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SCALING LAW FOR THE FLUID-SOLID PHASE TRANSITION INYUKAWA SYSTEMS (DUSTY PLASMAS)O. S. Vaulina*, S. A. KhrapakHigh Energy Density Resear
h CenterRussian A
ademy of S
ien
es127412, Mos
ow, RussiaSubmitted 9 June 1999Yukawa systems serve as models for plasmas and 
olloidal suspensions of 
harged parti
les. The state of thesesystems is determined by two dimensionless parameters: k = a=�D, whi
h is the ratio of the mean interparti
ledistan
e to the Debye length �D, and � = Z2de2=aTd, whi
h is the ratio of the Coulomb potential energy tothe parti
le temperature Td (Zd is the 
harge of ea
h parti
le). We propose an empiri
al s
aling law for the
riti
al 
oupling parameter �
 needed for 
rystallization in Yukawa systems. The dependen
e of �
 on k is ingood agreement with re
ent mole
ular dynami
s simulations.PACS: 52.25.Zb, 64.70.-p, 64.70.DvSystems of small solid parti
les (dust parti
les) im-mersed in plasmas have re
ently attra
ted mu
h atten-tion. They arise in a wide variety of plasma environ-ments ranging from the interstellar medium to labora-tory plasma devi
es. A dust parti
le in plasma usuallya
quires an ele
tri
 
harge and intera
ts with other par-ti
les. The intera
tion potential between ma
ros
opi
dust parti
les depends on their own physi
al parame-ters and those of the ambient plasma. The question ofthe 
orre
t potential of intera
tion between dust parti-
les is not only fundamental, it is also still open. Su
he�e
ts as plasma �ow anisotropies, dipole e�e
ts, andlong range attra
tive intera
tion due to shadow e�e
tsmay play a role when 
onsidering di�erent plasma 
on-ditions. In order to understand the behavior of dustyplasmas in 
ompli
ated situations, however, the resultsfor simple and basi
 
ases are indispensible. As one ofthose 
ases, an isotropi
 s
reened Coulomb potential(or Yukawa-type potential) is frequently assumed:�(r) = Z2de2r exp�� r�D� ; (1)where Zd is the parti
le 
harge and �D is the s
reeninglength. For an isotropi
 and homogeneous plasma,��2D = ��2De + ��2Di � ��2Di(if as usual Te � Ti), where*E-mail: ipdustpl�redline.ru

�De(i) =s Te(i)4�e2ne(i)is the ele
tron (ion) Debye length.It was suggested by Ikezi [1℄ that when the interpar-ti
le potential energy ex
eeds the kineti
 energy, par-ti
les in a plasma 
an form 
rystalline stru
tures. La-boratory experiments under various plasma 
onditionshave re
ently demonstrated this possibility [2�8℄. Su
h
rystal stru
tures have been also observed in 
olloidalsuspensions of 
harged parti
les, where the intera
tionpotential (1) 
an be also adopted.The 
onditions of su
h 
rystallization of parti
lesintera
ting via a s
reened Coulomb potential are un-der investigation. For example, mole
ular dynami
s si-mulations were re
ently used to study phase diagramsof Yukawa systems [9�12℄. Although some of the as-sumptions in the simulations (intera
tion potential, 
u-bi
 simulation box with periodi
 boundary 
onditions)may be not 
ompletely suited to some experiments onCoulomb 
rystallization in dusty plasmas, the resultsare revealing. In these simulations the state of a systemis determined by only two dimensionless parameters,k = a=�D and � = Z2de2=aTd; (2)whi
h enter into the equations of motion. Herea = n�1=3d is the mean interparti
le distan
e and ndis the parti
le number density. The 
oupling parame-ter � is roughly the ratio of the uns
reened Coulomb326
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aling law for the �uid-solid phase : : :potential energy to the kineti
 energy per parti
le (Tdbeing the parti
le temperature). Some studies [10; 12℄have used normalization that di�ers slightly from (2).Spe
i�
ally, the Wigner�Seitz radius � = (3=4�nd)1=3was used as the length unit instead of a. Notethat k and � will then be k0 = k(4�=3)�1=3 and�0 = �(4�=3)1=3 � 1:612�.In the limit k ! 0, the Yukawa potential devolvesinto the long-range Coulomb potential des
ribing theone-
omponent plasma (OCP) system. In this limit,only the one parameter � des
ribes the �uid-solid phasetransition. It is well known [13; 14℄ that for the OCPsystem, � must ex
eed the 
riti
al value �
 � 106(�0
 � 170) to form a Coulomb latti
e. For a systemwith a Yukawa intera
tion potential, the transition be-tween �uid and solid phases takes pla
e at some 
riti
alvalue �
 that depends on the s
reening parameter k.By analogy with the OCP system, it was �rst proposedto introdu
e a 
oupling parameter that takes s
reeninginto a

