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SCALING LAW FOR THE FLUID-SOLID PHASE TRANSITION INYUKAWA SYSTEMS (DUSTY PLASMAS)O. S. Vaulina*, S. A. KhrapakHigh Energy Density Researh CenterRussian Aademy of Sienes127412, Mosow, RussiaSubmitted 9 June 1999Yukawa systems serve as models for plasmas and olloidal suspensions of harged partiles. The state of thesesystems is determined by two dimensionless parameters: k = a=�D, whih is the ratio of the mean interpartiledistane to the Debye length �D, and � = Z2de2=aTd, whih is the ratio of the Coulomb potential energy tothe partile temperature Td (Zd is the harge of eah partile). We propose an empirial saling law for theritial oupling parameter � needed for rystallization in Yukawa systems. The dependene of � on k is ingood agreement with reent moleular dynamis simulations.PACS: 52.25.Zb, 64.70.-p, 64.70.DvSystems of small solid partiles (dust partiles) im-mersed in plasmas have reently attrated muh atten-tion. They arise in a wide variety of plasma environ-ments ranging from the interstellar medium to labora-tory plasma devies. A dust partile in plasma usuallyaquires an eletri harge and interats with other par-tiles. The interation potential between marosopidust partiles depends on their own physial parame-ters and those of the ambient plasma. The question ofthe orret potential of interation between dust parti-les is not only fundamental, it is also still open. Suhe�ets as plasma �ow anisotropies, dipole e�ets, andlong range attrative interation due to shadow e�etsmay play a role when onsidering di�erent plasma on-ditions. In order to understand the behavior of dustyplasmas in ompliated situations, however, the resultsfor simple and basi ases are indispensible. As one ofthose ases, an isotropi sreened Coulomb potential(or Yukawa-type potential) is frequently assumed:�(r) = Z2de2r exp�� r�D� ; (1)where Zd is the partile harge and �D is the sreeninglength. For an isotropi and homogeneous plasma,��2D = ��2De + ��2Di � ��2Di(if as usual Te � Ti), where*E-mail: ipdustpl�redline.ru

�De(i) =s Te(i)4�e2ne(i)is the eletron (ion) Debye length.It was suggested by Ikezi [1℄ that when the interpar-tile potential energy exeeds the kineti energy, par-tiles in a plasma an form rystalline strutures. La-boratory experiments under various plasma onditionshave reently demonstrated this possibility [2�8℄. Suhrystal strutures have been also observed in olloidalsuspensions of harged partiles, where the interationpotential (1) an be also adopted.The onditions of suh rystallization of partilesinterating via a sreened Coulomb potential are un-der investigation. For example, moleular dynamis si-mulations were reently used to study phase diagramsof Yukawa systems [9�12℄. Although some of the as-sumptions in the simulations (interation potential, u-bi simulation box with periodi boundary onditions)may be not ompletely suited to some experiments onCoulomb rystallization in dusty plasmas, the resultsare revealing. In these simulations the state of a systemis determined by only two dimensionless parameters,k = a=�D and � = Z2de2=aTd; (2)whih enter into the equations of motion. Herea = n�1=3d is the mean interpartile distane and ndis the partile number density. The oupling parame-ter � is roughly the ratio of the unsreened Coulomb326



