ИССЛЕДОВАНИЕ МАГНИТНЫХ СВОЙСТВ СЛАБОВЗАИМОДЕЙСТВУЮЩИХ АНТИФЕРРОМАГНИТНЫХ ЦЕПОЧЕК С АЛЬТЕРНИРОВАННЫМ ОБМЕННЫМ ВЗАИМОДЕЙСТВИЕМ СО СПИНОМ S = 1/2 ПРИ ПОМОЩИ КВАНТОВОГО МЕТОДА МОНТЕ-КАРЛО

С. С. Аплеснин*

Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

Поступила в редакцию 21 июня 1999 г.

Для слабовзаимодействующих (J_2) антиферромагнитных цепочек со спином S = 1/2 и альтернированным обменным взаимодействием $(J_1 \pm \delta)$ определены аппроксимационная зависимость спонтанного магнитного момента на узле, $\sigma/\sigma(0) - 1 = 0.71(6)\delta^{2.5(2)}$, фазовая граница антиферромагнетик — синглетное состояние, $J_2/J_1 = 0.52(3)\delta$, квантовым методом Монте-Карло в приближении самосогласованного подрешеточного молекулярного поля. На основании вычисленных корреляционных радиусов двух- и четырехспиновой корреляционной функции, квадрата полного спина по продольным компонентам $\langle (S^z)^2 \rangle$, параметра димеризации и корреляционных функций между ближайшими соседями по продольным и по поперечным компонентам спина определены температура Нееля и ряд критических температур, которые, возможно, связаны с энергией заполнения двух синглетных ($\Delta S^z = 0$) и одной триплетной ($\Delta S^z = 1$) спинонных зон, каждая из которых расщепляется подрешеточным полем ($h^{x,y} \neq h^z$) на две подзоны. На основании расчетов по методу Монте-Карло определены критические температуры и возможные энергические щели в центре зоны как для антиферромагнетиков CuWO4, Bi₂CuO4, так и для синглетных соединений (VO)₂P₂O7, CuGeO₃, которые удовлетворительно согласуются с имеющимися результатами, а также предсказаны новые эффекты.

PACS: 75.10.Jm, 75.50. Dd, 75.40.Cx, 75.40.Mg

1. ВВЕДЕНИЕ

Существует обширный класс магнитных соединений с пространственно-анизотропным распределением обменных взаимодействий и с сильным взаимодействием между магнитной и упругой подсистемами, которое приводит в некоторых случаях к спин-пайерлсовскому переходу. Обычно переход из синглетного состояния в парафазу рассматривается в моделях Хаббарда или Гейзенберга с альтернированными параметрами обмена J и интеграла перескока t с привлечением теории среднего поля, либо гриновских функций с применением теории возмущения. Спинонные возбуждения, как правило, не учитываются при рассмотрении этих систем, что приводит к завышенным оценкам температуры спин-пайерлсовского перехода при учете межцепочечного обмена, а именно, к логарифмической зависимости [1].

Альтернирования обмена также можно добиться за счет геометрии кристаллической решетки, такой как в CuWO₄ [2], Bi₂CuO₄ [3, 4], (VO)₂P₂O₇ [5], (CH₃)CHNH₃CuBr₃ [6]. Все эти соединения являются трехмерными магнитными системами с альтернированным обменом, для большинства из них определены величины обменных взаимодействий по трем направлениям соответствующих кристаллических осей. Магнитные свойства антиферромагнетиков CuWO₄ и Bi₂CuO₄ интерпретируется в двухподрешеточной модели Гейзенберга, и остается непонятным существование нескольких ветвей спиновых возбуждений, интенсивность которых становится равной нулю при разных температурах, и наличие энергетической щели в центре зоны при $\omega = 1.4$ мэВ

^{*}E-mail: apl@iph.krasnoyarsk.su

в CuWO₄ [2] и при $\omega_i = 0.7, 1.7, 2.3, 3.4, 4$ мэВ в Bi₂CuO₄ [4, 7, 8]. В этих антиферромагнетиках наблюдается немонотонное температурное поведение восприимчивости [9], поля антиферромагнитного резонанса и ширины линии в Bi₂CuO₄, производные которых по температуре имеют несколько максимумов [10] и дополнительный максимум теплоемкости при $T \simeq 17$ K ($T_N = 45$ K) в Bi₂CuO₄ [11].

В синглетных магнетиках CuGeO₃, Na₂V₂O₅, (VO)₂P₂O₇ также обнаружено несколько энергетических щелей в спектре спиновых возбуждений, которые не укладываются ни в традиционную теорию спин-пайерлсовского перехода с одной триплетной щелью [12], ни в теорию двухмагнонного спектра возбуждений [13]. Из этих соединений наиболее полно исследован CuGeO₃, в котором найдены три области температур, $T_{c1} \sim (4 \div 7)$ К, $T_{c2} \simeq 14$ К, $T_{c3} \sim (20 \div 25)$ К, в которых ширина линии и интенсивность ЭПР имеют аномальное поведение [14, 15], магнитная теплопроводность [16] и магнитострикция [17] имеют максимумы ниже и выше температуры спин-пайерлсовского перехода $T_N = 14$ К.

