Ȧ(t)) (3.2)is the dependen
e on the averaged a
tion (usually butnot ne
essarily initial one), and

Φ(M) = ln |2 sin (πM)|, (3.3)where M is the �
rossing parameter�. It looks like aphase 
anoni
ally 
onjugated to the a
tion J [21℄ but itis not. Pe
uliarity of the separatrix 
rossing is in thatthe 
onjugated phase θ 
annot be even introdu
ed onthe frozen separatrix be
ause the motion frequen
y inthis approximation is zero, and hen
e θ ≡ 
onst. In-stead, a di�erent variable � the 
rossing parameter �is used in the theory [12, 9℄ whi
h is determined by anyof the following approximate relations
M ≈ wx

A
3/2
x

4Ȧx

≈ wp
A

3/2
p

4Ȧp

≈ sin2

(

x̃s

4

)

. (3.4)Here
wx =

|δH(tx)|
Ax(tx)

, wp =
|δH(tp)|
Ap(tp)

(3.5)are dimensionless 
losest approa
hes of the traje
toryto the unstable �xed point (x̃ = 0 (mod 2π), p = 0) just

before or after separatrix 
rossing at time tx and tp, re-spe
tively (for details see Refs. [9, 12℄). The absolutevalues are assumed for all quantities with subindi
es.In the latter expression (3.4) the 
oordinate x̃s(tcr) istaken at the instant tcr of separatrix 
rossing.The physi
al meaning of seemingly 
ompli
atedEq. (3.4) is a
tually very simple: the main 
hange in
J does o

ur just at the most 
lose approa
h to theunstable �xed point where the motion is very slow al-lowing for the moving separatrix to 
onsiderably pushor pull the traje
tory along. The existing theory 
an-not distinguish between the three relations (3.4) withrespe
t to their a

ura
y. However, our numeri
al ex-periments revealed that taken by itself the third one(M = M3) proved to be most a

urate. On the otherhand, if we make use of the �rst two and take the mini-mal one of them (M = Mmin ≤ 0.5) the a

ura
y doesfurther in
rease. In this 
ase, it is important to takeall the quantities at the 
orresponding instants tx and
tp as indi
ated in Eqs. (3.4) and (3.5), and not, e.g., atthe 
rossing time tcr. All quantities in Eqs. (3.4) and(3.5) were 
omputed using the linear interpolation overa single numeri
al iteration.A 
omparison between the numeri
al results andthe simple theory is presented in Fig. 1.The empiri
al data (points) represent 4 separatrix
rossings over one period of the adiabati
 perturba-tion A(t) in Eq. (2.1) for ea
h of 2500 traje
torieswith random initial 
onditions in the full interval of
θ = x = (0, 2π) and of J = πp/4 = (0, 1) at t = 0. Thenormalized deviation from the theory is presented as afun
tion of initial J = Ji (prior to a 
rossing), and ofparameter M . In both 
ases the optimal M = Mminis used. The best a

ura
y of the theory roughly 
or-responds to the interval 0.7 . J . 0.9 (Fig. 1a). Thelatter is separately shown in Fig. 1b. Beyond this in-terval, the deviation in
reases at both sides.For J → 1, the 
hange in J be
omes very small(3.1) whi
h in
reases the theoreti
al errors. More in-teresting is the opposite limit (J → 0) where the theorybe
omes singular. It simply means that su
h a theoryis no longer appli
able here. This new and interestingregion of maximal nonadiabati
ity will be 
onsidered inSe
tion 4 below. Right here we noti
e only that the ab-sen
e of any points for J . 0.2 in Fig. 1a has a very sim-ple explanation: using the best parameter M = Mminbe
omes inappli
able in this region be
ause only one ofthe two 
lose approa
hes remains here while the otherone is never realized. If, instead, one uses a less a

