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Detailed numerical experiments on the dynamics and statistics of a single crossing the separatrix of a nonlinear
resonance with a time-varying amplitude are described. The results are compared with a simple approximate
theory first developed by Timofeev and further improved and generalized by Tennyson and coworkers. The
main attention is paid to a new, ballistic, regime of separatrix crossing in which the violation of adiabaticity is
maximal. Some unsolved problems and open questions are also discussed.
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1. INTRODUCTION

Any conservation law, if only approximate, is of a
great importance in physics. One of those is the adia-
batic invariance that is the conservation of the action
variables (J) under a slow parametric perturbation. In
the simplest case of a single arbitrarily large variation of
the latter the corresponding change in J is well known
to be exponentially small in an appropriate adiabatic
parameter (¢ — 0) provided the perturbation is an ana-
lytic function of time or of any other dynamical vari-
able.

However, in the theory of dynamical systems a
much more interesting and important case is a sta-
tionary variation of the perturbation (e.g., periodic,
quasiperiodic or even chaotic). In this case the adia-
baticity is violated, for sufficiently long time, no matter
how slow is the adiabatic perturbation. Generic me-
chanism of such a nonadiabaticity are resonances, both
driving and coupling ones, which always determine the
long-term dynamics of Hamiltonian oscillator systems.
This was first discovered and explained in 1928 by An-
dronov, Leontovich and Mandelshtam [1]. Remarkably,
it was sufficient, for this purpose, to carefully examine,
from the standpoint of physics, the well-known Math-
ieu equation and its solutions. Indeed, the instability
zones («stop bands») exist for special but arbitrarily
small values of the parameter ¢ where the adiabatic-
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ity is completely destroyed in a sufficiently long time.
This leads to an additional condition for the adiabatic
invariance: the perturbation must be not only slow but
also nonresonant.

At a separatrix — the asymptotic trajectory with
infinite period of motion — both conditions are vio-
lated (see, e.g., Refs. [2, 3]). This is exactly the place
where the dynamical chaos is born, the ultimate origin
of chaos. In a Hamiltonian system the separatrix is
typically associated with nonlinear resonances. The vi-
olation of adiabaticity results in the formation of a nar-
row chaotic layer around the unperturbed separatrix.
The set of all resonances is everywhere dense in phase
space, and forms the so-called «Arnold weby». For the
number of freedoms N > 2 (in a conservative system)
the united chaotic component of motion is formed along
which a chaotic (but nonergodic!) trajectory is covering
the whole energy surface. This very intricate process
was termed the «Arnold diffusiony which is an univer-
sal instability of many-dimensional nonlinear oscilla-
tions [3-5]. However, the rate of this diffusion as well as
the total measure of the web is typically exponentially
small in perturbation parameter e¢. For large NV or for a
driving quasiperiodic perturbation with many frequen-
cies these nonadiabatic effects decay with € as a power
law but only within a finite range €., < ¢ < 1 (the
so-called fast Arnold diffusion [6]). Asymptotically, as
e — 0 the decay is always exponential 7], the crossover
value being the smaller the larger is the number of the
unperturbed frequencies.
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A more serious violation of adiabaticity was found
for the crossing of separatrix by a trajectory. In this
case, the change of J is always a power law in €, and
moreover the measure of chaotic component does not
depend on € at all and is always large. This is true
for the slow resonance crossing [8, 9] as well as for the
crossing of a single separatrix [9-13]. Interestingly, for
the linear oscillator with the frequency value crossing
zero, the change of J may be large independent of €
[14].

In this paper, we present the results of numerical
experiments for a single crossing of a single separatrix.
The present work was stimulated by an interesting
study of the corresponding quantum adiabaticity [15].
We use the same classical model described in the next
Section.

2. MODEL

The model in Ref. [15] we use here is determined by
the Hamiltonian

2
H(z,p,t) = % + Ag sin (wt) cosz =

2 A

= % + 70 [sin (z + wt) — sin (z — wt)].
The first expression describes a single nonlinear re-
sonance in the pendulum approximation (see, e.g.,

Refs. [3, 5]) with a time-varying amplitude

(2.1)

A(t) = Ag sin (wt). (2.2)

Alternatively, the model represents the interaction of
two stationary resonances (the second expression in
Eq. (2.1)) as suggested in Refs. [16, 17]. In the lat-
ter case, the formal resonance overlap parameter [5]

(Ap)»

> (2.3)

indefinitely inceases as w — 0. Here, (Ap), is the width
of each resonance, and 2w is the distance between them.
The adiabatic limit w — 0 corresponding to infinite
resonance overlap was suggested in Ref. [17] as a new
paradigm of the «pure» chaos. However, this chaos is
not ergodic generally.