Данная работа посвящена исследованию области устойчивости дальнего антиферромагнитного порядка в изотропном 3D-антиферромагнетике с достаточно сильным анизотропным распределением обменных взаимодействий в решетке относительно величины альтернирования обмена, определению величины магнитного момента на узле, температуры Нееля и критических температур, при которых корреляционные радиусы имеют максимальные значения. Согласно гипотезе динамического скейлинга время релаксации т пропорционально корреляционному радиусу, $\tau \propto \xi^z,$ и указанные выше температуры можно обнаружить по температурной зависимости ширины линии ЭПР, антиферромагнитного резонанса и диффузному рассеянию нейтронов. На основе четырехспиновой корреляционной функции будут предложены дополнительные спиновые возбуждения — спиноны [18], имеющие несколько зон возбуждений, благодаря которым можно объяснить приведенные раннее экспериментальные результаты и, используя вычисленные значения критических температур, предсказать существование дополнительных спиновых мод и ряд новых эффектов.

2. МОДЕЛЬ И МЕТОД

Рассмотрим модель Гейзенберга с отрицательными взаимодействиями между ближайшими соседями со спином S = 1/2 в направлении Z внешнего магнитного поля. Альтернированное взаимодействие берется по направлению сильной связи $I = J_1 + \delta$ и $K = J_1 - \delta$. Гамильтониан имеет вид

$$H = -J_1 \sum_{\substack{i,j \ \alpha = \alpha}} \mathbf{S}_{i,j} \mathbf{S}_{i+1,j} - \sum_{\substack{i,j,\gamma=1, \\ \alpha = \alpha, y, z}} J_2^{\alpha}(\gamma) S_{i,j}^{\alpha} S_{i,j+\gamma}^{\alpha} - \sum_i H_i S_i^z, \quad (1)$$

где $J_1 < 0, J_2 < 0$ — внутри- и межцепочечные взаимодействия, H — внешнее магнитное поле, γ — суммирование по ближайшим соседям между цепочками (z = 4). Преобразуем гамильтониан 3D-системы к одномерной цепочке спинов, взаимодействующих с эффективным полем, с помощью приближения самосогласованного молекулярного поля [19, 20]:

$$H = -\sum_{i=1}^{L/2} I_{2i,2i-1} \mathbf{S}_{2i} \mathbf{S}_{2i-1} - \sum_{i=1}^{L/2} K_{2i,2i+1} \mathbf{S}_{2i} \mathbf{S}_{2i+1} - \sum_{i=1}^{L} h_i^{\alpha} S_i^{\alpha} - \sum_{i=1}^{L} H_i S_i^z - 2N J_2 m_0^2, \qquad (2)$$

где m_0, h — подрешеточная намагниченность и поле $\mathbf{h}_i(h^z, h^+, h^-)$, определенные в [19, 20] как $m_0 = (1/L) \sum_{i=1}^L (-1)^i \langle S_i^z \rangle, \ h = -4J_2 m_0.$ Чтобы учесть квантовые и температурные флуктуации, определим эти величины из спин-спиновой корреляционной функции, которая имеет степенную зависимость от расстояния в 1*D*-антиферромагнетике при T = 0. Предположим, что подобная зависимость выполняется и для поперечных компонент спина в магнитоупорядоченной области квазиодномерного антиферромагнетика, а в парамагнитном и синглетном состояниях мгновенные значения подрешеточного поля пропорциональны величине ближнего порядка, т. е. спин-спиновой корреляционной функции ближайших соседей. Среднее значение $\langle h_i \rangle \approx 0$, а $\langle h_i^2 \rangle \neq 0$ в синглетном состоянии. Учет флуктуаций подрешеточного поля в синглетном состоянии приводит к новым эффектам, о которых будет рассказано ниже. Рассмотрим в синглетном и парамагнитном состояниях два вида подрешеточного поля по поперечным компонентам спина: изотропное $h^x = h^y = h^z$ и анизотропное, характерное для $CuGeO_3, h^x = h^y = 1.4h^z$. Подрешеточные поля в антиферромагнетике имеют вид

$$m_{0} = \frac{2}{L} \sum_{i=1}^{L/2} \sqrt{\operatorname{abs} \left(S_{0}^{z} S_{i}^{z}\right)},$$

$$h_{i}^{z} = 4J_{2} \operatorname{sign} \left(\langle S_{0}^{z} S_{i}^{z} \rangle\right) \sqrt{\operatorname{abs} \left(S_{0}^{z} S_{i}^{z}\right)},$$

$$b - h_{i}^{+,-} = 4J_{2}(-1)^{i} \sqrt{\operatorname{abs} \left(S_{0}^{+} S_{1}^{-}\right)/i}.$$
(3)

