КОАГУЛЯЦИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ В ПЫЛЕВОЙ ПЛАЗМЕ

И. А. Белов^a, А. С. Иванов^a, Д. А. Иванов^a, А. Ф. Паль^b^{*}, А. Н. Старостин^b, А. В. Филиппов^b, А. В. Демьянов^b, Ю. В. Петрушевич^b

> ^а Российский научный центр «Курчатовский институт» 123182, Москва, Россия ^b Государственный научный центр Российской федерации Троицкий институт инновационных и термоядерных исследований (ТРИНИТИ)

142092, Троицк, Московская обл., Россия

Поступила в редакцию 3 июня 1999 г.

Исследованы особенности поведения малых частиц в пылевой плазме, обусловленные, с одной стороны, подавлением коагуляции вследствие монополярной зарядки в области размеров частиц меньше дебаевского радиуса экранирования и, с другой, нивелированием этого обстоятельства для частиц больших размеров. На основании соотношений подобия, связывающих состав плазмы и заряд частиц с параметрами пылевой компоненты, определена область параметров, при которых справедлива линейная аппроксимация зависимости заряда частиц от их размера. В рамках модифицированной классической теории коагуляции в диффузионном приближении изучены некоторые аномалии в поведении распределения частиц по размерам. Установлено, что в отличие от обычного аэрозоля, в пылевой плазме с течением времени возможно уменьшение дисперсии распределения и среднего размера частиц. Впервые показана возможность реализации долгоживущего «квазижидкого» состояния пылевой плазмы, связанного с аномальным поведением функции распределения коагулирующих заряженных частиц по размерам.

PACS: 51.50.+v; 52.25.-b; 92.60.Mt

1. ВВЕДЕНИЕ

Интерес к проблеме малых частиц в пылевой плазме обусловлен их довольно своеобразным и не всегда понятным поведением в лабораторных экспериментах. Прежде всего сюда следует отнести наблюдение квазикристаллических левитирующих пылевых структур, появление которых связывают, как правило, с сильной неидеальностью пылевой плазмы и возникающим в рассматриваемых условиях дальнодействующим взаимодействием частиц [1]. Поскольку пылевая плазма возникает в ряде случаев самопроизвольно в процессе разложения и последующей нуклеации в газовом разряде исходного вещества, для процессов самоорганизации пылевой плазмы важной является коагуляция частиц. Исследование коагуляции частиц в пылевой плазме также актуально в проблеме переноса вещества и загрязнения поверхностей при производстве полупроводниковых приборов [2]. Близкие вопросы возникают и в задачах, связанных с плазмохимическими технологиями получения порошковых материалов [3].

висимости от условий эксперимента наблюдали целый ряд возникающих в процессе коагуляции различных объектов, от частиц со сложной структурой поверхности типа «цветной капусты» до фрактальных кластеров с разветвленными дендритными ответвлениями [4, 5]. Явление коагуляции достаточно подробно изуча-

В последнем случае коагуляция является одним из основных механизмов роста пылинок. При этом в за-

ли при исследовании поведения различного рода аэрозолей, в том числе заряженных [6]. В ситуациях, встречающихся на практике, например в атмосферных облаках, как правило, наблюдается биполярная зарядка, иногда смещенная за счет включения различных механизмов заряжения частиц. В частности, если имеет место диффузионная зарядка в слабоионизированной атмосфере, наблюдается в среднем незначительное, практически симметричное заряжение с больцмановским распределением зарядов по частицам. Это обусловлено малой концентрацией электронов в атмосфере, содержащей электроотрицательные газы. Зарядка в таком случае осуществляется потоками положительных и отрицатель-

^{*}E-mail: afpal@fly.triniti.troitsk.ru, afpal@mics.msu.su

ных ионов, обладающих близкими друг другу значениями подвижности. Включение других механизмов, например, термо- или фотоэмиссии, электризации при диспергировании, естественно, смещает распределение зарядов в ту или иную сторону.

Заряжение частиц в плазме, имеющей достаточно высокую концентрацию электронов, обладает существенными отличиями. Вследствие значительной разницы в подвижностях электронов и положительных ионов возникает монополярная зарядка с весьма большими отрицательными зарядами дисперсных частиц [1].

