ЗАПРЕЩЕННЫЕ ОПТИЧЕСКИЕ ПЕРЕХОДЫ МЕЖДУ УРОВНЯМИ ПРИМЕСЕЙ В КРЕМНИИ И ФОСФИДЕ ГАЛЛИЯ

Я. Е. Покровский, О. И. Смирнова, Н. А. Хвальковский

Институт радиотехники и электроники Российской академии наук 103907, Москва, Россия

Поступила в редакцию 9 сентября 1999 г.

Экспериментально оценены сечения поглощения для запрещенных оптических переходов из основного в долгоживущие возбужденные состояния примесей P, As, Sb, In и Ga в кремнии и примеси Te в фосфиде галлия. Полученные результаты позволяют прогнозировать возможность возбуждения длинноволнового стимулированного излучения при инверсном заселении долгоживущих состояний примесей в этих материалах.

PACS: 72.40.+w, 72.80.Cw, 73.50.Pz

1. ВВЕДЕНИЕ

В серии работ (см. [1, 2] и ссылки там же) было установлено, что в полупроводниках со сложной зонной структурой (алмазе, кремнии, германии и фосфиде галлия) у ряда простых донорных и акцепторных примесей существуют глубокие возбужденные состояния, времена жизни τ^* электронов и дырок в которых на много порядков превышают времена жизни свободных носителей заряда τ . Эти состояния отщеплены от основных состояний долин-орбитальным или спин-орбитальным взаимодействиями и имеют ту же четность, что и основные состояния примесей. Поэтому дипольные оптические переходы между долгоживущими возбужденными и основными состояниями (1, 2 и 5 на рис. 1) запрещены. При примесном фотовозбуждении полупроводников, легированных такими примесями, в процессе каскадной релаксации происходит накопление носителей заряда в долгоживущих возбужденных состояниях. В кремнии при низких температурах существенное накопление носителей происходит даже под воздействием фонового излучения комнатной температуры, присутствующего в оптических экспериментах. Заселение возбужденных состояний фоном приводит, в частности, к появлению длинноволновых полос поглощения, связанных с их фотоионизацией (переходы 3, 4 и 6 на рис. 1). Можно ожидать, что большие времена $\tau^* \sim 10^{-3}$ с в кремнии и GaP позволят достигнуть инверсного заселения долгоживущих состояний и возбудить стимулированное ИК-излучение. Здесь существенно, однако, чтобы вероятности излучательных переходов из этих состояний в основное не оказались слишком малыми. Оценить эти вероятности можно по величине сечений оптического поглощения σ для переходов из основного в отщепленные состояния. Это сечение известно лишь для донорной примеси Ві в кремнии ($\sigma \sim 10^{-16}$ см² [3]), у которой накопления электронов в долгоживущих возбужденных состояниях не происходит [1]. Как показало настоящее исследование, у других примесей сечения поглощения для запрещенных переходов оказались значительно меньшими.

2. ЭКСПЕРИМЕНТ

Поглощение исследовалось с помощью фурье-спектрометра ЛАФС-1000. Образцы размещались в гелиевой ванне криостата с кремниевыми окнами. Спектры пропускания регистрировались фотосопротивлениями, располагавшимися за исследуемыми образцами в том же криостате. Коэффициент поглощения k определялся путем нормировки спектров пропускания на спектры ответа фотоприемников и толщину образцов. Использовались фотоприемники из Ge, легированного Sb или Zn, или Si, легированного B, обладавшие высокой чувствительностью соответственно в диапазонах 9–40, 32–50 и 45–70 мэВ. Отметим хорошее согласие результатов в областях перекрытия чувствительности

^{*}E-mail: yaep@mail.cplire.ru

Рис. 1. Оптические переходы с участием долгоживущих возбужденных состояний в полупроводниках со сложной зонной структурой. Возбуждение электронов из основного состояния донора $1S(\Gamma_1)$ в состояния: $1 - 1S(\Gamma_5)$, $2 - 1S(\Gamma_3)$; в зону проводимости С из состояний: $3 - 1S(\Gamma_5)$, $4 - 1S(\Gamma_3)$. Возбуждение дырок из основного состояния акцептора $1S(\Gamma_8)$ в состояние $5 - 1S(\Gamma_7)$; 6 - из состояния $1S(\Gamma_7)$ в валентную зону V