В работе применяется квантовый метод Монте-Карло, в котором используется траекторный алгоритм мировых линий, основанный на преобразовании D-мерной квантовой системы в (D + 1)-мерную классическую путем дискредитации функционального интегрирования в пространстве мнимое время $0 < \tau < 1/T$ — координата [21, 22]. В вычислениях по методу Монте-Карло используется формула Троттера с параметром m = 32, 64, 124, 200, периодические граничные условия на цепочке длиной L = 100, 200, 400. Один шаг Монте-Карло определялся поворотом всех спинов на решетке $L \times 2m$. Для достижения равновесия использовалось от 4000 до 7000 шагов Монте-Карло на спин и при усреднении — (2000 ÷ 5000) шагов Монте-Карло на спин. Время автокорреляции τ , необходимое для установления термодинамического равновесия, оценивалось из соотношения $\ln(\tau) = amT/J$ (T — температура) [23]. Систематическая ошибка, вызванная квантовыми флуктуациями, пропорциональна $\sim 1/(mT/J)^2$ и составляет порядка 4% для минимальной температуры T/J = 0.025, используемой в вычислениях. Средние квадратичные погрешности вычисляемых величин лежат в пределах (0.1–0.6)% для энергии, (6-11)% для восприимчивости, $\sim 10\%$ для корреляционного радиуса. Погрешностями, вызванными конечными размерами решетки, можно пренебречь, так как $\xi < L/2$.

Рассмотрим возможные спиновые возбуждения в данной модели. Если схематично представить волновую функцию основного состояния в виде суммы неелевской конфигурации и набора синглетных состояний спинов с разными весовыми соотношениями, то кроме обычных возбуждений типа спиновых волн могут существовать возбуждения на синглетных областях, которые можно разбить на две группы: продольная составляющая вектора спина не меняется, т.е. $\Delta S^z = 0$ (назовем такие возбуждения синглетными) и продольная составляющая вектора спина меняется на единицу, т.е. $\Delta S^z = 1$, что соответствуют триплетным возбуждениям. Согласно теории Андерсона [24] синглетное состояние хорошо описывается обобщенной моделью резонансных валентных связей (RVB), волновая функция которой представлена в виде синглетных пар спинов по всем возможным конфигурациям. При альтернировании обмена обобщенная модель сводится к простой модели RVB, в которой учитывается спаривание ближайших спинов. Так как здесь существуют обменные взаимодействия двух типов, различающиеся по величине, то энергии синглетных пар и соответствующие возбуждения на К-связях отличаются от энергии на *I*-взаимодействиях. Поэтому особенности температурного поведения магнитных харак-

220

теристик антиферромагнетика с альтернированным обменом можно вычислить и понять на основе четырехспиновой корреляционной функции пар спинов $\langle \mathbf{S}_0 \mathbf{S}_1 \mathbf{S}_r \mathbf{S}_{r+1} \rangle$ и параметра упорядочения димеров q:

$$q^{\alpha} = \frac{4}{L} \sum_{i=2}^{L/4} \left(\langle S_0^{\alpha} S_1^{\alpha} S_{2i-2}^{\alpha} S_{2i-1}^{\alpha} \rangle - \langle S_1^{\alpha} S_2^{\alpha} S_{2i-1}^{\alpha} S_{2i}^{\alpha} \rangle \right),$$
(4)
$$\alpha = x, y, z.$$

Возбужденному состоянию в простой модели RVB с одной нарушенной связью соответствует классическое возбуждение типа кинка, которое в дальнейшем будем называть спинонным возбуждением. Корреляционный радиус спинонов ξ_4 и параметр η_4 определим из четырехспиновой корреляционной функции

$$\left| \langle S_0^z S_1^z S_{r-1}^z S_r^z \rangle - \langle S_0^z S_1^z S_{L/2-1}^z S_{L/2}^z \rangle \right| = \frac{A}{r^{\eta_4}} \exp\left(-\frac{r}{\xi_4}\right), \quad (5)$$

где r = 2i + 1, i = 1, 2, 3...

Далее будут вычислены следующие величины: энергия, теплоемкость C = dE/dT, намагниченность, восприимчивость во внешнем поле $\chi = M/H$, спин-спиновая корреляционная функция между продольными $\langle S^z(0)S^z(r)\rangle$ и поперечными $\langle S^+(0)S^-(1)\rangle$ компонентами спинов, фурье-спектр $S(q) = (2/L) \sum_{r=1}^{L/2} \exp(-iqr)(S_0^z S_r^z)$ и магнитный структурный фактор. Корреляционный радиус ξ_2 и параметр η_2 определим из спин-спиновой корреляционной функции

$$\left| \langle S^z(0)S^z(r) \rangle - \langle S^z(0)S^z\left(\frac{L}{2}\right) \rangle \right| = \frac{B}{r^{\eta_2}} \exp\left(-\frac{r}{\xi_2}\right).$$
(6)

Квадрат полного спина будет вычислен по продольной компоненте $\langle (S^z)^2 \rangle$; этот параметр позволяет отличить синглетное состояние от парамагнитного и чувствителен к изменению спектра спиновых возбуждений.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для определения фазовой границы антиферромагнетик — синглетное состояние на плоскости межцепочечные взаимодействия — альтернированный обмен используем ряд критериев: подрешеточная намагниченность равна нулю, $\sigma \rightarrow 0$, корреляционные радиусы ξ_2 and ξ_4 при δ_c имеют максимальное значение. Синглетное состояние отличается от парамагнитного либо состояния спинового стекла по следующим признакам. В синглет-