Below we keep to the first interpretation of the
model as a single pulsating nonlinear resonance.

The dimensionless adiabaticity parameter is defined
in the usual way as the ratio of perturbation/oscillation
frequencies. Actually we can introduce two such pa-
rameters:

w w

= \/A_O and €= m

(2.4)

Here \/Ay is aconstant frequency of the small resonance
oscillation for the maximal amplitude while \/A(t) is
the current frequency, particularly at the instant of
separatrix crossing. Correspondingly, we call € the
global parameter of adiabaticity, and € the local one.

Two branches of the instant, or «frozeny, separatrix
at some t = const is defined by the relation

ps(T;t) = £24/]A(t)] sin (2/2),

I 2 A(t)>0,
T =
T —T,

A(t)<0.
Following previous studies of the separatrix crossing,
we restrict ourselves to this frozen approximation in
what follows. As we shall see the latter provides quite
good accuracy of rather simple theoretical relations.
In this approximation, the action variable is defined
in the standard way as

(2.5)

1

= (2.6)

p(z)dz,
where the integral is taken over the whole period for x
rotation (off the resonance) and over a half of that for
x oscillation (inside the resonance). This distiction is
necessary to avoid the discontinuity of J at the sepa-
ratrix where the action is given by a simple expression

T = Ji(0) = 2 VTAD] < Jaw = =/ Ao,

- (2.7)

At wt =0 (mod ), the action is J = |p|, and the con-
jugated phase is § = x. Note that unlike p, the action
J > 0 is never negative.

It is convenient to set Ag = 1 and to intro-
duce the dimensionless action by the transformation
J/Jmaz — J. The crossing region then is the unit
interval, and J is simply related to the crossing time
t=ter by

|Ater)| =J%, 0<J<1, (2.8)
while the adiabaticity parameters become
e=w and é=¢/J. (2.9)

Numerical integration of the equations of motion
for Hamiltonian (2.1) was performed in (z, p) variables
using the so-called bilateral symplectic algorithm sug-
gested in Ref. [18] and based on the symplectic fourth-
order Runge-Kutta method in Ref. [19]. A typical num-
ber of iterations was ~ 100 per the minimal motion
(oscillation) period 27. This provides the conservation
of the Hamltonian in extended phase space [3] better
than 1075,
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As is well known the variation of J under an adia-
batic perturbation consists of one to two qualitatively
different parts: (i) the average action, which is nearly
constant between the crossings up to exponentially
small corrections, and which is of primary interest in
our problem, and (ii) the rapid oscillations with the
motion frequency (see, e.g., Fig. 7¢ in Ref. [20]). The
ratio of the two time scales is ~ € < 1, which allows
efficiently suppress the second unimportant part of the
J variation by simply averaging J(¢) over a long time
interval ~ 1/¢, the suppression factor being ~ 1/ > 1
fairly large.

3. DYNAMICS OF SEPARATRIX CROSSING:
DIFFUSIVE REGIME, J 2 ¢/3

To the best of our knowledge, the first analytical es-
timates for the change in J due to separatrix crossing
have been calculated in Ref. [11] followed shortly by a
more accurate [12] and, later, by a more general [9] ap-
proximate (asymptotic in €) theory. For model (2.1) un-
der consideration here these results (see also Ref. [21])
can be represented in the form:

AJ(J, M, e) = F(J)®(M). (3.1)

Here AJ = Jy — J; is the difference between the final
and initial averaged values of J,

L en(A)

is the dependence on the averaged action (usually but
not necessarily initial one), and

(3.2)

O(M) = In|2sin (7 M), (3.3)

where M is the «crossing parametery. It looks like a
phase canonically conjugated to the action J [21] but it
is not. Peculiarity of the separatrix crossing is in that
the conjugated phase 6 cannot be even introduced on
the frozen separatrix because the motion frequency in
this approximation is zero, and hence § = const. In-
stead, a different variable — the crossing parameter —
is used in the theory [12, 9] which is determined by any
of the following approximate relations

3/2 3/2 -
~ wIAL. ~ pAL. ~sin? [ 22, (3.4)
44, 44, 4
Here GH(L,)] 6H(1,)]
ty t
, = 02l 10 )] 3.5
At T A 8P

are dimensionless closest approaches of the trajectory
to the unstable fixed point (Z = 0 (mod 27), p = 0) just
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before or after separatrix crossing at time ¢, and t,, re-
spectively (for details see Refs. [9, 12]). The absolute
values are assumed for all quantities with subindices.
In the latter expression (3.4) the coordinate Z4(tc,) is
taken at the instant ¢.,. of separatrix crossing.

