ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОЙ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ МОНОКРИСТАЛЛОВ CuO, Cu_{1-x}Zn_xO и Cu_{1-x}Li_xO МЕТОДОМ ЭПР

В. А. Рыжов, А. В. Лазута, И. А. Киселев, И. Д. Лузянин

Петербургский институт ядерной физики им. Б. П. Константинова Российской академии наук 188350, Гатчина, Ленинградская обл., Россия

Т. И. Арбузова**

Институт физики металлов Уральского отделения Российской академии наук 620219, Екатеринбург, Россия

Поступила в редакцию 27 июля 1999 г.

Представлены результаты изучения динамической магнитной восприимчивости монокристаллов CuO, Cu_{1-x}Zn_xO ($x \approx 1.5\%$) и Cu_{1-x}Li_xO ($x \approx 1\%$). При комнатной температуре исследована ориентационная зависимость спектров ЭПР. Результаты для CuO анализируются в рамках модели квазиодномерного антиферромагнетика (S = 1/2) с анизотропным обменным взаимодействием между спинами Cu²⁺ в цепочках и обменной связью между цепочками при учете одномерной спиновой диффузии и спинонных возбуждений. Полученная оценка ширины линии согласуется по порядку величины с экспериментальными данными. Замещение Cu на Zn почти не меняет спиновую динамику ионов Cu²⁺, как это происходит в слаборазбавленных магнетиках. Допирование литием значительно увеличивает ширину линии ЭПР, что связывается с образованием избыточными дырками быстро релаксирующих спиновых комплексов с ионами меди.

PACS: 75.40.Gb, 76.30.-v, 75.90.+w

1. ВВЕДЕНИЕ

Интерес к исследованию CuO обусловлен тем, что электронные и магнитные свойства этого соединения сходны со свойствами известных недопированных оксокупратов, таких как La₂CuO₄. Подобие свойств является следствием электронного состояния Cu²⁺ (S = 1/2) и эквивалентной кислородной координации меди (четыре атома кислорода, образующие слабоискаженный квадрат). Оксид меди относится к изоляторам (полупроводникам) с переносом заряда [1]. Из транспортных свойств отметим малую подвижность носителей и активационный характер дырочной проводимости [2, 3].

Антиферромагнитный полупроводник CuO имеет моноклинную кристаллическую решетку. В области от $T_{N1} \approx 230$ К до $T_{N2} \approx 212$ К наблюдается геликоидальное магнитное упорядочение, которое при $T < T_{N2}$ сменяется коллинеарной антиферромагнитной структурой с ориентацией спинов вдоль оси *b* кристалла [4, 5]. Особенностью магнитных взаимо-

действий в СuO является наличие цепочек вдоль направления [101] с углом связи (Cu–O–Cu) $\varphi \simeq 146^{\circ}$, обеспечивающим сильный антиферромагнитный обмен $J \approx 800$ К. Углы связи в других направлениях близки к 100°, что приводит к существенно более слабому ферромагнитному обмену $V \approx J/20$ между цепочками [6]. В результате CuO обнаруживает при $T > T_{N1}$ поведение характерное для низкоразмерных магнетиков: широкий максимум $\chi(T)$ при $T \approx 540$ К [7,8] и доминирующий характер антиферромагнитных флуктуаций вдоль направления цепочек [9].

Магнитный резонанс основной фазы CuO исследовался в одной работе на порошковом образце [10]. Полуширина линии $\triangle H_{1/2} \approx 8$ кЭ слабо зависела от температуры при $T_{N1} \leq T \leq 430$ К. Отклонение формы линии от лоренцевой на крыле, $H-H_f \geq 2 \triangle H_{1/2}$ ($f \approx 45$ ГГц), интерпретировалось как проявление одномерных эффектов. Однако, как мы увидим, этот вывод нельзя считать окончательным.

Следует подчеркнуть, что в родоначальниках ВТСП-соединений (недопированных купратах), сиг-

^{*}E-mail: ryzhov@omrb.pnpi.spb.ru

^{**}E-mail: magsemi@ifm.e-burg.su

нал ЭПР не наблюдается [11]. Причины этого явления не вполне ясны, так как оценки скоростей релаксации однородной намагниченности, например в La₂CuO₄, основанные на известных величинах анизотропных и изотропных обменных взаимодействий, приводят к вполне наблюдаемым ширинам [12]. Возможный дополнительный канал релаксации — модуляция фононами анизотропного взаимодействия Дзялошинского—Мориа, что может существенно уширить линию ЭПР при высоких температурах [13]. В этом отношении доступность резонансного исследования CuO делает его достаточно уникальным соединением в классе оксидов меди.

Интересной является возможность допирования CuO литием до 4% («зарядовое» допирование). В соединении $Cu_{1-x}Li_xO$ ионы Li^+ , замещая Cu^{2+} , вводят дополнительные дырки в матрицу CuO, что приводит к увеличению проводимости, не меняя ее полупроводникового характера [3]. Допирование вызывает некоторое понижение T_N до значения $T_N \approx 183$ К при x = 3.7% [14, 15]. По данным ядерного квадрупольного резонанса и ЯМР не обнаружено влияния такого замещения на спиновую динамику Cu²⁺ в парамагнитной фазе. Существенные изменения происходят в антиферромагнитной области, где в допированных образцах наблюдается сильный максимум в температурной зависимости скорости ядерной спиновой релаксации, обусловленный локализацией избыточных дырок [14]. Отметим, что аналогичные качественные особенности обнаружены в поведении допированного литием купрата La₂CuO₄ [16]. В CuO также возможно замещение Cu атомами Zn. Ион Zn^{2+} имеет S = 0, так что такое «спиновое» допирование эквивалентно появлению вакансии в антиферромагнитной матрице. В антиферромагнетике La₂CuO₄ данное замещение приводило к эффектам, характерным для поведения разбавленного магнетика. Исключение составляла область низких температур T < 100 K, где в спектрах ядерного квадрупольного резонанса наблюдались особенности, интерпретируемые как кооперативное замерзание локальных магнитных моментов, индуцируемых цинком на орбиталях Cu [17]. В CuO изучалось влияние допирования цинком только на статическую магнитную восприимчивость [15].

В данной работе выполнены резонансные исследования монокристаллов CuO, Cu_{1-x}Zn_xO ($x \approx 1.5\%$) и Cu_{1-x}Li_xO ($x \approx 1\%$) при комнатной температуре. Изучены ориентационные зависимости спектров, которые с хорошей точностью описывались формулой Лоренца в CuO, несколько хуже в оксиде меди, допированном цинком и удовлетворительно при допировании литием. Показано, что особенностью CuO, которая приводит к лоренцевой линии, несмотря на квазиодномерный характер магнетика, является достаточно сильная межцепочечная связь. Определены скорости спиновой релаксации и значения *g*-факторов. Эти результаты являются основой для исследования влияния допирования на спиновую динамику CuO.