Рис.1. Зависимость магнитного момента на узле (σ) и квадрата продольной компоненты полного спина (⟨(S^z)²⟩) антиферромагнетика с λ = 0.1 (∎), 0.2 (□), 0.3 (•) от величины альтернирования обмена. На вставке изображены нормированные значения намагниченности для этих же параметров

ном состоянии в модели с альтернированным обменом величина полного спина равна нулю, S = 0, и собственное значение оператора \hat{S}_z^2 из равенства $\langle (S^z)^2 \rangle = S(S + 1)/3$ также равно нулю. Параметр упорядочения димеров отличен от нуля, $q \neq 0$, и между продольными и поперечными компонентами спинов выполняется соотношение $\langle S_0^+ S_1^- \rangle \simeq 2 \langle S_0^z S_1^z \rangle$. Вычислим указанные выше характеристики, часть которых изображена на рис. 1, в области низких температур, $(0.1-0.2)T_N$, для ряда параметров межцепочечного обмена $\lambda = J_2/J_1 = 0.05$, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3 в зависимости от величины альтернирования. Нормированные значения подрешеточной намагниченности и энергии хорошо аппроксимируются степенной зависимостью $\sigma/\sigma(0) - 1 = 0.71(6)\delta^{2.5(2)}$ и $E/E(0) - 1 = 0.02\delta^{3.6(3)}$, где $\sigma(0) = 1.9(1)\sqrt{\lambda}$, и изображены на вставке рис. 1. В синглетном состоянии абсолютная величина внутренней энергии увеличивается с ростом величины альтернирования обмена, $(E\!-\!0.85) \approx 0.63 \delta^{1.2(1)},$ что неплохо согласуется с результатами для одномерной цепочки, ~ $\delta^{4/3}$ [25]. Возможно, различие в показателе степени вызвано корреляционными эффектами взаимодействия цепочек, которые учитываются в виде самосогласованных подрешеточных полей **h** (3). Магнитное состояние для $\delta > \delta_c$ является синглетным, а конечная величина $\langle (S^z)^2 \rangle$ обусловлена синглетными возбуждениями с $\Delta S^z = 0$, так как вычисления по методу Монте-Карло проводятся при конечных температурах. Фазовая граница перехода хорошо аппроксимируется линейной зависимостью $\lambda = 0.52(3)\delta.$

Если рассматривать антиферромагнетик с альтернированным обменом в виде двух подрешеток с сильным *I* и слабым *K* обменными взаимодействиями, то можно выделить три типа спинонных (парных) возбуждений: I-I, K-K, I-K. В подрешеточном поле ($h^{+,-} \neq h^z$) каждое из этих спинонных зон может расщепиться на подзоны с поперечными и продольными спиновыми возбуждениями. Волновые функции этих возбуждений на K-K-связях можно представить в виде

$$\psi^{s1} \propto c_1(|\dots\uparrow\uparrow\downarrow\downarrow\dots\rangle - |\dots\downarrow\downarrow\uparrow\uparrow\dots\rangle) + \\ + c_2(|\dots\downarrow\uparrow\downarrow\uparrow\dots\rangle - |\dots\uparrow\downarrow\uparrow\downarrow\dots\rangle)$$

и на *І*-связях как

$$\psi_l^{s2} \propto (|\dots\uparrow\uparrow\dots\downarrow\downarrow\dots\rangle+|\dots\downarrow\downarrow\dots\uparrow\uparrow\dots\rangle, \quad (7)$$

$$\psi_t^{s2} \propto (|\dots\uparrow\downarrow\dots\uparrow\downarrow\dots\rangle+|\dots\downarrow\uparrow\dots\uparrow\downarrow\dots\rangle.$$

Этот тип возбуждений не приводит к изменению z-компоненты полного спина ($\Delta S^z = 0$) и не дает вклада в продольную восприимчивость, поэтому минимум на температурной зависимости $\chi(T)$ при некоторой температуре T_{si} соответствует заполнению зоны синглетных спинонных возбуждений. Возбуждения на *I-К*-связях приводят к изменению z-компоненты спина $\Delta S^z = 1$ и относятся к спинонным, либо спин-волновым, что вызывает максимум на температурной зависимости восприимчивости при T_{ti}. Заполнение синглетной зоны возбуждений в *I-I*-подрешетке приведет к увеличению параметра упорядочения димеров q (4), а в К-К-подрешетке — к резкому уменьшению параметра q. Расщепление на подзоны качественно определим по величине изменения от температуры параметра димеризации $q^{x,y,z}$ и ближних корреляционных функций $\langle S_0^{\alpha} S_1^{\beta} \rangle$ по продольным и поперечным компонентам спина.