ount [1℄,�s = Z2de2aTd exp(�a=�D) � � exp(�k); (3)and use the 
ondition �s > 106 to des
ribe Coulombsolidi�
ation, so that �
 � 106 expk. However, re
entnumeri
al simulations show that �
 is a more 
ompli-
ated fun
tion of k [12℄.We have 
onstru
ted a fun
tion �
 = �
(k) that�ts the �uid-solid phase transition data of Hamagu
hi,Farouki, and Dubin [12℄ well over a wide range of k(in Ref. [12℄, three di�erent polynomial �ts (Eqs. (17)�(19)) were used to �t data over di�erent ranges of k).We assume that the 
riti
al value of the 
oupling pa-rameter depends on k as�
 = �OCP
 (1 + k + k2=2)�1 exp k; (4)where �OCP
 � 106:6 as found in Ref. [12℄.In Table, the values of �
 found via numeri
al si-mulation [12℄ and normalized by the rhs of Eq. (4) forvarious values of k are summarized. It 
an be seenthat for k � 1:61 (k0 � 1), the deviation between sim-ulations and Eq. (4) is less than 1%. This range ofk is very often applied to dust 
rystals in laboratoryexperiments. For all values of k ex
ept the last pointk = 8:06, Eq. (4) �t simulation results to within 10%.In Figure, the values of �
 exp(�k)=�OCP
 
al
u-lated from the solid-�uid phase transition data ofRef. [12℄ are plotted versus k. In addition, the fun
tion(1 + k + k2=2)�1 is plotted. The error bar at k = 4:84(k0 = 3:0) represents the simulation un
ertainties es-timated in Ref. [12℄. It seems that for all values of k(ex
ept k = 8:06), Eq. (4) holds to within the simula-tion errors. Figure also shows that �s introdu
ed by

k �
�OCP
 exp(�k)(1 + k + k2=2)0 1.000.32 1.010.65 1.010.97 1.011.29 1.001.61 0.991.93 0.982.26 0.953.22 0.964.19 0.934.84 0.965.80 0.996.45 1.007.42 1.088.06 1.15Eq. (3) is not an appropriate measure to des
ribe the�uid-solid phase transition.The form of the melting 
urve (4) 
an be obtainedusing a very simple approa
h. We 
onsider a one-di-mensional latti
e of dust parti
les intera
ting via as
reened Coulomb potential. Moreover, we assumethat it is su�
ient to in
lude only intera
tions betweennearest neighbor parti
les. Then the 
hara
teristi
 os-
illation frequen
y of a given parti
le about its equilib-rium position with all other parti
les held �xed is [15℄!20 = 4Z2de2mda3 �1 + k + k22 � exp(�k);where md is the dust parti
le mass. The mean squareddispla
ement of parti
les around their equilibrium posi-tions is hÆu2i � Td=md!20 . A

ording to Lindenmann'srule for the melting transition hÆu2i=a2 = 
onst, wehave Z2de2aTd �1 + k + k22 � exp(�k) = 
onst (5)at the melting 
urve. Extrapolating (5) to the limitk ! 0 we �nally arrive at Eq. (4).Surely this 
rude model 
annot serve as a physi
albasis for Eq. (4). It 
onsiders a one-dimensional lat-ti
e (although simulations were performed in 3D) andin
ludes only intera
tions with nearest neighbors (thisassumption is valid only when k � 1). At the presenttime, Eq. (4) must therefore be 
onsidered as an em-piri
al relation.327
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Filled 
ir
les are the values of �
 exp(�k)=�OCP
 forvarious values of k, 
al
ulated from the solid-�uidphase transition data of Hamagushi et al. [12℄. Theerror bar at k = 4:84 (k0 = 3:0) represents the sim-ulation un
ertainties. The solid 
urve is the fun
tion(1 + k + k2=2)�1To 
on
lude, we propose a s
aling law for the 
riti-
al 
oupling parameter �
 needed for 
rystallization inYukawa systems. The dependen
e of �
 on k is deter-mined by Eq. (4). This dependen
e is 
onsistent withthe re
ent �uid-solid phase transition simulation dataobtained by Hamagu
hi et al. [12℄ to within the simu-lation errors over a wide range of k. The empiri
al
ondition for 
rystallization,Z2de2aTd �1 + k + k22 � exp(�k) � 106;
an be very useful in a variety of experimental 
ontextsranging from dusty plasmas to 
olloidal suspensions.
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