u-rate parameter M = M3, whi
h is always appli
able,the deviations ex
eed 1 whi
h means that the theory(3.1) has nothing to do with su
h small J .646
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MminFig. 1. Normalized deviation of numeri
al data for se-paratrix 
rossing from the simple theory (3.1) in model(2.1): 4 
rossings ×2500 traje
tories; ǫ = 0.001.(a) Deviation dependen
e on J in the whole availableinterval: 0.2 . J < 1 (see text). (b) Same data as afun
tion of the 
rossing parameter M in the best de-s
ribed interval: 0.7 . J . 0.9; the a

ura
y (3.6)
σ ≈ 0.01The highest a

ura
y a
hieved in our numeri
al ex-periments σ ≈ 0.01 (see Eq. (3.6) and Fig. 1b) is 
om-parable with the minimal theoreti
al errors ∼ ǫ ln ǫ [9℄.In a very narrow interval of Mmin ≈ 0 the a

ura
ybe
omes somewhat worse but is still surprisingly goodfor su
h a simple theoreti
al relation as Eq. (3.1). Afew points in this region are 
learly seen also in Fig. 1as
attered over a wide interval in J .A high numeri
al a

ura
y a
hieved reveals a 
om-pli
ated stru
ture of the deviations from the theory.Besides irregular s
attering of the points there is a 
lear

regular �splitting� symmetri
 with respe
t to zero devi-ation whi
h is determined by the sign of Ȧ(t). It mightbe a result of insu�
ient J averaging (for dis
ussion seeRef. [12℄). This part of the regular deviations 
ould beex
luded by the expli
it 
omputation of the �rst 
or-re
tion to the adiabati
 invariant (2.6) as in Ref. [10℄.However, it would hardly de
rease appre
iably the de-viations as those are already of the order of the termsommited in the theory. In any event, we in
luded this�splitting� into the de�nition of the a

ura
y of ournumeri
al data in Fig. 1b for all the 4 su

essive sepa-ratrix 
rossings:
σ2 =

〈(∆J − ∆Jth)2〉
F 2

. (3.6)Here ∆J is empiri
al and ∆Jth is theoreti
al (Eq. (3.1))values of the J 
hange per 
rossing.Another way to demonstrate agreement (or dis-agreement) of the existing theory with the empiri
aldata is to look at the behavior of a transformed
∆J → (∆J)+ = −∆Jsign(Ȧ(t)). (3.7)As far as the relation (3.1) holds true this new quantityhas a stri
t upper bound

(∆J)+ ≤ |F (J)|Φ(1/2). (3.8)The results are shown in Fig. 2a.The upper bound of points 
losely follows the theo-reti
al dependen
e (3.8) down to Ji ≈ 0.2 (
f. Fig. 1a).Remarkably, for small Ji a 
lear upper bound does alsoexist even though the unknown underlying dynami
sis apparently 
ompletely di�erent here. In parti
ular,the upper bound in this region does not depend on Jand forms a 
hara
teristi
 �plateau�. The 
rossoverbetween the two regions in Fig. 2a is at J = Jcro ≈ 0.1,and s
ales as Jcro ∼ ǫ1/3 (see Eq. (4.5) below). Weshall 
all the well understood behavior for J & Jcro thedi�usive region, and the other domain J . Jcro, to be
onsidered in some detail below, the ballisti
 region forreasons explained in the next Se
tion.4. STATISTICS OF SEPARATRIX CROSSING:BALLISTIC REGIME, J ... ǫ
1/3For small J . ǫ1/3, not only any theory is as yet ab-sent but also the 
onstru
ting empiri
al relations seemsto us a hard nut. Parti
ularly, as is seen in Fig. 2b, thestru
ture in this region is rather 
ompli
ated.Surprisingly, statisti
al properties here turned outto be fairly simple. To our knowledge, Mirba
h was the�rst to study this problem numeri
ally in 1998 [22℄.647
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Fig. 2. The set of empiri
al ∆J for the ensemble oftraje
tories as in Fig. 1 in the full range Ji = (0, 1).(a) Transformed quantity (∆J)+, Eq. (3.7): solid 
urveis theory (3.8) shifted upwards by 20% to be seen; ho-rizontal line is empiri
al upper bound 2(∆J)+/ǫ ≈ 150in the region where there is as yet no theory; 
rossovera
tion Jcro ≈ 0.1. (b) A
tual ∆J with 
orre
tsigns: oblique straight line is empiri
al lower bound
∆J ≥ −Ji (see text)Sin
e in this paper the properties of the single sepa-ratrix 
rossings are 
onsidered we need some statisti-
al ensemble of traje
tories before to turn to statisti
alnumeri
al experiments. As the motion driven by sepa-ratrix 
rossing is known to be ergodi
, or at least very
lose to that, within the 
rossing domain it would benaturally to make use of the ergodi
 ensemble. In this
ase, the distribution of the 
rossing parameter M inEq. (3.1), whi
h determines all the statisti
al propertiesof the single separatrix 
rossing, was shown to be ho-mogeneous [9, 23℄. Parti
ularly, the two �rst moments