The physical meaning of seemingly complicated
Eq. (3.4) is actually very simple: the main change in
J does occur just at the most close approach to the
unstable fixed point where the motion is very slow al-
lowing for the moving separatrix to considerably push
or pull the trajectory along. The existing theory can-
not distinguish between the three relations (3.4) with
respect to their accuracy. However, our numerical ex-
periments revealed that taken by itself the third one
(M = Ms) proved to be most accurate. On the other
hand, if we make use of the first two and take the mini-
mal one of them (M = M,,;, < 0.5) the accuracy does
further increase. In this case, it is important to take
all the quantities at the corresponding instants ¢, and
t, as indicated in Eqgs. (3.4) and (3.5), and not, e.g., at
the crossing time t... All quantities in Eqs. (3.4) and
(3.5) were computed using the linear interpolation over
a single numerical iteration.

A comparison between the numerical results and
the simple theory is presented in Fig. 1.

The empirical data (points) represent 4 separatrix
crossings over one period of the adiabatic perturba-
tion A(¢) in Eq. (2.1) for each of 2500 trajectories
with random initial conditions in the full interval of
0 =2 =(0,2r) and of J =7p/4=(0,1) at t = 0. The
normalized deviation from the theory is presented as a
function of initial J = J; (prior to a crossing), and of
parameter M. In both cases the optimal M = M,,.n
is used. The best accuracy of the theory roughly cor-
responds to the interval 0.7 < J < 0.9 (Fig. 1a). The
latter is separately shown in Fig. 1b. Beyond this in-
terval, the deviation increases at both sides.

For J — 1, the change in J becomes very small
(3.1) which increases the theoretical errors. More in-
teresting is the opposite limit (J — 0) where the theory
becomes singular. It simply means that such a theory
is no longer applicable here. This new and interesting
region of maximal nonadiabaticity will be considered in
Section 4 below. Right here we notice only that the ab-
sence of any points for J < 0.21in Fig. 1a has a very sim-
ple explanation: using the best parameter M = M,
becomes inapplicable in this region because only one of
the two close approaches remains here while the other
one is never realized. If, instead, one uses a less accu-
rate parameter M = Mjs, which is always applicable,
the deviations exceed 1 which means that the theory
(3.1) has nothing to do with such small J.
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Fig.1. Normalized deviation of numerical data for se-
paratrix crossing from the simple theory (3.1) in model
(2.1): 4 crossings x2500 trajectories; 0.001.
(a) Deviation dependence on J in the whole available
interval: 0.2 < J < 1 (see text). (b) Same data as a
function of the crossing parameter M in the best de-
scribed interval: 0.7 < J < 0.9; the accuracy (3.6)
o~ 0.01

€

The highest accuracy achieved in our numerical ex-
periments o = 0.01 (see Eq. (3.6) and Fig. 1b) is com-
parable with the minimal theoretical errors ~ elne [9].
In a very narrow interval of M,,;, = 0 the accuracy
becomes somewhat worse but is still surprisingly good
for such a simple theoretical relation as Eq. (3.1). A
few points in this region are clearly seen also in Fig. 1a
scattered over a wide interval in J.

A high numerical accuracy achieved reveals a com-
plicated structure of the deviations from the theory.
Besides irregular scattering of the points there is a clear
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regular «splittingy symmetric with respect to zero devi-
ation which is determined by the sign of A(t). It might
be a result of insufficient J averaging (for discussion see
Ref. [12]). This part of the regular deviations could be
excluded by the explicit computation of the first cor-
rection to the adiabatic invariant (2.6) as in Ref. [10].
However, it would hardly decrease appreciably the de-
viations as those are already of the order of the terms
ommited in the theory. In any event, we included this
«splitting» into the definition of the accuracy of our
numerical data in Fig. 15 for all the 4 successive sepa-
ratrix crossings:

(AT — Adp)?)
F? '

Here AJ is empirical and A.Jy, is theoretical (Eq. (3.1))
values of the J change per crossing.

Another way to demonstrate agreement (or dis-
agreement) of the existing theory with the empirical
data is to look at the behavior of a transformed

0'2:

(3.6)

AJ — (AJ)t = —AJsign(A(t)). (3.7)

As far as the relation (3.1) holds true this new quantity
has a strict upper bound

(AD)T < |F(J)|®(1/2). (3-8)

The results are shown in Fig. 2a.