2. МЕТОДИКА ЭКСПЕРИМЕНТА И РЕЗУЛЬТАТЫ

Исследовался монокристалл CuO, взятый из одной партии с ранее изучавшимися в работе [8]. По рентгеновским данным кристалл является однофазным и имеет моноклинную структуру C2/c. Параметры решетки и статическая восприимчивость кристалла соответствуют приведенным в [8]. Масса кристалла 35.7 мг, размеры приблизительно $1 \times 2 \times 4.2$ мм³. Параметры решетки и статическая восприимчивость двух других образцов Cu_{1-x}Li_xO ($x = 1\%, m \approx 6.4$ мг, $1 \times 1 \times 2$ мм³) и Cu_{1-x}Zn_xO ($x = 1.5-2\%, m \approx 4.8$ мг, $1 \times 1.2 \times 1.5$ мм³) соответствуют описанным в работе [15]. Все монокристаллы имели форму призмы с параллелограммом в поперечном сечении, ось *с* направлена вдоль ее длинного ребра.

Динамическая магнитная восприимчивость образцов исследовалась методом ЭПР. Была получена ориентационная зависимость восприимчивости при комнатной температуре. В экспериментах использовался спектрометр X-диапазона ($f \approx 8.37 \, \Gamma\Gamma\mu$), разработанный для регистрации широких дипольных магнитных переходов и холловской проводимости на данной частоте [18]. Основные особенности спектрометра, позволяющие наблюдать широкие линии ЭПР, можно суммировать следующим образом.

1. В спектрометре используется цилиндрический двухмодовый балансный резонатор с типом колебаний TE_{111} [19]. Статическое магнитное поле **H** направлено по оси цилиндра (ось z). Исследуемый образец помещается на торце резонатора. На него действует линейно поляризованное переменное поле $\mathbf{h}(t)$ (ось x), перпендикулярное **H**. Плоскость приема (ось y) перпендикулярна плоскости возбуждения, и получаемый сигнал $M_y = \chi_{yx} h(t)$ пропорционален χ_{yx} — недиагональному элементу тензора магнитной восприимчивости, т.е. регистрируется поворот плоскости поляризации СВЧ-колебаний в резонаторе. В таком резонаторе при условии его вырождения по частоте (независимость частоты его собственных колебаний от поворота плоскости их поляризации) достигается глубокая частотно-независимая развязка (≥ 40 дВ) моды приема от моды возбуждения. Это позволяет использовать СВЧ-генератор с большой колебательной мощностью ($P \approx 1$ Вт) без проявления его частотных и амплитудных шумов на входе приемника и тем самым повысить чувствительность спектрометра (в условиях далеких от насыщения $\chi_{min} \propto P^{-1/2}$ [20, 21]) по сравнению с традиционным (мощность клистрона ≤ 50 мВт).

2. В спектрометре используется периодическая развертка статического магнитного поля и синхронное с ней накопление сигнала. Большая амплитуда развертки обеспечивает прохождение области максимума линии ЭПР и позволяет регистрировать сигнал максимально возможной величины при каждом сканировании поля.

Напомним, что в традиционном спектрометре с модуляцией статического магнитного поля регистрируется или первая производная линии ЭПР, или ее вторая производная (при использовании двойной модуляции). Оптимальное отношение сигнал/шум (максимум величины производной) достигается в условиях приблизительного равенства амплитуды модуляции полуширине линии ЭПР [20, 21]. В случае широких линий это условие не выполняется, что приводит к потере чувствительности.

Следует остановиться еще на одном важном обстоятельстве. При существующей геометрии полей в цилиндрическом резонаторе с типом колебаний *TE*₁₁₁ со сдвинутыми на 90° модами возбуждения и приема к повороту плоскости поляризации отраженной электромагнитной волны приводит также эффект Керра на проводящих основаниях резонатора [18, 22]. Действительно, поскольку поле Н, направленное по оси резонатора, перпендикулярно СВЧ-токам моды возбуждения, текущим по его торцам, на торцах появится холловский СВЧ-ток, повернутый на 90° относительно токов моды возбуждения и дающий сигнал, линейно зависящий от величины Н. Такой сигнал действительно наблюдался в эксперименте, причем его величина согласовалась с теоретической оценкой [18]. Соответственно, для определения отклика образца необходимо вычитать сигнал от материала резонатора. Для вычисления нужного при вычитании весового множителя использовался образец-свидетель — поликристаллический нитроксильный радикал (q = 2.0055, $\Delta H \approx 40$ Э), содержащий известное количество спинов. Точность вычитания сигнала от резонатора коррелирует с точностью вычитания сигнала свидетеля. Он практически отсутствует на разностных спектрах, приведенных ниже на рис. 1–4, что свидетельствует о хорошей точности вычитания. К появлению сигнала, линейно зависящего от статического поля, приводит также эффект Холла в образце, если он является проводящим и в нем присутствуют СВЧ-токи.

Важной особенностью исследуемых соединений является большая величина их диэлектрической проницаемости на используемой частоте; так, $\varepsilon \approx 10$ в CuO для $f = 9 \Gamma \Gamma \mu$ [2]. При этом длина волны поля внутри образца оказывается близкой к его размерам. Кроме того, из-за электропроводности образца величина ε соизмерима с $4\pi\sigma/\omega$. Эти два обстоятельства могут приводить к заметному отличию фазы переменного магнитного поля внутри образца от фазы поля вне образца, что необходимо учитывать при количественном анализе. Особенно важен этот вопрос в случае широких, фактически нерезонансных линий (скорость спиновой релаксации $\Gamma > 2\pi f$), когда из-за слабого различия *H*-зависимостей $\operatorname{Re} \chi_{yx}(\omega, H)$ и $\operatorname{Im} \chi_{yx}(\omega, H)$ практически невозможно настроиться на регистрацию одной из составляющих спектра по форме сигнала, и для настройки используется сигнал свидетеля. Рассмотрим его подробнее.

Величина волнового вектора в среде

$$k_i = \frac{\omega\sqrt{\varepsilon}}{c}\sqrt{1+i\frac{4\pi\sigma}{\varepsilon\omega}}.$$

Для $\varepsilon \approx 10$ и $\sigma = 10^{-2}$ Ом⁻¹·см⁻¹, соответствующих СuO при T = 300 K [2], для f = 8.34 ГГц имеем

$$k_i = \frac{1}{0.18} \sqrt{1 + 0.22i} \, \mathrm{cm}^{-1}.$$

Считалось, что магнитная проницаемость $\mu \approx 1$, поскольку восприимчивость CuO мала, $4\pi\chi \sim 10^{-3}$ [8]. В образце с $l \geq |k_i|^{-1} \approx 2$ мм (этот масштаб близок к размерам исследуемого кристалла $l \approx 2-4$ мм) магнитное поле распределено неоднородно и приобретает фазовый сдвиг по отношению к внешнему полю из-за комплексности k_i . Зная распределение поля $\mathbf{h}(\mathbf{r})$, можно найти индуцируемую им намагниченность, которая, в силу малости восприимчивости, в первом порядке по χ_{ii} равна

$$m_i(\mathbf{r},\omega) = \chi_{ij}(\omega)h_j(\mathbf{r},\omega).$$

Здесь используется не зависящий от **r** однородный предел для χ_{ij} среды, так как размер магнитных неоднородностей в системе, связанный, например, с корреляционным радиусом спиновых флуктуаций, пренебрежимо мал по сравнению с макроскопическим масштабом $|k_i|^{-1}$ изменения поля. Из сравнения с результатом для однородного поля ясно, что эффективное поле **h**^{*}, определяющее намагниченность образца, имеет вид

$$\mathbf{h}^*(\omega) = \sum_{\mathbf{r}} \mathbf{h}(\mathbf{r}, \omega) V_0^{-1},$$

где V₀ — объем образца.