0 0.2 0.4 1.00.6 0.8
M

180160120
20406080
100140ρ(M)

Fig. 3. Distribution ρ(M) in number of 
rossings perbin: ǫ = 0.01; Jcro = 0.215. Top to bottom:(i) M = Mmin, Ji = (0.3, 1), di�usive region, 6928
rossings, 100 bins; (ii) same for M = M3, 7312 
ross-ings; (iii) M = M3, Ji = (0, 0.2), ballisti
 region, 1634
rossings, 50 binsof the M -distribution are
µ1 = 〈Φ(M)〉 = 0,

µ2 = 〈Φ2(M)〉 =
π2

12
.

(4.1)Both numeri
al values hold in the di�usive region only.Moreover, it is insu�
ient to �x initial J0 even for thefull range of θ0 = (0, 2π). For M -distribution were ho-mogeneous the width of initial distribution ∆0J0 mustex
eed some 
riti
al value given by a simple approxi-mate relation
∆0J0

J0
> ǫ

√

1 − J4
0

J3
0

ln

(

8

ǫ

J3
0

√

1 − J4
0

)

≈

≈ J3
cro

J3
0

ln

(

8
J3

0

J3
cro

)

. (4.2)This relation is obtained from the 
ondition that theinitial strip ∆0J0 is transformed in su
h a strip nearunstable �xed point (see Eq. (3.4)) whi
h provides thefull range of parameter M = (0, 1). In most of our sta-tisti
al numeri
al experiments we used the full range of
J0 = (0, 1).In Fig. 3 the M -distribution is shown for both def-initions of this parameter.Two upper distributions in the di�usive region arefairly homogeneous within statisti
al �u
tuations. Un-like this, the lower one in ballisti
 region shows a 
learslope whi
h me
hanism remains un
lear.648
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 Invarian
e and Separatrix. . .The statisti
al properties we studied are 
hara
te-rized by the two �rst moments of the distribution fun
-tion in ∆J (see Eq. (3.1)) de�ned as follows
(∆J)22 ≡ 〈(∆J)2〉 = F 2(J)µ2 =

=
ǫ2

4

(

1

J4
− 1

)

µ2, (4.3)
(∆J)1 ≡ 〈∆J〉 =

d

dJ

〈(∆J)2〉
2

= −µ2ǫ
2

2J5
.Both analiti
al expressions are valid in the di�usive re-gion only. Moreover, the se
ond one 
annot be dedu
edfrom the existing �rst-order theory as 〈∆J〉 ∼ ǫ2 isa se
ond-order e�e
t. Instead, one 
an use the well-known relation between the two moments (see, e.g.,Ref. [3℄) whi
h generally holds true for a 
haoti
 Hamil-tonian system (for dis
ussion see Ref. [2℄). This relationas well as the se
ond-order moment 〈∆J〉, whi
h mayseem to be negligible at the �rst glan
e, are in fa
tvery important for derivation of the 
orre
t di�usionequation