Рис. 2. Температурная зависимость корреляционных радиусов двухспиновой (сплошная линия на рис. *a* и ∎ на рис. *b*) и четырехспиновой (штриховая линия на рис. *a* и • на рис. *b*) корреляционных функций для антиферромагнитного состояния с λ =0.1, δ =0.15 (*a*) и для синглетного состояния с λ =0.05, δ =0.14, $h^{+,-}$ =1.4 h^{z} (*b*)

Рис. 3. Зависимость параметра упорядочения димеров q^{α} ($\alpha = z$ (\Box), $x, y = (\circ)$ от температуры в антиферромагнетике с $\lambda = 0.1, \delta = 0.15$. На вставке изображена зависимость производной $d\langle S_0^{\alpha}S_1^{\beta}\rangle/dT$ с $\alpha, \beta = z$ (пунктирная линия) и с $\alpha = +, \beta = -$ (сплошная линия) от температуры

Температурные зависимости указанных выше характеристик вычислены для трех параметров межцепочечного обмена, $\lambda = 0.05, 0.1, 0.25$, и соответствующих величин альтернирования обмена, $\delta = 0.05$, $0.075, 0.12, 0.14, 0.2; \delta = 0.1, 0.15, 0.2, 0.3, 0.45,$ 0.6; $\delta = 0.15, 0.3, 0.45, 0.6, 0.75$. Значения критических температур определены по максимумам корреляционных радиусов $\xi_2(T)$, $\xi_4(T)$, изображенных на рис. 2 для антиферромагнитного и синглетного состояний, по максимальному изменению продольной компоненты квадрата полного спина $\langle (S^z)^2 \rangle$, т. е. по максимумам $d\langle (S^z)^2 \rangle/dT$ и экстремальным точкам температурной зависимости q(T), приведенным на рис. 3. На основе анализа температурного поведения восприимчивости $\chi(T)$ (рис. 4) критические температуры ассоциировались с энергией заполнения триплетной ($\chi = \max$) и синглетной ($\chi = \min$) зон спинонных возбуждений. Заполнение этих зон образует три максимума на температурной зависимости теплоемкости (рис. 4).

Качественная оценка соотношения между этими температурами, $T_{ti} - T_{si} \propto \sqrt{\lambda^2 \pm 2\delta\lambda + \delta^2}$, где знак минус соответствует T_{s1} , а плюс — T_{s2} , по-видимому, будет справедлива и для энергетических щелей между этими зонами возбуждений. Еще более слабым эффектом является расщепление под действием подрешеточного поля предполагаемых спиновых зон, которое проявляется для $\delta > 0.1$. Температура, при которой изменение корреляционной функции между ближайшими соседями по продольным компонентам спина значительно превышает это изменение по поперечным (наиболее ярко это проявляется при вычислении $d\langle S_0^{s,+}S_1^{z,-}\rangle/dT$ (вставка на рис. 3)), относится к энергии возбуждения продольной спинонной моды. В синглетном состоянии на расстоянии порядка корреляционного радиуса подрешеточное поле оказывает воздействие на спиновые возбуждения с длиной волны $\sim \pi/\xi$ и для $\delta \gg \delta_c$ эффект взаимодействия цепочек не сказывается на перераспределении плотности спиновых возбуждений (по сравнению с одномерной цепочкой) при $\lambda \leq 0.01$. Возможно, что каждая спинонная подзона характеризуется определенным волновым вектором структуры $Q_i < \pi/a$, который можно найти из фурье-спектра спиновой корреляционной функции S(q), определенного в синглетном состоянии на расстоянии $k \sim 1/\xi_2$. Так, S(q) в синглетном состоянии содержит слабые дополнительные максимумы на Q_i , количество которых растет с повышением температуры.

Температура Нееля определялась из подрешеточной намагниченности $\sigma \rightarrow 0$. В области значений альтернирования связей, близких к крити-

Рис. 4. *а*) Температурная зависимость восприимчивости, вычисленная в подрешеточном поле $h^{+,-} = 0$ (\Box) и $h^{+,-} \neq 0$ (\blacksquare) согласно (3) в антиферромагнетике с $\lambda = 0.1$, $\delta = 0.15$. На вставке приведена $\chi(T)$ в синглетном состоянии с $\lambda = 0.05$, $\delta = 0.14$, $h^{+,-} = 1.4h^z$. *б*) Зависимость теплоемкости от температуры в антиферромагнетике с альтернированным обменом и параметрами $\lambda = 0.1$, $\delta = 0.15$ (сплошная линия); $\lambda = 0.05$, $\delta = 0.14$ (\blacksquare)

Рис.5. Критические температуры, связанные с энергией заполнения синглетных (1, 2, 7, 8) и триплетных (3, 4, 5, 6) спинонных зон, в зависимости от величины альтернирования обмена для $h^{+,-} \neq h^z$ (a). Фазовая диаграмма антиферромагнетика (AF), синглетного состояния (SS) и парамагнетика (PM) на плоскости нормированная температура — нормированная величина альтернирования обмена для $h^{+,-} = h^z$ (б)