The upper bound of points closely follows the theo-
retical dependence (3.8) down to J; ~ 0.2 (cf. Fig. 1a).
Remarkably, for small J; a clear upper bound does also
exist even though the unknown underlying dynamics
is apparently completely different here. In particular,
the upper bound in this region does not depend on J
and forms a characteristic «plateauy. The crossover
between the two regions in Fig. 2ais at J = J., = 0.1,
and scales as J.., ~ €/3 (see Eq. (4.5) below). We
shall call the well understood behavior for J 2 J.., the
diffusive region, and the other domain J < J,..,, to be
considered in some detail below, the ballistic region for
reasons explained in the next Section.

4. STATISTICS OF SEPARATRIX CROSSING:
BALLISTIC REGIME, J < €'/3

For small J < €'/3, not only any theory is as yet ab-
sent but also the constructing empirical relations seems
to us a hard nut. Particularly, as is seen in Fig. 2b, the
structure in this region is rather complicated.

Surprisingly, statistical properties here turned out
to be fairly simple. To our knowledge, Mirbach was the
first to study this problem numerically in 1998 [22].
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Fig.2. The set of empirical AJ for the ensemble of
trajectories as in Fig. 1 in the full range J; = (0,1).
(a) Transformed quantity (AJ)", Eq. (3.7): solid curve
is theory (3.8) shifted upwards by 20% to be seen; ho-
rizontal line is empirical upper bound 2(AJ)™ /e ~ 150
in the region where there is as yet no theory; crossover
action Jero =~ 0.1, (b) Actual AJ with correct
signs: oblique straight line is empirical lower bound
AJ > —J; (see text)

Since in this paper the properties of the single sepa-
ratrix crossings are considered we need some statisti-
cal ensemble of trajectories before to turn to statistical
numerical experiments. As the motion driven by sepa-
ratrix crossing is known to be ergodic, or at least very
close to that, within the crossing domain it would be
naturally to make use of the ergodic ensemble. In this
case, the distribution of the crossing parameter M in
Eq. (3.1), which determines all the statistical properties
of the single separatrix crossing, was shown to be ho-
mogeneous [9, 23]. Particularly, the two first moments
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Fig.3. Distribution p(M) in number of crossings per

bin: ¢ 0.01; Jero = 0.215. Top to bottom:

(i) M = Muin, J; = (0.3,1), diffusive region, 6928

crossings, 100 bins; (ii) same for M = M3, 7312 cross-

ings; (iii) M = Ms, J; = (0,0.2), ballistic region, 1634
crossings, 50 bins

of the M-distribution are
p1 = ((M))

p2 = (@%(M))

0,
127

(4.1)

Both numerical values hold in the diffusive region only.
Moreover, it is insufficient to fix initial Jy even for the
full range of 6y = (0,27). For M-distribution were ho-
mogeneous the width of initial distribution AgJy must
exceed some critical value given by a simple approxi-
mate relation

Dodo | VI-T§ (8§ )
Jo Jg’ €4\/1 — Jél
Jgro Jg
~ J—g’ In < E) . (42)

This relation is obtained from the condition that the
initial strip AgJp is transformed in such a strip near
unstable fixed point (see Eq. (3.4)) which provides the
full range of parameter M = (0,1). In most of our sta-
tistical numerical experiments we used the full range of
Jo =(0,1).

In Fig. 3 the M-distribution is shown for both def-
initions of this parameter.

Two upper distributions in the diffusive region are
fairly homogeneous within statistical fluctuations. Un-
like this, the lower one in ballistic region shows a clear
slope which mechanism remains unclear.
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The statistical properties we studied are characte-
rized by the two first moments of the distribution func-
tion in AJ (see Eq. (3.1)) defined as follows

(AT} = (&)%) = F(J)pz =
- (% - 1) K2, (4.3)
(AJ)1 = (AJ) = % <(A;) ) _ et

Both analitical expressions are valid in the diffusive re-
gion only. Moreover, the second one cannot be deduced
from the existing first-order theory as (AJ) ~ € is
a second-order effect. Instead, one can use the well-
known relation between the two moments (see, e.g.,
Ref. [3]) which generally holds true for a chaotic Hamil-
tonian system (for discussion see Ref. [2]). This relation
as well as the second-order moment (AJ), which may
seem to be negligible at the first glance, are in fact
very important for derivation of the correct diffusion
equation
of(J,7) 0 D(J) o0f
or  aJ 2 8J
Particularly, this equation entails the relaxation to a
homogeneous steady state (f(J,7) — fs(J) = const)
as it should be for the ergodic system.