∂f(J, τ)

∂τ
=

∂

∂J

D(J)

2

∂f

∂J
. (4.4)Parti
ularly, this equation entails the relaxation to ahomogeneous steady state (f(J, τ) → fs(J) = 
onst)as it should be for the ergodi
 system.In Eq. (4.4) τ is the dis
rete time measured in thenumber of separatrix 
rossings, and D(J) = 〈(∆J)2〉denotes a �di�usion rate� [23, 21℄. A
tually, this is notthe real di�usion rate whi
h in
ludes the 
orrelation be-tween su

essive 
rossings. This may be important inthe problem under 
onsideration a

ording to numeri-
al data in Ref. [21℄ (for further dis
ussion see Se
ion5 below).The results of our numeri
al experiments on the sta-tisti
al properties for the single separatrix 
rossing arepresented in Fig. 4a. We used the same numeri
al dataas in Fig. 2b whi
h upon ordering in J were averagedby the standard method of the moving window of width500 points, or ∆wJ ≈ 0.05. The transition from di�u-sive to ballisti
 regime is surprisingly sharp, espe
iallyfor (∆J)1 (lower 
urve). The 
rossover value

J = Jcro = αǫ1/3, α ≈ 1.08 (4.5)where empiri
al fa
tor α was found from the plateau(upper bound) for (∆J)2 (upper 
urve). To this endwe substitute Jcro for J in Eq. (4.3) to obtain
(∆J)2 ≤

√
µ2

2α2
ǫ1/3. (4.6)Remarkably, the empiri
al data follow with a rea-sonable a

ura
y the di�usive theory literally down to

0.05 0.1 0.2 0.5 1

100806040200
−20

−40

Ji

2(∆J)1,2/ǫ a

00.20.4
0.60.81.0

−0.2

−0.4

2(∆J̃)1,2

0.1 0.2 0.5 1 2 10
b

J̃i

5Fig. 4. Statisti
s of 104 separatrix 
rossings; windowwidth ∆wJ ≈ 0.05. (a) (∆J)2 (upper thi
k 
urve),and (∆J)1 (lower 
urve) vs. J for ǫ = 0.001; twothin solid 
urves represent the di�usive theory (4.3);the horizontal line is the empiri
al upper bound for
2(∆J)2/ǫ ≈ 78. (b) Same data for ǫ = 0.001 and0.01 in ballisti
 normalization: J̃ = J/ǫ1/3; empiri
alupper bound 2(∆J̃)2 ≈ 0.78the very 
rossover. This allowed us to numeri
ally dis-
ern the very small but important �rst moment, andeven to 
he
k its agreement with the theory.Even though there is as yet no theory for the ballis-ti
 regime the underlying physi
al me
hanism of thetransition is rather simple and 
omprehensible [22℄.This transition is determined by the kineti
s param-eter

κ ∼ (∆J)2
J

∼ ǫ

J3
≪ 1 (4.7)whi
h is a redu
ed dynami
al s
ale in J . The latter649



B. V. Chirikov, V. V. Ve
heslavov ÆÝÒÔ, òîì 117, âûï. 3, 2000strong inequality is a ne
essary 
ondition for the dif-fusion approximation to the exa
t integro-di�erentialkineti
 equation to hold. Hen
e the term di�usive re-gion for J & Jcro ∼ ǫ1/3. In the opposite limit (κ & 1)the traje
tory jumps over the whole region ∼ J in oneseparatrix 
rossing. This is usually 
alled the ballisti
regime.Sin
e the a
tion J ≥ 0 
annot be negative the
hange ∆J is ne
essarily restri
ted for any J . In bal-listi
 region the restri
tion be
omes very strong as thestri
t lower bound in Fig. 2b demonstrates. It simplymeans that Jf ≥ 0 as well as Ji. Also, there existsthe stri
t upper bound J ≤ 1 but it 
orresponds to avery big ∆J unless J → 1 is 
lose to the upper borderof separatrix 
rossing. Near this border there is alsothe se
ond ballisti
 region but its width is very small.Again, it is determined by the kineti
s parameter (4.7)whi
h now takes the form
κ ∼ (∆J)2