Для количественных оценок определим \mathbf{h}^* для шарика радиуса a, находящегося в переменном внешнем магнитном поле в условиях, когда $\lambda \gg a$, но $|k_i|a \sim 1$. Распределение поля в этом случае известно [23], и для $\mathbf{h}^* \parallel \mathbf{h}$ (очевидное следствие симметрии) находим

$$h^*(k_i a) = \frac{3}{(k_i a)^2} \left[1 - (k_i a) \operatorname{ctg}(k_i a) \right] h$$

В однородном пределе, $|k_i|a \ll 1$, имеем $h^* = h$, тогда как при $|k_i|a \ge 1$ в зависимости $h^*(k_ia)$ появляются резонансные особенности, обусловленные дифракцией на шарике. Используя определенный выше волновой вектор $k_i = k'_i + ik''_i$ ($k'_i \approx 5.6 \text{ см}^{-1}$, $k''_i/k'_i \approx 0.1$), для первого резонанса, $k'_ia = \pi/2$, который возможен при $a \ge 0.28$ см, получаем Im $h^*/\text{Re}\,h^* \simeq 0.25$. Эта оценка определяет порядок величины сдвига фазы внутреннего поля, который можно ожидать для образца с $k'_i l \sim 1$.

В эксперименте фаза опорного напряжения устанавливалась так, что регистрировалась компонента сигнала свидетеля, пропорциональная $\operatorname{Re} \chi_{yx}(\omega, H)$. Для вычисления истинной фазы магнитного поля внутри образца в качестве внутреннего свидетеля использовался слабый сигнал от одиночных центров Cu²⁺, который, как видно из приведенных ниже рис. 1-3, присутствовал в спектрах CuO и $Cu_{1-x}Li_xO$. Одиночные центры в монокристаллах CuO, дающие вклад в статическую восприимчивость при низких температурах, исследовались методом ЭПР ранее [24]. Вычисленная таким образом фаза переменного поля внутри образца отличалась от значения $\varphi = 0$, соответствующего сигналу пропорциональному $\operatorname{Re} \chi_{yx}$. В результате отклик являлся смесью $\operatorname{Re}\chi_{yx}$ и $\operatorname{Im}\chi_{yx}$ с весами соответственно $\cos \varphi$ и $\sin \varphi$. Именно этот эффект приводил к гораздо более сильному отличию формы линии от лоренцевой при $H < \omega_r$ по сравнению с областью $H > \omega_r$, зарегистрированному в работе [10] и отнесенному к влиянию анизотропии g-фактора. Анализ показывает, что небольшая дисперсия позволяет описать наблюдаемый в этой работе спектр во всем диапазоне изменения статического поля, оставаясь в рамках лоренцевой формы.

В экспериментах одна из кристаллических осей образца ориентировалась вдоль статического поля **H**, две другие оси поочередно ориентировались вдоль переменного поля $\mathbf{h}(t)$. Таким образом, при ориентации каждой из осей кристалла параллельно статическому полю регистрировались два спектра (всего шесть спектров). Для устранения возможной примеси к сигналу симметричной компоненты тензора восприимчивости $\chi_{xx} \propto H^2$ использовалась нечетность $\chi_{yx}(\omega, H)$ по H: спектры исследуемых

образцов записывались также для инверсной ориентации статического поля **H**, а затем вычитались из спектров, полученных для «прямой» ориентации **H**. Чувствительность спектрометра достаточна для наблюдения сигнала от газообразного кислорода воздуха, содержащегося в резонаторе [18], поэтому все спектры снимались в условиях продувания резонатора газообразным аргоном или азотом.

На рис. 1-4 представлены спектры исследуемых образцов, полученные путем вычитания сигнала, обусловленного эффектом Холла в материале резонатора. На рис. 1 приведены сигналы от монокристалла СиО, ось b которого ориентирована вдоль статического поля **H**, в случаях $\mathbf{a} \parallel \mathbf{h}(t)$ и $\mathbf{c} \parallel \mathbf{h}(t)$. Там же приведены теоретические спектры, полученные в результате подгонки к экспериментальным (процедура будет описана ниже). На рис. 2 приведены спектры для CuO и результат аппроксимации для другой ориентации кристалла относительно статического поля, с || Н. На рис. 3 и 4 представлены экспериментальные и теоретические спектры для монокристаллов соответственно $Cu_{1-x}Li_xO$ и $Cu_{1-x}Zn_xO$. Ориентация кристаллов такая же, как для CuO на рис. 1. Подобные спектры были получены и при других ориентациях образцов. Параметры спектров, определенные в результате подгонки, приведены в подписях к рисункам.

3. ОБСУЖДЕНИЕ

Рассмотрим динамическую восприимчивость анизотропного магнетика. Выражение для его поперечной по отношению к **H** динамической восприимчивости, справедливое в интервале изменения H от H = 0 до $g\mu H \gg \Gamma$, можно найти, используя результаты работы [25]. Поля удобно направить вдоль главных осей (**a**, **b**, **c**) тензора $\hat{\chi}$. Уравнения для намагниченности $\mathbf{m}(t)$, индуцированной линейно поляризованным переменным полем $\mathbf{h}(t)$ в случае **H** || **a** и **h** || **b** (с очевидной заменой индексов для других ориентаций) имеют вид

$$\frac{\partial m_b(t)}{\partial t} = i\omega_{bc}m_c(t) - \Gamma_b\left[m_b(t) - \chi_b h(t)\right], \quad (1)$$

$$\frac{\partial m_c(t)}{\partial t} = i\omega_{cb}m_b(t) - \Gamma_c m_c(t) - M_a \mu \frac{g_b g_c}{g_a} h(t), \quad (2)$$

$$\omega_{cb} = -i\mu g_b g_c M_a (g_a \chi_b)^{-1}, \quad \omega_{bc} = -\omega_{cb} \chi_b \chi_c^{-1}. \quad (3)$$

Здесь M_a и χ_b — статические намагниченность и восприимчивость; Γ_a , Γ_b — скорости спиновой релаксации; g_i — g-факторы; индексы соответствуют

Рис.1. Экспериментальные (сплошная кривая) и теоретические (штрихи) спектры ЭПР монокристалла CuO (T = 300 K, H || b): a - h || a; $\delta - h$ || c. Аппроксимация описана в тексте. Получены следующие параметры спектров: $g = 1.85 \pm 0.16$; $\Gamma_1 = 4.83 \pm 1.50$ кЭ; $\Gamma_2 = 5.05 \pm 1.50$ кЭ. Сдвиги фазы определены из сигналов одиночных центров Cu²⁺ (пики на рисунках): $\varphi_1 = -6^\circ \pm 10^\circ$; $\varphi_2 = 30^\circ \pm 11^\circ$. Угловые коэффициенты прямой, обусловленной вкладом в сигнал эффекта Холла: $k_1^{Hall} = -0.87 \pm 0.03$; $k_2^{Hall} = -0.28 \pm 0.01$