ческим, в температурном поведении намагниченности отчетливо проявляются два резких спада, например для $\delta = 0.15, \lambda = 0.1$ при $T_{s1}/J_1 = 0.06,$ $T_t/J_1 = 0.11$, которые ассоциируются с заполнением триплетной спинонной зоны возбуждений в интервале температур $T_{s1} < T < T_t$ и спин-волновой зоны при $T > T_t$. Вычисленные критические температуры для $\lambda = 0.1$ приведены на рис. 5. Из этой диаграммы становится понятным исчезновение дальнего антиферромагнитного порядка. С ростом альтернирования обмена плотность спин-волновых возбуждений уменьшается и исчезает при $T_N \sim T_t$. В случае равенства подрешеточных полей, $h^{+,-} = h^z$, расщепление на подзоны исчезает, и для синглетного и парамагнитного состояний существуют только две критические температуры, выше и ниже температуры спин-пайерлсовского перехода, изображенные на рис. 5 штриховыми и пунктирными линиями. С симметрийной точки зрения можно выделить три фазы на плоскости температура — альтернирование обмена: область с дальним антиферромагнитным порядком, область, где термодинамическое значение спина равно нулю, т. е. синглетное состояние, и область, где $\langle S^z \rangle \sim H/k_B T$, т. е. парамагнитное состояние. Фазовые диаграммы (см. рис. 56), вычисленные для трех параметров λ в нормированных единицах, совпадают между собой в пределах погрешности вычислений.

На основе полученных результатов можно объяснить ряд непонятных экспериментальных данных в антиферромагнетике CuWO₄ с альтернированным обменом [2]: существование энергетической щели в центре зоны спектра спиновых возбуждений при $\omega = 1.4$ мэВ, разные температурные зависимости интенсивности спиновых мод, одна из которых исчезает при T = 24 K, другая — бесщелевая — сохраняется и при T = 36 K [2]. Температурная зависимость восприимчивости в области 40 < T < 70 К имеет вогнутый вид [9]. Вычисленные нами параметры внутрицепочечного обмена J = 11.6 мэВ, K = 8.9 мэВ хорошо согласуются с результатами нейтронографических измерений J = 11.56, K = 9.25 мэВ [26]. Величина межцепочечного обмена $J_2 \sim 1$ мэВ неплохо согласуется со средним значением $J_2 \approx 1.7$ мэВ [2]. Согласно расчетам по методу Монте-Карло в интервале температур 17 < T < 24 К заполняется спинонная триплетная зона. Бесщелевая мода при T > 24 K соответствует спин-волновым возбуждениям, которые должны исчезнуть при $T_c \approx 40$ К. В области температур 52 < T < 86 К заполняется зона синглетных возбуждений, которые не дают вклада в магнитную восприимчивость, что обусловливает прогиб в температурном поведении $\chi(T)$. Возможно, что при T < 12 К существует еще одна синглетная мода с энергией щели $\omega \sim 0.7$ мэВ.

Ряд энергетических щелей в центре зоны в Bi_2CuO_4 [4, 7] с тетрагональной симметрией P4/nccи альтернированным обменом в направлении [111] можно объяснить существованием синглетных и триплетных спинонных возбуждений. Зависимости резонансного поля H_0 и поля анизотропии H_a от температуры являются немонотонными и их производные dH_0/dT и dH_a/dT имеют несколько разных по величине максимумов при соответствующих температурах, $T_{ci} = 8, 12, 18, 26$ К и $T_{ci} = 7, 11, 17,$ 26, 38 [10]. При выбранных параметрах внутри- и межцепочечного обмена, $J_1 = 107 \,\mathrm{K}, J_2 = 28 \,\mathrm{K}$, величины альтернирования обмена $\delta = 0.2$, а также вычисленные нами критические температуры, связанные с заполнением расщепленных синглетных и триплетной спинонных зон при $T_{ci}^{MC} \simeq 7, 11, 15,$ 25, 30, 35, неплохо согласуются с экспериментальными результатами. Возможно, энергетические щели в центре зоны Бриллюэна при $\omega_{s1} = 0.7$ мэВ и $\omega_{s2} = 3.4, 4$ мэВ вызваны синглетными возбуждениями продольных и поперечных спинонных мод, а при $\omega_t = 1, 7, 2.1$ мэВ — триплетными возбуждениями.

Несколько мод спиновых возбуждений существуют и в синглетных магнетиках с альтернированным обменом. Например, в $(VO)_2P_2O_7$ обнаружены две щели при $\omega = 3.12, 5.75 \text{ мэВ}$ [5]. Возможно, в этом соединении имеется еще одна синглетная мода со щелью в центре зоны при $\omega \simeq 0.6$ мэВ и со слабой интенсивностью. Для $\lambda \simeq 0.02$ [5] рассчитанная нами величина альтернирования обмена $\delta \approx 0.15(2)$ лежит в интервале значений $\delta_n = 0.12$ и $\delta_{\chi} = 0.18$, определенных соответственно в экспериментах по нейтронному резонансу (n)[5] и из температурной зависимости восприимчивости [27].

Наиболее полно исследовано соединение CuGeO₃ со спин-пайерлсовским переходом. Согласно нейтронографическим данным отношение обменных взаимодействий составляет $J_c: J_b: J_a = 100: 10: 1$ [28] и по нашим оценкам для $\delta > \delta_c \simeq 0.1$ магнетик с таким соотношением обменов может находится в синглетном состоянии. С помощью данных по неупругому рассеянию нейтронов обнаружены три щели в центре зоны при $\omega_i = 0.8$ мэВ (1.9–2.1) мэВ [29], $4(\pm 1)$ мэB [30] и широкий максимум рассеяния нейтронов при $\omega \simeq 6$ мэВ [29], два значения которых близки к результатам $\omega = 1.86, 4.74$ мэВ, полученным из ЭПР-измерений [14]. Рассеяние света на границе зоны Бриллюэна также приводит к трем энергетическим щелям $\omega_i = 2.2, 3.6, 5.8 \text{ мэВ}$ [31, 32]. Магнитная теплопроводность в магнитном поле до H = 14 Тл имеет два максимума при T = 5.5, 22 К [16], ширина линии ЭПР расходится при $T \simeq 4$, 14 К [15]. В магнитном поле, приложенном вдоль оси с, температурная зависимость констант магнитострикции имеет три максимума при $T \simeq 6, 13,$ 26 К и в поле $H \parallel b$ при $T \simeq 4, 11, 20$ К [17].