J1
∼ ǫ√

J1

, J1 = 1 − J (4.8)when
e a new 
rossover J
(cro)
1 ∼ ǫ2.In di�usive normalization used in Fig. 4a, the quan-tities 2(∆J)1,2/ǫ do not depend on ǫ in the di�usive re-gion but do so in the ballisti
 domain. Instead, one mayuse a di�erent, ballisti
, normalization by introdu
inga new variable J̃ = J/ǫ1/3. The result is presented inFig. 4b for the two values of ǫ. Instead of Eq. (4.3) wehave now the relations:

(∆J̃)22 =
µ2

4

(

1

J̃4
−ǫ4/3

)

, (∆J̃)1 = − µ2

2J̃5
. (4.9)The se
ond one is independent of ǫ in the full rangeof J . Some di�eren
e between two lower 
urves is ap-parently due to �u
tuations, espe
ially for the smaller

ǫ. The �rst relation slightly depends on ǫ but this isimportant near the upper border (J ≈ 1) only. Thedi�usive theory (4.9) is shown in Fig. 4b for ǫ = 0.01(upper thin 
urve).Even though there is as yet no theory for the ballis-ti
 region, some statisti
al properties 
an be predi
tedhere from a general 
onsideration. One of those is thesurvival probability P (τ) for a traje
tory to stay in theballisti
 region during a time > τ . Namely, this proba-bility is expe
ted to de
ay exponentially
P (τ) ≈ exp

(

− τ

〈τ〉

)

(4.10)with some average survival time 〈τ〉 ∼ 1. This is be-
ause for large jumps of a traje
tory a
ross the wholeballisti
 region there is a 
ertain probability w ∼ 1 for a
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Fig. 5. Survival probability P (τ ) in ballisti
 region for
ǫ = 0.001 (
ir
les), and ǫ = 0.01 (
rosses); 104 tra-je
tories homogeneously distributed initially over theballisti
 region; straight line is the �t with 〈τ 〉 = 4.35,

w = 0.79traje
tory to remain within this region after ea
h sepa-ratrix 
rossing. Moreover, the su

essive probabilitiesare expe
ted, for a 
haoti
 motion, to be equal andstatisti
ally independent. This implies the exponential(4.10) with 〈τ〉 = −1/ lnw independent of ǫ. The latteris espe
ially 
lear in the ballisti
 normalization (4.9).The results of numeri
al experiments are presentedin Fig. 5.Curiously, the di�usion equation (4.4) with 
on-stant D ≈ 0.16 (in ballisti
 normalization, see Fig. 4b)also leads to the exponential de
ay (4.10) with the av-erage survival time
〈τ〉 ≈ 2

Dk2
≈ 5, (4.11)where k ≈ π/2 is the parameter of the �rst(main) eigenfun
tion of the di�usion equation:

f1(J̃) ≈ cos(kJ̃). This is surprisingly 
lose to theempiri
al value 〈τ〉 ≈ 4.4 (Fig. 5) in spite of the formalinappli
ability of the di�usion approximation in theballisti
 region! 5. DISCUSSIONIn the present paper, we reported the results of ex-tensive numeri
al experiments aimed to the detailedstudy of dynami
s and statisti
s of separatrix 
rossingin 
lassi
al model (2.1). Our work was stimulated byan interesting investigation of the quantum behavior ofthis model [15℄.650