Рис.2. То же, что на рис. 1, при Н || с: a - h || a; $\delta - h$ || b. Полученные параметры: $g = 2.20 \pm 0.15$; $\Gamma_1 = 7.20 \pm 1.45$ кЭ; $\Gamma_2 = 7.15 \pm 1.45$ кЭ; $\varphi_1 = 23^\circ \pm 10^\circ$; $\varphi_2 = 19.2^\circ \pm 9.4^\circ$; $k_1^{Hall} = 0.00 \pm 0.01$; $k_2^{Hall} = 0.00 \pm 0.01$

осям $\hat{\chi}$. «Релаксационное» слагаемое в уравнении (1) существенно влияет на зависимость $\hat{\chi}(\omega)$ от Hв случае широких линий ($\omega \sim \Gamma_i$). Его вид диктуется известным выражением для $\hat{\chi}(\omega, H)$ изотропного магнетика и формулой для анизотропной ситуации при H = 0. Из уравнений (1), (2) находим выражение для $\chi_{cb}(\omega, H)$, определяющее $m_c(t)$ для $h(t) \propto \exp(-i\omega t)$:

$$\chi_{cb}(\omega, H) = -\chi_{cb}(\omega, -H) = -i\omega M_a \mu \frac{g_b g_c}{g_a} \times \left[\omega^2 - \Omega_a^2(H) + i\omega (\Gamma_b + \Gamma_c) - \Gamma_b \Gamma_c \right]^{-1}, \quad (4)$$

$$\Omega_a^2 = \omega_{cb}\omega_{bc} = \left(\mu \frac{g_b g_c}{g_a}\right)^2 \frac{M_a^2}{\chi_b \chi_c}.$$
 (5)

В СиО небольшая анизотропия χ при комнатной температуре скорее всего связана с анизотропией g-фактора [26, 27], так что $\tilde{\chi} = \chi_i/g_i^2$ не будет зависеть от ориентаций. В условиях эксперимента $M \propto H$, и формула (5) упрощается: $M_a = \chi_a H$, $\Omega_a = g_a \mu H$. Последнее соотношение существенно облегчает определение значений g-факторов. Полученные выражения использовались при аппроксимации экспериментальных спектров.

Приведенные формулы для отклика при $\mathbf{H} \parallel \mathbf{a}$ показывают, что в прецессию вовлекаются компоненты намагниченности вдоль **b** и **c**. Поэтому аппроксимация проводилась одновременно для двух спектров, полученных при фиксированной ориентации **H** и переменном поле, поочередно направляе-

Рис. 3. То же, что на рис. 1 для монокристалла $Cu_{1-x}Li_xO$. Полученные параметры: $g = 2.20 \pm 0.15$; $\Gamma_1 = 13.7 \pm 1.5$ кЭ; $\Gamma_2 = 15.24 \pm 1.80$ кЭ; $\varphi_1 = 12.7^\circ \pm 9.4^\circ$; $\varphi_2 = 13.6^\circ \pm 9.1^\circ$; $k_1^{Hall} = -0.033 \pm 0.030$; $k_2^{Hall} = -2.85 \pm 0.06$

Рис. 4. То же, что на рис. 1 для монокристалла $Cu_{1-x}Zn_xO$. Полученные параметры: $g = 2.20 \pm 0.15$; $\Gamma_1 = 5.27 \pm 1.50$ кЭ; $\Gamma_2 = 5.24 \pm 1.50$ кЭ; $k_1^{Hall} = 0.00 \pm 0.02$; $k_2^{Hall} = -1.66 \pm 0.06$. Сдвиги фазы определены вместе с другими параметрами при подгонке: $\varphi_1 = 46.4^\circ \pm 6.5^\circ$; $\varphi_2 = 21^\circ \pm 10^\circ$

мом вдоль двух других осей. При этом, как уже указывалось, учитывался сдвиг фазы φ переменного поля внутри образца по отношению к фазе поля вне образца, что приводит к появлению примеси компоненты Im χ_{yx} с весом sin φ к сигналу Re χ_{yx} , взятому с весом соз φ . Для кристаллов CuO и Cu_{1-x}Li_x этот фазовый сдвиг определялся по сигналу от одиночных центров Cu²⁺, присутствовавшему в спектрах, и учитывался как фиксированный параметр. Для Cu_{1-x}Zn_xO, где такой сигнал, как видно из рис. 4, не наблюдался, фазовый сдвиг являлся подгоночным параметром. Значения фазового сдвига φ зависели от ориентации кристалла и при аппроксимации двух спектров соответственно определялись два значения, φ_1 и φ_2 .

В теоретический спектр при подгонке добавлялся также линейный по полю *H* вклад, обусловлен-

ный эффектом Холла в образце, который для каждого из двух обрабатываемых спектров записывался в виде $k_i^{Hall} H/H_{max}$, где j = 1,2 и H_{max} — максимальная величина статического поля, достигаемая в эксперименте. Полученные значения скоростей спиновой релаксации для каждой пары спектров являются неразличимыми, поскольку входят симметрично в выражение (4) (мы обозначаем их Γ_1 и Γ_2). Кроме того, их величины практически совпадали при фиксированной ориентации Н. Эти два фактора затрудняли определение Γ_i (i = a, b, c) из простого сравнения скоростей при разных ориентациях поля. В таких условиях эффективным оказался переход к величинам $\Gamma_{ik} = (\Gamma_i + \Gamma_k)/2$ для каждой ориентации внешнего поля, из которых и удалось определить значения Γ_i для CuO:

$$\Gamma_c = 4.0 \pm 1.5 \text{ k}\Theta, \quad \Gamma_a = 6.0 \pm 1.5 \text{ k}\Theta,$$

$$\Gamma_b = 8.5 \pm 1.5 \text{ k}\Theta,$$

для $Cu_{1-x}Zn_xO$:

$$\Gamma_c = 3.5 \pm 1.6 \text{ k}\Theta, \quad \Gamma_a = 7.0 \pm 1.5 \text{ k}\Theta,$$

$$\Gamma_b = 8.0 \pm 1.5 \text{ k}\Theta,$$

для Cu_{1-x}Li_xO:

Из этих результатов видно, что для CuO выполняется соотношение $\Gamma_a \approx \Gamma_c < \Gamma_b$. Приведем также значения *g*-факторов, найденные в результате подгонки для CuO:

 $g_a=2.26\pm0.14, \quad g_c=2.20\pm0.15, \quad g_b=1.85\pm0.16,$ для $\mathrm{Cu}_{1-x}\mathrm{Zn}_x\mathrm{O}$ и $\mathrm{Cu}_{1-x}\mathrm{Li}_x\mathrm{O}$:

$$g_a \approx g_b \approx g_c = 2.20 \pm 0.15.$$

Отметим, что вычисленные из полученных для CuO данных средние значения *g*-фактора и скорости спиновой релаксации согласуются с полученными в работе [10].