ÆÝÒÔ, òîì 117, âûï. 2, 2000 Saling law for the �uid-solid phase : : :potential energy to the kineti energy per partile (Tdbeing the partile temperature). Some studies [10; 12℄have used normalization that di�ers slightly from (2).Spei�ally, the Wigner�Seitz radius � = (3=4�nd)1=3was used as the length unit instead of a. Notethat k and � will then be k0 = k(4�=3)�1=3 and�0 = �(4�=3)1=3 � 1:612�.In the limit k ! 0, the Yukawa potential devolvesinto the long-range Coulomb potential desribing theone-omponent plasma (OCP) system. In this limit,only the one parameter � desribes the �uid-solid phasetransition. It is well known [13; 14℄ that for the OCPsystem, � must exeed the ritial value � � 106(�0 � 170) to form a Coulomb lattie. For a systemwith a Yukawa interation potential, the transition be-tween �uid and solid phases takes plae at some ritialvalue � that depends on the sreening parameter k.By analogy with the OCP system, it was �rst proposedto introdue a oupling parameter that takes sreeninginto aount [1℄,�s = Z2de2aTd exp(�a=�D) � � exp(�k); (3)and use the ondition �s > 106 to desribe Coulombsolidi�ation, so that � � 106 expk. However, reentnumerial simulations show that � is a more ompli-ated funtion of k [12℄.We have onstruted a funtion � = �(k) that�ts the �uid-solid phase transition data of Hamaguhi,Farouki, and Dubin [12℄ well over a wide range of k(in Ref. [12℄, three di�erent polynomial �ts (Eqs. (17)�(19)) were used to �t data over di�erent ranges of k).We assume that the ritial value of the oupling pa-rameter depends on k as� = �OCP (1 + k + k2=2)�1 exp k; (4)where �OCP � 106:6 as found in Ref. [12℄.In Table, the values of � found via numerial si-mulation [12℄ and normalized by the rhs of Eq. (4) forvarious values of k are summarized. It an be seenthat for k � 1:61 (k0 � 1), the deviation between sim-ulations and Eq. (4) is less than 1%. This range ofk is very often applied to dust rystals in laboratoryexperiments. For all values of k exept the last pointk = 8:06, Eq. (4) �t simulation results to within 10%.In Figure, the values of � exp(�k)=�OCP alu-lated from the solid-�uid phase transition data ofRef. [12℄ are plotted versus k. In addition, the funtion(1 + k + k2=2)�1 is plotted. The error bar at k = 4:84(k0 = 3:0) represents the simulation unertainties es-timated in Ref. [12℄. It seems that for all values of k(exept k = 8:06), Eq. (4) holds to within the simula-tion errors. Figure also shows that �s introdued by

k ��OCP exp(�k)(1 + k + k2=2)0 1.000.32 1.010.65 1.010.97 1.011.29 1.001.61 0.991.93 0.982.26 0.953.22 0.964.19 0.934.84 0.965.80 0.996.45 1.007.42 1.088.06 1.15Eq. (3) is not an appropriate measure to desribe the�uid-solid phase transition.The form of the melting urve (4) an be obtainedusing a very simple approah. We onsider a one-di-mensional lattie of dust partiles interating via asreened Coulomb potential. Moreover, we assumethat it is su�ient to inlude only interations betweennearest neighbor partiles. Then the harateristi os-illation frequeny of a given partile about its equilib-rium position with all other partiles held �xed is [15℄!20 = 4Z2de2mda3 �1 + k + k22 � exp(�k);where md is the dust partile mass. The mean squareddisplaement of partiles around their equilibrium posi-tions is hÆu2i � Td=md!20 . Aording to Lindenmann'srule for the melting transition hÆu2i=a2 = onst, wehave Z2de2aTd �1 + k + k22 � exp(�k) = onst (5)at the melting urve. Extrapolating (5) to the limitk ! 0 we �nally arrive at Eq. (4).Surely this rude model annot serve as a physialbasis for Eq. (4). It onsiders a one-dimensional lat-tie (although simulations were performed in 3D) andinludes only interations with nearest neighbors (thisassumption is valid only when k � 1). At the presenttime, Eq. (4) must therefore be onsidered as an em-pirial relation.327
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Filled irles are the values of � exp(�k)=�OCP forvarious values of k, alulated from the solid-�uidphase transition data of Hamagushi et al. [12℄. Theerror bar at k = 4:84 (k0 = 3:0) represents the sim-ulation unertainties. The solid urve is the funtion(1 + k + k2=2)�1To onlude, we propose a saling law for the riti-al oupling parameter � needed for rystallization inYukawa systems. The dependene of � on k is deter-mined by Eq. (4). This dependene is onsistent withthe reent �uid-solid phase transition simulation dataobtained by Hamaguhi et al. [12℄ to within the simu-lation errors over a wide range of k. The empirialondition for rystallization,Z2de2aTd �1 + k + k22 � exp(�k) � 106;an be very useful in a variety of experimental ontextsranging from dusty plasmas to olloidal suspensions.
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