ÆÝÒÔ, òîì 117, âûï. 3, 2000 Adiabati
 Invarian
e and Separatrix. . .First of all we 
arefully 
he
ked the agreement ofthe empiri
al data with the existing fairly simple �rst-order theory [12, 9℄ and found it surprisingly good,
lose in fa
t to the formal limiting a

ura
y of thetheory (Fig. 1). Besides, we were able to dis
ern onese
ond-order e�e
t � the behavior of the �rst moment
〈∆J〉(J) �whi
h is beyond the theory but very impor-tant for the di�usion equation. Our numeri
al results
on�rm the expe
ted relation between the twomoments(Eq. (4.3) and Fig. 4).On the other hand, we have found that su
h a ni
eagreement 
rudely breaks down in the ballisti
 region
J < Jcro ≈ ǫ1/3 (Fig. 4) whi
h is qualitatively di�er-ent from the 
omplementary di�usive region J > Jcro.The new regime of separatrix 
rossing was �rst noti
edand partly explained in Ref. [22℄. It is a pe
uliarity ofmodel (2.1) in whi
h pulsating separatrix 
rosses zero.In many other models studied numeri
ally (see, e.g.,Refs. [10, 11, 20, 21℄) the authors tended to avoid thetheoreti
al singularity at J → 0 (3.2). This is moresimple, of 
ourse, but less interesting. Parti
ularly, thelargest violation of adiabati
ity (∆J ∼ ǫ1/3) is rea
hedjust in the ballisti
 region (Fig. 2 and 4).Even though the dynami
al theory in this regionseems to be a hard nut, and has not yet developedthe statisti
al properties of the motion here look rathersimple. Surprisingly, even a simpli�ed di�usion equa-tion, whi
h must not hold in the ballisti
 region, stillallows for some reasonably a

urate estimates (Fig. 5).In the present paper, we 
onsider the dynami
s andstatisti
s of a single separatrix 
rossing only. Of 
ourse,this is insu�
ient for the full-s
ale statisti
al des
rip-tion of the separatrix 
rossing. As is well known (see,e.g., Refs. [20, 21℄) the 
orrelations in multiple 
rossingsare generally very essential. In 
on
lusion of our dis-
ussion we present in Fig. 6 the 
ommulative e�e
t of 4su

essive 
rossing over one period of the perturbation.Both moments are normalized as follows:
(∆J)1 → (∆J)1/τ ; (∆J)22 → (∆J)22/τ ≡ D(τ)where dis
rete time τ = 4 is the 
rossing multipli
ityin this 
ase (see Eq. (4.3)). In the di�usive regionboth 
urves 
oin
ide within �u
tuations whi
h meansthat the 
orrelations, if any, are small over 4 
rossings.This is in agreement with the results in Ref. [21℄ (fora di�erent model). Whether they will rise with τ , andwhy, is an interesting open question. A

ording toRef. [21℄, they do so but it may depend on the methodof measuring the di�usion rate. In the ballisti
 regionthe 
orrelation e�e
t is strong from the beginning,espe
ially for the se
ond moment. This is also inagreement with numeri
al data in Ref. [22℄. A

ordingto data in Fig. 6, the normalized se
ond moment
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Fig. 6. The e�e
t of 
orrelation over 4 su

essive sepa-ratrix 
rossings. Two thi
k wiggly 
urves show statisti
sof the single 
rossing as in Fig. 4a. Thin wiggly 
urvesrepresent the e�e
t of 4-fold 
rossings; both momentsare normalized (see text)(�di�usion rate�) de
reases as D(τ) ∝ 1/
√

τ . What iseven more important, the size of the ballisti
 regiongrows: Jcro(τ) ∝ τ1/8. An intriguing question is if thistrend will 
ontinue? and how far?We are grateful to Bruno Mirba
h who kindly pro-vided for us his numeri
al results prior to publi
ation.We appre
iate many interesting and stimulating dis-
ussions with him and Giulio Casati. This work waspartially supported by the Russia Foundation for Fun-damental Resear
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