Анализируя спиновую динамику CuO в однородном пределе, следует учитывать квазиодномерный характер этого антиферромагнетика при T = 300 К. Трехмерное критическое поведение, обусловленное межцепочечным изотропным обменом $V \approx J/20 \approx 40$ K, наблюдается в парамагнитной фазе при меньших температурах в интервале $T_N = 230 \text{ K} \le T \le 250 \text{ K} [14]$. Релаксация однородной намагниченности в CuO определяется достаточно сильной анизотропией обменного взаимодействия в цепочках, $J^{an} \approx 10$ К [5]. Несмотря на то что $J^{an} \ll J$, это взаимодействие, вообще говоря, нельзя рассматривать по теории возмущений в одномерных магнетиках. Однако в СиО достаточно сильная связь между цепочками, $V > J^{an}$, ограничивает область чисто одномерного поведения. После адекватного учета данного взаимодействия можно использовать теорию возмущений по J_{an} для определения низкочастотной динамики. Подчеркнем, что нам необходимо установить влияние V на динамику флуктуаций, существенное и при $T \gg J$, а не на статическое поведение. Последнее можно сделать в первом приближении в рамках теории среднего поля [28].

Перед тем как анализировать этот вопрос, остановимся на характере динамики одномерного изотропного антиферромагнетика со спином S = 1/2. В этом магнетике при T < J имеются две области с разным динамическим поведением: гидродинамическая, где импульс вдоль цепочки $q_{\parallel}a_{\parallel} \ll 1$ $(a_{\parallel} - \text{расстояние между спинами в цепочке}), и об$ ласть антиферромагнитных флуктуаций в окрестности импульса $Q = \pi/a_{\parallel}$ [29, 30]. С теоретической точки зрения, вопрос о типе гидродинамических возбуждений при $T \neq 0$ остается открытым. Метод, использующий фермионное представление для спиновых операторов с линеаризованным спектром и последующей бозонизацией, при $T \ll J$ приводит к распространяющейся гидродинамической моде с не зависящим от Т линейным спектром [30, 31]. Данный вывод, очевидно, не соответствует традиционному предположению о существовании спиновой диффузии. С другой стороны, результат анализа, основанного на анзаце Бете, совместим с такой гипотезой [32]. Последние работы, использующие численные методы, также дают противоречивые результаты. Расчеты [33, 34] свидетельствуют в пользу существования диффузионной моды, тогда как в работе [35] сделан вывод о более сложном поведении. В то же время данные ЯМР и ЭПР надежно подтверждают существование спиновой диффузии в одномерных антиферромагнетиках с полуцелым спином, например, в Sr_2CuO_3 (S = 1/2) [36] и $(CH_3)_4$ NMnCl₃ (S = 5/2) [37]. Интересно, что диффузионная мода присутствует и в одномерном антиферромагнетике $AgVP_2S_6$ с S = 1 [38], где в отличие от одномерных антиферромагнетиков с полуцелым спином основное состояние имеет щель. Антиферромагнитные флуктуации описываются спинонными возбуждениями, для которых известен явный вид парного коррелятора при $T \ll J$ [39], подтвержденный данными по рассеянию нейтронов в одномерном антиферромагнетике KCuF_3 с S = 1/2 [40] и ЯМР в Sr₂CuO₃ [36].

Таким образом, анализируя Γ , следует принимать во внимание существование спиновой диффузии, спинонных возбуждений и учитывать взаимодействие цепочек. Для определения Γ мы воспользуемся теорией взаимодействующих мод, включающей расцепление четырехспинового коррелятора на произведение парных [37]. Этот подход учитывает простейшие процессы, дающие вклад в Γ . Хотя возможности этого метода применительно к квазиодномерному магнетику не выяснены до конца, он позволяет получить согласующиеся с экспериментом выражения для Γ при T > J в одномерном антиферромагнетике с анизотропией, обусловленной дипольными силами и диффузионной гидродинамикой в условиях, когда обменная связь между цепочками пренебрежимо мала [37]. Поскольку с увеличением размерности точность данного подхода улучшается, мы ожидаем, что в его рамках можно надежно определить, по крайней мере, порядок величины Γ в случае, когда существенно взаимодействие цепочек. Результат теории возмущений по J_{an} для $\Gamma_i(i = a, b, c)$ имеет вид [41]

$$\Gamma_i = \frac{1}{4} G_0^{-1} \sum_{\mathbf{q}} \left[J_i^{an}(\mathbf{q}_{\parallel}) \right]^2 \frac{1}{\pi} \int_{-\infty}^{\infty} \left(\frac{\operatorname{Im} G(\mathbf{q}, x)}{\operatorname{sh}(x/2T)} \right)^2 dx.$$
(6)

Здесь $(J_i^{an}(\mathbf{q}_{\parallel}))^2 = [J_b(\mathbf{q}_{\parallel}) - J_c(\mathbf{q}_{\parallel})]^2$ для i = a и т. д., $J_j(\mathbf{q}_{\parallel})$ — обменное взаимодействие вдоль оси j в цепочке, $G(\mathbf{q}, x)$ — парная спиновая функция Грина, G_0 — статическая функция Грина при q = 0. Величины Γ_i содержат вклады от гидродинамической области (Γ_i^D) и спинонных возбуждений (Γ_i^{sp}) :

$$\Gamma_i = \Gamma_i^D + \Gamma_i^{sp}.$$
 (7)

Рассмотрим сначала Γ_i^D , предполагая существование спиновой диффузии. В одномерном случае вклад в Γ_i от диффузионной моды оказывается сингулярным в области малых импульсов [37]. С этой особенностью связан масштаб обрезания, определяемый взаимодействием, ограничивающим одномерное диффузионное поведение в пределе $q_{\parallel} \rightarrow 0$. В нашем случае это межцепочечная связь. Для учета трехмерных эффектов воспользуемся релаксационным выражением для динамического формфактора G:

$$G(\mathbf{q},\omega) = i\Gamma(\mathbf{q}) \left[\omega + i\Gamma(\mathbf{q})\right]^{-1} G_0, \qquad (8)$$

$$\Gamma(\mathbf{q}) = Dq_{\parallel}^2 + \Gamma_{\perp}(\mathbf{q}_{\perp}). \tag{9}$$

Здесь $\Gamma_{\perp}(\mathbf{q}_{\perp})$ описывает затухание, обусловленное взаимодействием цепочек, \mathbf{q}_{\perp} — импульс в плоскости ортогональной цепочкам. Используя данное выражение, из (6) при условии $x/T \ll 1$ находим

$$\Gamma_i^D = \left(J_i^{an}(0)\right)^2 G_0 T \sum_{\mathbf{q}_\perp} \left(2\left(\frac{D}{a_\parallel}\right)^2 \Gamma_\perp(\mathbf{q}_\perp)\right)^{-1/2}, \quad (10)$$

где в соответствии с гидродинамическим приближением $J_i^{an}(\mathbf{q}_{\parallel})$ взято при $q_{\parallel} = 0$. При $q_{\perp}a_{\perp} \ll 1$ $(a_{\perp} - межцепочечное расстояние)$ мы ожидаем, что $\Gamma_{\perp}(\mathbf{q}_{\perp}) = D_{\perp}q_{\perp}^2$, где $D_{\perp} -$ коэффициент спиновой диффузии в ортогональной цепочкам плоскости. В результате выражение для Γ_i^D оказывается конечным. Для его оценки необходимо найти $\Gamma_{\perp}(\mathbf{q}_{\perp})$. Используя процедуру, аналогичную выводу выражения (6), где $\partial S_q^{\alpha}/\partial t$ определяется взаимодействием V, и формулы (8), (9) для G, находим

$$TG_0 \sum \left[V(\mathbf{q}_{\perp} - \mathbf{p}_{\perp}) - V(\mathbf{p}_{\perp}) \right]^2 \times$$