In Eq. (4.4) 7 is the discrete time measured in the
number of separatrix crossings, and D(J) = ((AJ)?)
denotes a «diffusion rates [23, 21]. Actually, this is not
the real diffusion rate which includes the correlation be-

(4.4)

tween successive crossings. This may be important in
the problem under consideration according to numeri-
cal data in Ref. [21] (for further discussion see Secion
5 below).

The results of our numerical experiments on the sta-
tistical properties for the single separatrix crossing are
presented in Fig. 4a. We used the same numerical data
as in Fig. 2b which upon ordering in J were averaged
by the standard method of the moving window of width
500 points, or A, J ~ 0.05. The transition from diffu-
sive to ballistic regime is surprisingly sharp, especially
for (AJ); (lower curve). The crossover value

J=Jeo =3 ax1.08 (4.5)

where empirical factor o was found from the plateau

(upper bound) for (AJ)s (upper curve). To this end

we substitute J.., for J in Eq. (4.3) to obtain
vH2 173

(AJ)s < F5e /3, (4.6)

Remarkably, the empirical data follow with a rea-

sonable accuracy the diffusive theory literally down to
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Fig.4. Statistics of 10 separatrix crossings; window
width A, J = 0.05. (a) (AJ)2 (upper thick curve),
and (AJ)1 (lower curve) vs. J for € = 0.001; two
thin solid curves represent the diffusive theory (4.3);
the horizontal line is the empirical upper bound for
2(AJ)2/e =~ 78. (b) Same data for ¢ = 0.001 and
0.01 in ballistic normalization: J = J/e'/3; empirical
upper bound 2(AJ)2 ~ 0.78

~
~

the very crossover. This allowed us to numerically dis-
cern the very small but important first moment, and
even to check its agreement with the theory.

Even though there is as yet no theory for the ballis-
tic regime the underlying physical mechanism of the
transition is rather simple and comprehensible [22].
This transition is determined by the kinetics param-

eter (AJ)
2 €
~ — 1
J J3 <

which is a reduced dynamical scale in J. The latter

KR~

(4.7)
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strong inequality is a necessary condition for the dif-
fusion approximation to the exact integro-differential
kinetic equation to hold. Hence the term diffusive re-
gion for J > Je., ~ €'/3. In the opposite limit (x > 1)
the trajectory jumps over the whole region ~ J in one
separatrix crossing. This is usually called the ballistic
regime.

Since the action J > 0 cannot be negative the
change AJ is necessarily restricted for any J. In bal-
listic region the restriction becomes very strong as the
strict lower bound in Fig. 2b demonstrates. It simply
means that Jy > 0 as well as J;. Also, there exists
the strict upper bound J < 1 but it corresponds to a
very big AJ unless J — 1 is close to the upper border
of separatrix crossing. Near this border there is also
the second ballistic region but its width is very small.
Again, it is determined by the kinetics parameter (4.7)
which now takes the form

(Z&J)Q €
~ ~ , JSi=1-J 4.8
7 7 N (4.8)
whence a new crossover J\"*) ~ ¢2.

In diffusive normalization used in Fig. 44, the quan-
tities 2(AJ)1,2/€ do not depend on ¢ in the diffusive re-
gion but do so in the ballistic domain. Instead, one may
use a different, ballistic, normalization by introducing
a new variable J = .J/e'/3. The result is presented in
Fig. 4b for the two values of €. Instead of Eq. (4.3) we
have now the relations:

The second one is independent of € in the full range
of J. Some difference between two lower curves is ap-
parently due to fluctuations, especially for the smaller
The first relation slightly depends on € but this is
important near the upper border (J ~ 1) only. The
diffusive theory (4.9) is shown in Fig. 4b for ¢ = 0.01
(upper thin curve).

Even though there is as yet no theory for the ballis-
tic region, some statistical properties can be predicted
here from a general consideration. One of those is the
survival probability P(7) for a trajectory to stay in the
ballistic region during a time > 7. Namely, this proba-
bility is expected to decay exponentially

(r) )

with some average survival time (r) ~ 1. This is be-
cause for large jumps of a trajectory across the whole
ballistic region there is a certain probability w ~ 1 for a

K2
4

_ 2

L ays
2.J5

@ng=" (5 (AT (19)

4

€.