Все эти результаты хорошо объясняются при выборе двух параметров внутрицепочечного обмена, I = 145 К и K = 109 К, которые неплохо согласуются с данными, полученными на основе 1D-модели Гейзенберга, в рамках которой вычислена триплетная щель $\omega \simeq 2$ мэВ [33] и температура спин-пайерлсовского перехода $T_{sp} = 14$ К. Обнаружение термодинамических аномалий выше и ниже T_{sp} , дополнительных энергетических щелей, анизотропии критических магнитных полей, которые различаются в пределах $\sim 10\%$, когда поле приложено по оси альтернирования обмена $H_c = 13.9$ Тл и перпендикулярно ей $H_b = 12.6$ Тл [34], остается необъясненным. Как указывалось ранее, на расстоянии порядка корреляционного радиуса $\xi_2 \simeq 10c$, межцепочечное взаимодействие приводит к расщеплению низкоэнергетической зоны синглетных возбуждений относительно ее центра на продольную и поперечную моды возбуждений с энергией щели $\omega_b~\simeq~0.5$ мэВ, $\omega_c~\simeq~0.8$ мэВ и соответствующими критическими температурами $T_b \simeq 3.7$ K, $T_c \simeq 6 \, {\rm K};$ расщеплению триплетных мод с энергией щелей $\omega_b \simeq 1.7$ мэВ, $\omega_c \simeq 2$ мэВ и соответствующими критическими температурами $T_b \simeq 14$ K, $T_c \simeq 18$ K, а также расщеплению высокоэнергетических продольных и поперечных синглетных мод с $\omega_b~\simeq~4.5\,$ мэВ, $\omega_c~\simeq~5.8\,$ мэВ и соответствующими температурам
и $T_b~\simeq~30$ К, $T_c~\simeq~39$ К. Однако при $T > T_{sp}$ в CuGeO₃ наблюдаются небольшие структурные искажения, которые приводят к изменению величины обмена и его альтернирования. Поэтому в области температур $20\,<\,T\,<\,26$ К можно говорить о качественном согласии величины температурного интервала $\Delta T_{ex} = 6$ К с результатами расчетов по методу Монте-Карло $\Delta T_{MC} = 9$ К. Возможно, в CuGeO3 в синглетном состоянии ось квантования направлена по оси b, и тогда хорошо объясняется анизотропия критического магнитного поля. Таким образом, наши расчеты предсказывают поляризационную зависимость рассеяния света, неупругого рассеяния нейтронов вдоль оси димеризации цепочки. В области низких температур система является нелинейной, поэтому для вычисления резонансных частот поглощения необходимо пользоваться определением нелинейной восприимчивости $M_{\gamma}^3 = \chi_{\gamma,\alpha,\beta,\delta} H_{\beta} H_{\alpha} H_{\delta}$. Возможно, в результате нелинейного взаимодействия поля со спиновой подсистемой происходит переход из основного синглетного в возбужденное синглетное состояние, которое наблюдается при ЭПР-изменениях на частоте $\omega = 294$ ГГц [14], и переходы между подзонами $\psi_l^s \rightarrow \psi_t^s$ на частоте f = 34 ГГц в поле $H \approx 12$ кЭ [15]. Интенсивность обоих резонансов имеет максимум при T = 6 К и исчезает при T < 2 K, что хорошо согласуется с нашими оценками для энергии синглетной щели и критической температуры.

Итак, дальний антиферромагнитный порядок в квазинизкомерном антиферромагнетике с альтернированным обменом сохраняется при $\lambda \leq 0.52(3)\delta$. Альтернирование вызывает квантовое сокращение спина на узле $\sigma/\sigma(0) - 1 = 0.71(6)\delta^{2.5(2)}$, $\sigma(0) = 1.9\sqrt{\lambda}$. В альтернированном антиферромагнетике и в синглетном состоянии обнаружены несколько температур, при которых корреляционные радиусы максимальны, а термодинамические характеристики имеют особенности, которые интерпретируются в рамках модели дополнительных

спинонных синглетных и триплетных возбуждений. Под действием подрешеточного самосогласованного поля $(h^{+,-} \neq h^z)$ спинонные зоны расщепляются на продольные и поперечные моды возбуждений. С помощью динамического скейлинга между временем релаксации и корреляционным радиусом вычислены температуры, соответствующие максимумам производных поля резонанса и ширин линий от температуры в Bi₂CuO₄. Предсказаны возможные спинонные моды возбуждений и энергетические щели в центре зоны в антиферромагнитных состояниях соединений CuWO₄, Bi₂CuO₄ и в синглетных $(VO)_2P_2O_7$, состояниях соединений CuGeO₃. Вычислены температуры, соответствующие максимумам магнитной теплопроводности, константы магнитострикции и расходимости ширины линии ЭПР в CuGeO₃. Предсказана поляризационная зависимость рассеяния света и нейтронов вдоль оси димеризации цепочки.