 $\Gamma_{\perp}(\mathbf{q}_{\perp}) =$

ЖЭТФ, том 117, вып. 2, 2000

$$\times \left(\frac{D}{a_{\parallel}^2} \left[\Gamma_{\perp}(\mathbf{q}_{\perp} - \mathbf{p}_{\perp}) + \Gamma_{\perp}(\mathbf{p}_{\perp})\right]\right)^{-1/2} . (11)$$

Здесь, как в формулах (8) и (10), в качестве статической функции Грина $G_0(\mathbf{q})$ используется $G_0(0)$, так как при $q_{\parallel}a \ll 1$ эта функция не является критической в области $T \ge T_N$. Из этого уравнения, учитывающего только диффузионный вклад от продольной моды, можно определить величину $\Gamma_{\perp}(\mathbf{q}_{\perp})$, которую обозначим $\Gamma_{\perp}^D(\mathbf{q}_{\perp})$. Как мы покажем ниже, влияние спинонов на $\Gamma_{\perp}(\mathbf{q}_{\perp})$ не изменит оценку для Γ_i^D , использующую $\Gamma_{\perp}^D(\mathbf{q}_{\perp})$.

Представив $\Gamma_{\perp}^{D}(\mathbf{q}_{\perp})$ в виде $\Gamma_{\perp}^{D}(\mathbf{q}_{\perp}) = \Gamma_{\perp}^{D}f^{D}(\mathbf{q}_{\perp})$, где $f^{D}(\mathbf{q}_{\perp})$ — безразмерная функция, из уравнения (11) определяем масштаб Γ_{\perp}^{D} :

$$\Gamma_{\perp}^{D} = V \left(\frac{V}{D/a_{\parallel}^{2}}\right)^{1/3} (TG_{0})^{2/3}.$$
 (12)

Этот результат позволяет из (10) получить оценку

$$\Gamma_i^D \sim \left[J_i^{an}(0)\right]^2 (TG_0)^{2/3} \left(V^{2/3} (D/a_{\parallel}^2)^{1/3}\right)^{-1}.$$
 (13)

Заметим, что $\Gamma_i^D/\Gamma_\perp^D \sim [J_i^{an}(0)/V]^2 \approx 6 \cdot 10^{-2}$. Величина Γ_\perp^D определяет границу между одномерным и трехмерным динамическим поведением. В однородном пределе функция Грина при $\omega \ll \Gamma_\perp^D$ имеет характерный для трехмерной динамики лоренцевский вид с затуханием Γ_i . Рассматривая зависимость $\Gamma_\perp^D(\mathbf{q})$ от ω , можно показать, что эта функция убывает с частотой при $\omega \gg \Gamma_\perp^D$. В этом режиме динамический формфактор будет определяться одномерной динамикой. В результате в этой области частот и магнитных полей в спектре ЭПР может наблюдаться характерное для одномерного магнетика отклонение от лоренцевской формы линии [37].

Величины Γ^D_{\perp} и Γ^D_i зависят от коэффициента диффузии D, значение которого, вообще говоря, не определено. Для оценок мы используем классический результат для цепочки:

$$\frac{D}{a_{\parallel}^2} = J\sqrt{\frac{2}{3}\pi S(S+1)},$$

который, видимо, дает нижнюю границу D [36]. Учитывая, что $G_0 \approx (J\pi^2)^{-1}$ [42], при T = 300 К имеем $\Gamma_i^D \sim 0.1$ К и $\Gamma_{\perp}^D \sim 1.7$ К. Сравнительная малость этих величин в значительной мере обусловлена малым множителем $(TG_0)^{2/3} \approx 0.1$. Отметим, что соотношение $\Gamma_{\perp}^D \ll T < J$ обеспечивает существование области $Dq_{\parallel}^2 \gg \Gamma_{\perp}^D$ и выполнение неравенства $\omega/T \ll 1$ (для $\omega \sim \Gamma_{\perp}^D$). Оба эти условия использовались при определении Γ_{\perp}^D . Рассмотрим вклад в Γ от спинонных возбуждений, появляющихся при T < J. Судя по данным рассеяния нейтронов [40], спинонная функция Грина, полученная в области $T \ll J$, сравнительно хорошо описывает эти моды в нашем случае $T/J \approx 3/8$. Для определения Γ^{sp} с точностью до численного множителя достаточно использовать скейлинговое представление для этой функции [34]:

$$G(\tilde{q}_{\parallel},\omega) = \frac{A}{T} \Phi\left(\frac{C\tilde{q}_{\parallel}}{T},\frac{\omega}{T}\right), \qquad (14)$$

где $\tilde{q}_{\parallel} = q_{\parallel} - \pi/a_{\parallel}, C = J\pi/2a_{\parallel}$ — скорость спинонов, A = 0.33 с точностью до логарифмического фактора и $\Phi(0,0) = 1$. Подставив данное выражение в формулу (6) и взяв $J_i^{an}(q)$ при $q = \pi/a_{\parallel}$, с помощью размерной оценки находим $\Gamma_i^{sp} \propto T^{-1}$. Этот результат верен, если интеграл в (6) не является сингулярным в области малых q_{\parallel} и x и не расходится при $Cq_{\parallel} \gg T, \ x \gg T$. Используя явный вид функции G [39], можно убедиться в выполнении этих условий и найти численный множитель. Учитывая, что $|J_i^{an}(\pi/a_{\parallel})| = |J_i^{an}(0)|$, получаем

$$\Gamma_i^{sp} \approx \left[J_i^{an}(0)\right]^2 / T. \tag{15}$$

Здесь численный множитель с хорошей точностью равен единице, поскольку $(A\pi)^2 \approx 1$, где π^2 — множитель от $G_0^{-1} \approx J\pi^2$, и остающийся интеграл близок к единице.

Теория возмущений определенно применима в данном случае, поскольку Γ_i^{sp} определяется тепловыми спинонами с $\omega \sim T$, $C \tilde{q}_{\parallel} \sim T$ и $\Gamma_i^{sp}/T \ll 1$.

Рассмотрим влияние спинонов на поперечные моды, которые, как мы видели, важны при определении Γ_i^D . Используя теорию возмущений по V, аналогично вычислению Γ_i^{sp} и Γ_1^D находим

$$\Gamma_{\perp}^{sp}(\mathbf{q}_{\perp}) \approx \sum_{\mathbf{p}_{\perp}} \left[V(\mathbf{q}_{\perp} - \mathbf{p}_{\perp}) - V(\mathbf{p}_{\perp}) \right]^2 T^{-1}.$$
 (16)

Неравенство $\Gamma_{\perp}^{sp}(\mathbf{q}_{\perp})/T \leq (V/T)^2 \ll 1$ оправдывает подход теории возмущений при T = 300 К. Оценивая величину $\Gamma_{\perp}^{sp}(\mathbf{q}_{\perp})$ при $q_{\perp}a_{\perp} \sim 1$, определяющую Γ_{i}^{D} в выражении (10), находим $\Gamma_{\perp}^{sp} \sim V^2/T \approx 5$ К при T = 300 К. Поскольку $\Gamma_{\perp}^{sp} \sim \Gamma_{\perp}^{D}$, спинонный вклад не меняет порядок величины полученной выше оценки для Γ_{i}^{D} .