T

P(7) ~ exp ( (4.10)
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Fig.5. Survival probability P(7) in ballistic region for

e = 0.001 (circles), and ¢ = 0.01 (crosses); 10* tra-

jectories homogeneously distributed initially over the

ballistic region; straight line is the fit with (r) = 4.35,
w=0.79

trajectory to remain within this region after each sepa-
ratrix crossing. Moreover, the successive probabilities
are expected, for a chaotic motion, to be equal and
statistically independent. This implies the exponential
(4.10) with (r) = —1/Inw independent of e. The latter
is especially clear in the ballistic normalization (4.9).

The results of numerical experiments are presented
in Fig. 5.

Curiously, the diffusion equation (4.4) with con-
stant D = 0.16 (in ballistic normalization, see Fig. 4b)
also leads to the exponential decay (4.10) with the av-
erage survival time

2

(1) ~ Dz~ 5, (4.11)

~
~

where k m/2 is the parameter of the first
(main) eigenfunction of the diffusion equation:
f1(J) cos(kJ). This is surprisingly close to the
empirical value (1) = 4.4 (Fig. 5) in spite of the formal
inapplicability of the diffusion approximation in the

ballistic region!

~
~

5. DISCUSSION

In the present paper, we reported the results of ex-
tensive numerical experiments aimed to the detailed
study of dynamics and statistics of separatrix crossing
in classical model (2.1). Our work was stimulated by
an interesting investigation of the quantum behavior of
this model [15].
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First of all we carefully checked the agreement of
the empirical data with the existing fairly simple first-
order theory [12, 9] and found it surprisingly good,
close in fact to the formal limiting accuracy of the
theory (Fig. 1). Besides, we were able to discern one
second-order effect — the behavior of the first moment
(AJ)(J) — which is beyond the theory but very impor-
tant for the diffusion equation. Our numerical results
confirm the expected relation between the two moments
(Eq. (4.3) and Fig. 4).

On the other hand, we have found that such a nice
agreement crudely breaks down in the ballistic region
J < Juro = €/3 (Fig. 4) which is qualitatively differ-
ent from the complementary diffusive region J > Jepo.
The new regime of separatrix crossing was first noticed
and partly explained in Ref. [22]. It is a peculiarity of
model (2.1) in which pulsating separatrix crosses zero.
In many other models studied numerically (see, e.g.,
Refs. [10, 11, 20, 21]) the authors tended to avoid the
theoretical singularity at J — 0 (3.2). This is more
simple, of course, but less interesting. Particularly, the
largest violation of adiabaticity (A.J ~ €/3) is reached
just in the ballistic region (Fig. 2 and 4).

Even though the dynamical theory in this region
seems to be a hard nut, and has not yet developed
the statistical properties of the motion here look rather
simple. Surprisingly, even a simplified diffusion equa-
tion, which must not hold in the ballistic region, still
allows for some reasonably accurate estimates (Fig. 5).

In the present paper, we consider the dynamics and
statistics of a single separatrix crossing only. Of course,
this is insufficient for the full-scale statistical descrip-
tion of the separatrix crossing. As is well known (see,
e.g., Refs. [20, 21]) the correlations in multiple crossings
are generally very essential. In conclusion of our dis-
cussion we present in Fig. 6 the commulative effect of 4
successive crossing over one period of the perturbation.

Both moments are normalized as follows:
(AD) — (AJp/r (AJE — (A3 = D(r)
where discrete time 7 = 4 is the crossing multiplicity
in this case (see Eq. (4.3)). In the diffusive region
both curves coincide within fluctuations which means

that the correlations, if any, are small over 4 crossings.
This is in agreement with the results in Ref. [21] (for
a different model). Whether they will rise with 7, and
why, is an interesting open question. According to
Ref. [21], they do so but it may depend on the method
of measuring the diffusion rate. In the ballistic region
the correlation effect is strong from the beginning,
especially for the second moment. This is also in
agreement with numerical data in Ref. [22]. According
to data in Fig. 6, the normalized second moment
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Fig.6. The effect of correlation over 4 successive sepa-

ratrix crossings. Two thick wiggly curves show statistics

of the single crossing as in Fig. 4a. Thin wiggly curves

represent the effect of 4-fold crossings; both moments
are normalized (see text)

(«diffusion rates) decreases as D(7) o< 1/4/7. What is
even more important, the size of the ballistic region
grows: Jeqo(7) oc 71/8. An intriguing question is if this
trend will continue? and how far?
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