Работа выполнена при финансовой поддержке INTAS (грант № 97-12124).

ЛИТЕРАТУРА

- D. Khomskii, W. Geertsma, and M. Mostovoy, Czech. J. Phys. 46, suppl., pt. 56, 3239 (1996).
- B. Lake, D. A. Tennant, R. A. Cowley, J. D. Axe, and C. K. Chen, J. Phys. Cond. Mat. 8, 8613 (1996).
- K. Yamada, K. Takada, S. Hosoya, Y. Endoh, and N. Tomonaga, J. Phys. Soc. Jap. 60, 2406 (1991).
- B. Roessli, P. Fischer, A. Furrer, G. Petrakovskii, K. Sablina, and B. Fedoseev, J. Apl. Phys. 73, 6448 (1993).
- A. W. Garrett, S. E. Nagler, D. A. Tennant, B. C. Sales, and S. Burnes, Phys. Rev. Lett. 79, 745 (1997).
- M. Hirotaka and Y. Isao, J. Phys. Soc. Jap. 66, 1908 (1997).
- G. A. Petrakovskii, K. A. Sablina, A. I. Pankrats et al., JMMM 140, 1991 (1995).
- M. Ain, G. Dhalenne, O. Guiselin, B. Hennion, and A. Revcolevschi, Phys. Rev. B 47, 8167 (1993-I).
- А. Г. Андерс, А. И. Звягин, М. И. Кобец, Л. Н. Пелих, Е. Н. Хацько, В. Г. Юрко, ЖЭТФ 62, 1798 (1972).
- A. I. Pankrats, G. A. Petrakovskii, and K. A. Sablina, Sol. St. Comm. 91, 121 (1994).
- **11**. Ю. П. Гайдуков, В. Н. Никифоров, Н. Н. Самарин, ФНТ **22**, 920 (1996).

- L. N. Bulaevskii, A. I. Buzdin, and D. I. Khomskii, Sol. St. Comm. 27, 5 (1978).
- 13. G. S. Uhriy, Phys. Rev. Lett. 79, 163 (1997).
- 14. T. M. Brill, J. P. Boucher, J. Voiron et al., Phys. Rev. Lett. 73, 1545 (1994).
- А. И. Смирнов, В. Н. Глазнов, Л. И. Леонюк и др., ЖЭТФ 114, 1876 (1998).
- 16. Y. Ando, J. Takeya, D. L. Sisson, S. G. Doettinger et al., Phys. Rev. B 58, R2913 (1998).
- 17. Г. А. Петраковский, А. М. Воротынов, Г. Шимчак, Л. Гладчук, ФТТ 40, 1671 (1998).
- 18. L. D. Fadeev and L. A. Takhtajan, Phys. Lett. A 85, 375 (1981).
- D. J. Scalapino, Y. Imry, and I. Pencus, Phys. Rev. B 11, 2042 (1975).
- 20. H. J. Schulz, Phys. Rev. Lett. 77, 2790 (1996).
- 21. H. Raedt and A. Lagendijk, Phys. Rep. 127, 233 (1985).
- 22. С. С. Аплеснин, ФТТ 38, 1868 (1996).
- 23. N. Kawashima and J. E. Gubernatis, Phys. Rev. Lett.
 73, 1295 (1994).
- 24. P. W. Anderson, Mater. Res. Bull. 8, 153 (1973).

- 25. M. C. Gross and D. S. Fisher, Phys. Rev. B 19, 402 (1979).
- 26. J. P. Doumerc, J. M. Dance, J. P. Chaminade, M. Poucherd, P. Hagemuller, and M. Krussamova, Res. Bull. 16, 985 (1981).
- 27. G. Barnes, Phys. Rev. B 35, 219 (1987).
- M. Nishi, O. Fujita, and J. Akimitsu, Technical Report of ISSR ser. A 2759, 1 (1993).
- 29. M. Ain, J. E. Lorenzo, L. P. Regnault, and G. Dhalenna, Phys. Rev. Lett. 78, 1560 (1997).
- 30. B. Roessli, P. Fischer, J. Schefer, W. Buhrer et al., J. Phys. Cond. Matter 6, 8469 (1994).
- A. Damascelli, Vander Marel, F. Parmigiani, G. Dhalenns, and A. Revcolevschi, Phys. Rev. B 56, R11373 (1997).
- 32. G. Els, P. H. M. Loostrecht, and P. Lemmens, Phys. Rev. Lett. 79, 5138 (1997).
- 33. N. Nishi, O. Fujita, J. Akimitsu, K. Kakurai, and Y. Fujii, Phys. Rev. B 52, R6959 (1995-II).
- 34. H. Hori, M. Furesocwa, S. Sugai, M. Honda, and T. Takeuchi, Physica B 211, 180 (1995).