Отметим, что процедура расцепления четырехспинового коррелятора на две спинонные моды, использовавшаяся при определении Γ_i^{sp} и Γ_{\perp}^{sp} , исчерпывает спинонный вклад в эти величины, так как спиноны являются свободными. Учитывая, что $\Gamma_i^{sp} \sim 0.33$ K, окончательно имеем

$$\Gamma_i = \Gamma_i^D + \Gamma_i^{sp} \sim 3.5 \text{ k}\Theta. \tag{17}$$

Здесь оценка по порядку величины возникает главным образом из-за диффузионного вклада, в определении которого был учтен простейший диффузионный процесс. При условии $(V/T)^2 \ll 1$ только этот член явно зависит от взаимодействия цепочек, которое не конкретизировалось выше. В соединении CuO, относящемся к моноклинной системе, эти связи носят более сложный характер [5] по сравнению со взаимодействием в простой тетрагональной магнитной решетке. Поскольку мы не претендуем на точную количественную оценку Γ^D , важно только, чтобы взаимодействия между цепочками не отличались сильно по величине. Это условие в СиО выполнено, так как согласно нейтронным данным, относящимся к спектру магнонов, взаимодействия цепочек в двух взаимноперпендикулярных направлениях в плоскости ортогональной цепочкам составляют 5 и 3 мэВ [6]. Наконец, мы не учитывали влияния межцепочечных связей на статическую подрешеточную функцию Грина, которое приводит к трехмерному критическому поведению CuO. Как отмечалось выше, соответствующие трехмерные эффекты начинают сказываться ниже T = 250 K.

Полученная оценка Г ~ 3.5 к
Э близка к экспериментальному значению $\Gamma = 5-7$ кЭ. Имеющееся различие, кроме отмеченной выше причины, может быть связано с некоторой неопределенностью обменной анизотропии, точное значение которой вдоль разных осей неизвестно. Остановимся на этом вопросе подробнее. Зная Γ_i и используя пропорциональность $\Gamma_i \propto (J_i^{an}(0))^2$, можно определить соотношения между $J_i(0)$, которые, однако, не согласуются с неравенством $J_b(0) > J_{a,c}(0)$, имеющем место в силу того, что ось b в CuO является легкой осью в коллинеарной фазе [4]. Данное несоответствие можно связать с тем обстоятельством, что кристаллографические оси а и с не совпадают с главными осями тензора \hat{J} и, следовательно, $\hat{\chi}(\omega)$. В этом случае выражение для измеряемого отклика в поле Н, направленном вдоль осей а и с, включает в себя все три Γ_i и оказывается более сложным, чем результат (4), который нельзя использовать для определения Γ_i в этой геометрии. В то же время ось ${f b}$ как ось второго порядка моноклинной системы обязана совпадать с одной из главных осей тензора $\hat{\chi}(\omega)$ [23]. Соответственно, при Н || b формула (4) для отклика оказывается справедливой.

В пользу сформулированного предположения свидетельствует ориентация плоскости геликоида в несоизмеримой фазе, которая проходит через ось **b** и составляет угол 28° с осью **a** [5]. Поскольку за эту ориентацию отвечает анизотропия обмена, можно заключить, что две оси тензора \hat{J} хотя и лежат в плоскости (**a**, **c**), но не совпадают с осями **a** и **c**. Таким образом, точные значения скоростей спиновой релаксации и *g*-факторов в CuO, следующие из спектров ЭПР для **H** || **b**, составляют

 $(\Gamma_a + \Gamma_c)/2 \approx 5 \pm 1.5 \text{ kB}, \quad g_b = 1.85 \pm 0.16.$

Перейдем к результатам для образцов с замещением Cu на Zn и Li. Введение цинка сравнительно слабо влияет на спектры. Так, величина $(\Gamma_a + \Gamma_c)/2 \approx 5$ кЭ просто совпадает с результатом для CuO. Это естественным образом интерпретируется в рамках обычного магнитного разбавления. Наиболее существенное влияние магнитного разбавления на ширину линии связан с ограничением одномерной диффузионной длины величиной порядка среднего расстояния между примесями в цепочке. Однако, как нетрудно убедиться, в нашем случае концентрация цинка (1.5%) слишком мала, чтобы это ограничение могло сказаться на Γ^D при выбранном значении D.

Значительное уширение спектров в допированном литием кристалле обусловлено появлением избыточных дырок, сильно возмущающих магнитную подсистему. На сильную связь дырок со спиновой системой указывает примерно двукратное изменение активационной энергии в зависимости проводимости от температуры при переходе в магнитоупорядоченное состояние в чистом CuO и в CuO, допированном литием [3]. Отметим, что увеличение проводимости примерно на два порядка в образцах с Li при T = 300 K по сравнению с CuO не приводит к изменению ее характера. Проводимость CuO удовлетворительно описывается теорией полярона малого радиуса с некогерентными перескоками при T = 300 K [2]. При этом время жизни дырки в локализованном состояни
и $\tau_h \approx 10^{-10}$ с при $T \approx 300~{\rm K}$ примерно совпадает с обратной резонансной частотой f^{-1} . Если предположить, что дырки, локализуясь в кластере CuO₄, образуют синглет Занга–Райса и тем самым выводят спин матрицы из резонанса, то перескоки дырки с частотой $\tau_h^{-1} \approx f$ могли бы приводить к уширению линии на величину порядка ее самой. Однако такой простой механизм уширения при сильной локализации дырок может реализоваться при концентрации дырок, соизмеримой с числом атомов меди матрицы. Данное соображение, по-видимому, позволяет исключить такое влияние подвижности дырок на ширину линии.

Следует подчеркнуть, что подвижность дырок носит трехмерный характер, о чем свидетельствует слабая анизотропия проводимости CuO [2]. Поэтому в CuO, допированном литием, нет оснований ожидать сильной модификации квазиодномерных спиновых возбуждений подвижными дырками, которая могла бы иметь место в случае, когда дырочный перенос происходил бы в основном вдоль цепочек.