различных приемников. Интенсивность фонового излучения комнатной температуры, проходившего через окна криостата и попадавшего на образцы и фотоприемники, была много выше интенсивности излучения спектрометра. Поэтому именно фон определял концентрации неравновесных носителей заряда в различных состояниях, и это вызывало дополнительное поглощение. Определить величину сечений поглощения для некоторых примесей удалось лишь в сильно легированных (~ 10¹⁷ см⁻³) кристаллах при толщине образцов 1–4 см.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рисунке 2 представлены спектральные зависимости коэффициента поглощения кремния k, легированного донорными примесями Р и As. Там же приведены результаты для примеси Ві из работы [3]. На рисунке видно, что в спектрах наблюдаются резкие пики с энергиями 11.7 и 12.8 мэВ для примеси Р и 21.1, 22.5 мэВ для примеси As. Эти значения соответствуют энергиям запрещенных переходов из основного невырожденного состояния доноров $1S(\Gamma_1)$ в трехкратно $1S(\Gamma_5)$ и двукратно $1S(\Gamma_3)$ вырожденные возбужденные состояния, отщепленные долин-орбитальным взаимодействием [4]. Определенные из рис. 2 сечения поглощения σ для переходов между состояниями $1S(\Gamma_1)$ и $1S(\Gamma_5)$ равны 10^{-18} и $2.5 \cdot 10^{-18}$ см² соответственно для примесей Р и As. На рисунке 2 также видно, что в спектре кремния, легированного As в меньшей концентрации, в области энергий 32-38 мэВ наблюдается ступенеобразная полоса поглощения, соответствующая ионизации долгоживущих возбужденных состо-

Рис. 2. Спектральные зависимости коэффициентов поглощения k кремния, легированного донорами в различных концентрациях: 1 - P, $N = 8 \cdot 10^{16} \text{ см}^{-3}$; 2 - As, $N = 5 \cdot 10^{16} \text{ см}^{-3}$; 3 - As, $N = 2 \cdot 10^{17} \text{ см}^{-3}$; 4 - Bi, $N = 10^{16} \text{ см}^{-3}$ (из [3])

яний, заселенных фоновым излучением (переходы 3, 4 на рис. 1 [1]). При больших концентрациях поглощение в этой полосе становится слишком сильным и удается зарегистрировать лишь начальный участок этой ступени. В длинноволновой части спектров на рис. 2 проявляется также дополнительное поглощение, слабо зависящее от энергии, связанное, по-видимому, с образованием D^- -центров [5]. Нам не удалось определить сечение σ для Sb из-за отсутствия образцов кремния достаточно больших размеров, сильно легированных этой примесью. В спектрах исследованных образцов не было обнаружено заметных особенностей, превышающих уровень шума в области 9-13 мэВ, соответствующей ожидаемой энергии запрещенных переходов для примеси Sb. Отсюда следует, что σ не превышает $10^{-18}~{\rm cm}^2.$

Приведенные результаты показывают, что сечения внутрицентрового поглощения для запрещенных переходов у донорных примесей P, As и Bi в кремнии сильно возрастают по мере увеличения долин-орбитального расщепления 1S-состояния. Величина расщепления связана с отклонением реального потенциала донорной примеси от потенциала точечного электрического заряда. Это отклонение частично снимает вырождение 1S-состояния и, возможно, определяет вклад слабых взаимодействий с излучением, для которых, в отличие от дипольных, электронные оптические переходы с сохранением четности разрешены.

Сечения запрещенного оптического поглощения для переходов в кремнии из основного двукрат-

Рис. 3. Спектральные зависимости коэффициентов поглощения k кремния, легированного акцепторами в различных концентрациях N: $1 - \ln$, $N = 7 \cdot 10^{16}$ см⁻³; 2 - Ga, $N = 2 \cdot 10^{17}$ см⁻³

но вырожденного состояния акцепторов $1S(\Gamma_8)$ в невырожденное возбужденное долгоживущее состояние $1S(\Gamma_7)$, отщепленное спин-орбитальным взаимодействием, оказались существенно меньшими, чем в случае доноров. Для акцепторной примеси В энергия возбуждения дырки в это состояние и его энергия ионизации практически совпадают (23 мэВ [1,4]). Поэтому невозможно выделить вклад селективного возбуждения на фоне сильного поглощения, вызванного ионизацией возбужденного состояния, заселенного фоном. Спектры поглощения кремния с примесями In и Ga приведены на рис. 3. В случае In, согласно [6], поглощения, связанного с запрещенным переходом, следовало ожидать при энергиях 43-44 мэВ. Однако в этой спектральной области нет никаких заметных особенностей. Отсюда следует, что сечение запрещенного перехода для примеси In не превышает 10⁻¹⁸ см². Для примеси Ga в кремнии энергетическое положение уровня $1S(\Gamma_7)$ неизвестно, однако его можно оценить из рис. 3. Действительно, на рис. 3 видна ступенеобразная полоса поглощения, начинающаяся при энергии около 48 мэВ. Это поглощение, известное для ряда других примесей в кремнии [1], естественно связать с ионизацией состояния $1S(\Gamma_7)$ (переходы 6 на рис. 1), заселенного фоновым излучением. Отметим, что в отличие от В и In у примеси Ga в кремнии долгоживущее возбужденное состояние не проявляется в микроволновой прыжковой фотопроводимости [1]. Значительному накоплению дырок в этом состоянии препятствует быстрая релаксация