Учитывая также сравнительно большое время, проводимое дырками в связанном состоянии, более реалистичным представляется сценарий, когда движение дырок не является определяющим фактором уширения. Можно ожидать, что дырки образуют обменно-связанный комплекс с несколькими спинами меди, например с четырьмя ионами меди в элементарной ячейке. Богатый спиновый спектр комплекса и сильная связь с фононами могут обеспечить достаточно высокую скорость его спин-решеточной релаксации, заметно превосходящую скорость спиновой релаксации матрицы. Полагая, что комплекс слабо связан со спинами матрицы и имеет восприимчивость χ_{hc} , существенно большую, чем восприимчивость матрицы $\chi \propto (J\pi^2)^{-1}$, можно получить уширение линии в допированном CuO, соизмеримое с $riangle H_{1/2}$ в CuO. Пусть, например, расстояние между двумя нижними уровнями комплекса $\triangle E \simeq 300~{
m K}$ $\approx J/3$, тогда $\chi_{hc} \sim 3(g\mu)^2/J$ и $x\chi_{hc}/\chi \sim 3\pi^2 x \approx 1/3$, где $x \approx 10^{-2}$ — относительная концентрация лития (избыточных дырок). Если скорость спиновой релаксации комплексов $\Gamma_{hc} \sim (3-5)\Gamma$, то их вклад в ширину будет близок к $\Delta H_{1/2}$ матрицы. Ясно, что в этом случае допирование должно приводить к увеличению статической восприимчивости системы ниже температуры локализации дырок $T \approx 70$ K [14]. К сожалению, данные для χ допированного литием оксида меди [15] не позволяет определить, происходит ли это увеличение на уровне 30%, из-за достаточно большого диамагнитного вклада в восприимчивость ионных остовов. Подвижность дырок в такой модели просто ограничивает время жизни комплексов величиной τ_h и не является принципиальной, если $\tau_h^c \ge \Gamma_{hc}^{-1}$.

Влияние допирования на магнитную систему не сводится только к описанному выше эффекту. Как известно, в слабодопированных двумерных купратах введение дырок ограничивает двумерную корреляционную длину спиновых флуктуаций выше T_N . Наиболее полно этот эффект изучен в La₂CuO₄ для различных допирующих элементов, включая Li [16]. Определенная универсальность его зависимости от концентрации допанта, наблюдаемая в окрестности T_N , связывается с образованием коллективной дырочной структуры. Ясно, что в CuO допирование литием также ограничит рост одномерных спиновых флуктуаций, что должно сказаться на критическом увеличении скорости спиновой релаксации вблизи T_N. В связи с этим предполагается провести эксперименты по сравнительному анализу ширин линий ЭПР в чистом CuO и CuO, допированном литием, в окрестности T_N .

Что касается результатов, связанных с эффектом Холла на исследуемых кристаллах, их анализ

не являлся задачей работы. Отметим только, что «дырочный» знак холловского сигнала соответствует знаку носителей (для электронной проводимости в материале резонатора он положителен).

Авторы признательны В. А. Соловьеву за помощь в проведении экспериментов. Работа была поддержана Российским фондом фундаментальных исследований (грант № 97-02-17097).

ЛИТЕРАТУРА

- 1. W. Brening, Phys. Rep. 251, 153 (1995).
- А. А. Самохвалов, Н. А. Виглин, Б. А. Гижевский и др., ЖЭТФ 103, 951 (1993).
- Б. А. Гижевский, А. А. Самохвалов, Н. М. Чеботаев и др., СФТХ 4, 827 (1991).
- 4. J. B. Forsyth, P. J. Brown, and B. M. Wanklin, J. Phys. C 21, 2917 (1988).
- M. Ain, A. Menelle, B. M. Wanklyn, and E. F. Bertaut, J. Phys.: Cond. Matter 4, 5327 (1992).
- M. Ain, W. Reichardt, B. Hennion, G. Pepy, and B. M. Wanklyn, Physica C 162–164, 1279 (1989).
- M. O'Keeffe and F. S. Stone, J. Phys. Chem. Sol. 23, 261 (1962).
- T. I. Arbuzova, A. A. Samokhvalov, I. B. Smolyak et al., J. Magn. Magn. Mat. 95, 168 (1991).
- T. Chattopadhyay, G. J. McIntyre, P. J. Brown et al., Physica C 170, 371 (1990).
- 10. K. Kindo, M. Honda, T. Kohashi, and M. Date, J. Phys. Soc. Jap. 59, 2332 (1990).
- 11. F. Mehran, Phys. Rev. B 46, 5640 (1992).
- 12. A. V. Lazuta, Physica C 181, 127 (1991).
- P. Simon, J. M. Bassat, S. B. Oseroff et al., Phys. Rev. B 48, 4216 (1993).
- 14. P. Carretta, M. Corti, and A. Rigamonti, Phys. Rev. B 48, 3433 (1993).
- **15**. Т. И. Арбузова, И. В. Смоляк, С. В. Наумов, А. А. Самохвалов, ФТТ **40**, 1876 (1998).
- P. J. Suh, P. C. Hammel, Y. Yoshinari et al., Phys. Rev. Lett. 81, 2791 (1998).
- 17. M. Corti, A. Rigamonti, F. Tabak et al., Phys. Rev. B 52, 7334 (1995).
- 18. В. А. Рыжов, Е. И. Завацкий, В. А. Соловьев и др., ЖТФ 65, 133 (1995).

- 19. В. В. Исаев-Иванов, В. Н. Фомичев, ПТЭ № 3, 172 (1976).
- 20. G. Feher, Bell System Techn. J. 36, 449 (1957).
- **21**. Ч. Пул, *Техника ЭПР-спектроскопии*, Мир, Москва (1970).
- 22. A. G. Redfield, J. Appl. Phys. 25, 1021 (1954).
- 23. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, Москва, (1992), с. 305 и § 99.
- 24. C. B. Azzolini, A. Paleari, and G. B. Parravicini, J. Phys.: Cond. Matter 4, 1359 (1992).
- 25. D. L. Huber and M. S. Seehra, Phys. Stat. Sol. (b) 74, 145 (1976).
- 26. U. Kobler and T. Chattopadhyay, Z. Phys. B 82, 383 (1991).
- 27. Т. И. Арбузова, И. Б. Смоляк, А. А. Самохвалов и др., ЖЭТФ 113, 7026 (1998).
- 28. H. J. Schulz, Phys. Rev. Lett. 77, 2790 (1996).
- 29. I. Affleck, in *Fields, Strings and Critical Phenomena*, ed. by E. Brezin and J. Zinn-Justin, North Holland, Amsterdam (1990), p. 563.
- 30. S. Sachdev, Phys. Rev. B 50, 13006 (1994).
- 31. B. N. Narozhny, Phys. Rev. B 54, 3311 (1996).
- 32. X. Zotos, Phys. Rev. Lett. 82, 1764 (1999).
- 33. M. Bohm, V. S. Viswanath, J. Stolze, and G. Muller, Phys. Rev. B 49, 15669 (1994).
- 34. O. A. Starykh, A. N. Sandvik, and R. R. P. Singh, Phys. Rev. B 55, 14953 (1997).
- 35. K. Fabricius and B. M. McCoy, Phys. Rev. B 57, 8340 (1998).
- 36. M. Takigawa, N. Motoyama, H. Fisaki, and S. Uchida, Phys. Rev. Lett. 76, 4612 (1996).
- 37. T.-P. Boucher, M. A. Bakheit, M. Nechtschein et al., Phys. Rev. B 13, 4098 (1976).
- 38. M. Takigawa, T. Asano, Y. Ajiro et al., Phys. Rev. Lett. 76, 2173 (1996).
- 39. H. J. Schulz, Phys. Rev. B 34, 6372 (1986).
- 40. D. A. Tennat, T. G. Perring, P. A. Cowley, and S. E. Nagler, Phys. Rev. Lett. 70, 4003 (1993).
- 41. С. В. Малеев, ЖЭТФ 66, 1809 (1974).
- 42. S. Eggert, I. Affleck, and M. Takahashi, Phys. Rev. Lett. 73, 332 (1994).