Рис. 4. Спектральная зависимость коэффициента поглощения k фосфида галлия, легированного Те в концентрации $4 \cdot 10^{17}$ см⁻³. Регистрация фотосопротивлениями: 1 - Ge[Sb]; 2 - Ge[Zn]

возбуждения за счет испускания оптического фонона, энергия которого близка к энергии более высокого состояния $2\Gamma_8$ [4]. Тем не менее некоторое относительно слабое заселение состояния $1S(\Gamma_7)$ при каскадной релаксации возбуждения возможно. Тогда, поскольку известны энергии основного состояния Ga (74 мэВ [4]) и края ступени поглощения (48 мэВ), следует ожидать проявления запрещенного поглощения при энергии около 26 мэВ. На рисунке 3 видно, что в этой спектральной области также нет существенных особенностей. Отсюда можно заключить, что для примеси Ga в кремнии $\sigma < 10^{-18}$ см².

Энергетический спектр донорной примеси Те в GaP исследован в ряде работ (см. [7] и ссылки там же). Он аналогичен спектру простых доноров в кремнии, однако сильное решеточное поглощение, в том числе полоса остаточных лучей в области 40-50 мэВ [8], сильно затрудняет получение достоверных результатов. Согласно [7] энергия ионизации основного состояния $1S(\Gamma_1)$ равна 90.5 мэВ, а возбужденное состояние $1S(\Gamma_3)$ отщеплено от основного на 40.7 мэВ, т.е. попадает в область сильного решеточного поглощения. Состояние с такой энергией вряд ли может быть долгоживущим, поскольку его быстрая релаксация возможна за счет эмиссии оптического фонона. Долгоживущим ($\tau^* = 8 \text{ мc} [2]$) может оказаться состояние $1S(\Gamma_5)$, если его энергия возбуждения лежит вне области остаточных лучей. На рисунке 4 приведена спектральная зависимость коэффициента поглощения пластинки GaP толщиной 0.375 мм, легированной Те. В спектре при энергии 35.1 мэВ проявляется характерный пик, происхождение которого естественно связать с переходом из основного в возбужденное состояние $1S(\Gamma_5)$. Тогда величина сечения поглощения, соответствующая этому переходу, близка к $1.5 \cdot 10^{-17}$ см². На рисунке 4 видно также, что пик наблюдается на фоне сильного непрерывного поглощения, которое, вероятно, связано с возбуждением коротковолновых акустических фононов [3]. Это обстоятельство может явиться препятствием для усиления стимулированного излучения.

4. ЗАКЛЮЧЕНИЕ

Полученные экспериментальные результаты позволяют оценить возможность возбуждения стимулированного ИК-излучения за счет инверсного заселения долгоживущих возбужденных состояний. Кремний, сильно легированный As, может оказаться наиболее перспективным материалом, поскольку в нем запрещенное селективное поглощение сравнительно интенсивно и существенно превышает фоновое (рис. 2). Оценки, сделанные на основании известных соотношений Эйнштейна, показывают, что излучательное время жизни возбужденного состояния $1S(\Gamma_5)$ должно быть близким к 1 с (при $\tau^* \sim 0.5 \, {
m Mc} \, [1]),$ а коэффициент усиления активной среды при инверсном заселении 10^{17} см⁻³ – порядка 0.1 см⁻¹. При квантовом выходе излучения около 10⁻³ возбуждение длинноволнового стимулированного ИК-излучения представляется возможным в резонаторах с высокой добротностью.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 99-02-16078) и программы поддержки ведущих научных школ (проект 96-15-96701).

ЛИТЕРАТУРА

- **1**. Я. Е. Покровский, О. И. Смирнова, Н. А. Хвальковский, ЖЭТФ **112**, 221 (1997).
- Я. Е. Покровский, О. И. Смирнова, Н. А. Хвальковский, ЖЭТФ 114, 2204 (1998).
- W. E. Krag, W. H. Kleiner, and H. J. Zeiger, Proc. X Int. Conf. on the Phys. of Semicond., Cambr., Mass. (1970), p. 271.
- A. K. Ramdas and S. Rodrigues, Rep. Progr. Phys. 44, 1287 (1981).
- 5. Я. Е. Покровский, О. И. Смирнова, Н. А. Хвальковский, Письма в ЖЭТФ 66, 224 (1997).
- 6. W. Scott, Appl. Phys. Lett. 32, 540 (1978).
- 7. W. Scott, J. Appl. Phys. 50, 472 (1979).
- D. A. Kleinman and W. G. Spitzer, Phys. Rev. 118, 110 (1960).