В качестве объекта исследований в настоящей работе рассматривается плазма, создаваемая ионизацией газов (например, ксенона) продуктами распада радиоактивных пылевых частиц со следующими характерными параметрами: скорость рождения электрон-ионных пар 10¹⁵-10¹⁶ см⁻³·с⁻¹, давление ~ 1 атм, концентрация электронов при этом $\sim 10^{10} - 10^{11}$ см⁻³, времена заряжения пылинок 10^{-5} – 10^{-6} c, размеры пылинок до 100 мкм, концентрация пылинок до 10⁷ см⁻³. Такая плазма может представлять интерес для создания ядерной батареи на основе радиоактивных отходов [7]. При этом распределение зарядов по частицам жестко связано с их размерами. Таким образом, функция распределения частиц по размерам оказывается одной из наиболее важных характеристик, описывающих поведение и свойства пылевой плазмы. Функция распределения формируется, в основном, в результате процессов коагуляции и осаждения пылевых частиц. В ряде работ [8,9] было высказано предположение об установлении квазистационарного распределения частиц по размерам. Когда достигается такое состояние, прирост частиц данного размера уравновешивается их потерями в результате коагуляции и осаждения. При этом для очень мелких частиц незначительны потери при осаждении, а для сравнительно крупных можно пренебречь коагуляцией.

Известно [10], что скорость коагуляции может возрастать или уменьшаться в зависимости от знаков и величин зарядов на частицах. Отношение констант коагуляции для заряженных и незаряженных частиц впервые рассчитано Фуксом [6]. Было показано, что для слабозаряженного биполярного аэрозоля увеличение коагуляции вследствие притяжения в значительной степени компенсируется уменьшением, вызванным отталкиванием. В то же время для сильнозаряженного биполярного аэрозоля возрастание коагуляции благодаря притяжению значительно превосходит ее уменьшение вследствие отталкивания, при этом скорость коагуляции возрастает.

Согласно [10], для монополярно заряженного аэрозоля электростатическое отталкивание приво-

дит к удалению одноименно заряженных частиц друг от друга, снижает скорость коагуляции и вызывает уменьшение концентрации аэрозоля. Отметим, что последнее утверждение вполне справедливо лишь при нарушении интегральной электронейтральности рассматриваемой системы.

Особенности поведения частиц в пылевой плазме, связанные, с одной стороны, с подавлением коагуляции вследствие монополярной зарядки в области размеров частиц меньше дебаевского радиуса экранирования R_d и, с другой, с нивелированием этого обстоятельства для размеров больше R_d , приводит к нарушению выявленных закономерностей.

В настоящей работе проведено исследование влияния некоторых аномалий в процессе коагуляции на поведение функции распределения частиц по размерам в пылевой плазме. Впервые показана возможность реализации долгоживущего «квазижидкого» состояния пылевой плазмы, связанного с аномальным поведением функции распределения коагулирующих заряженных частиц по размерам.

2. СОСТАВ ПЛАЗМЫ И ЗАРЯЖЕНИЕ МАЛЫХ ЧАСТИЦ

Прежде всего необходимо провести анализ зарядового состояния малых частиц и установить связь между величиной заряда, размером частиц и составом плазмы при заданных условиях (например, при заданной мощности источника ионизации). В настоящей работе рассматривается плазма без отрицательных ионов. Как уже отмечалось выше, при попадании в плазму дисперсные частицы заряжаются отрицательно, в основном вследствие того, что подвижность электронов существенно превышает подвижность ионов. Характерное время зарядки частиц составляет 10⁻⁵-10⁻⁶ с [10]. Следует отметить, что характерное время разрядки, определяемое диффузией ионов, заметно больше приведенных цифр, но все же существенно меньше характерных времен изменения функции распределения частиц по размерам за счет коагуляции в широком диапазоне размеров и концентраций пылинок. В связи с этим задачи заряжения частиц и формирования функции распределения могут быть разделены и решены последовательно. Оценка заряжения частиц в плазме выполнена в ряде работ [7, 11]. Величина стационарного заряда определяется из условия равенства электронного и ионного потоков на частицу. Легко показать, что заряд частиц q в случае малых концентраций пылинок N_d является линейной функцией радиуса:

 $eq = r_d U,$

где U — плавающий потенциал, r_d — радиус частицы, e — элементарный заряд. Однако с ростом N_d это соотношение нарушается. Поскольку зависимость заряда от радиуса частицы является базовой для исследования процесса коагуляции, необходимо более детально изучить эту зависимость и оценить область параметров ее применимости.

Положим для определенности, что число пар ионов и электронов, образующихся в единице объема плазмы в единицу времени, равно Q. Такая плазма создается внешним ионизатором, например, электронным пучком, или радиоактивными пылинками. Поместим в плазму частицы аэрозоля и оценим их заряд в диффузионном приближении. Мы предполагаем, что длина свободного пробега ионов и электронов много меньше размеров частиц. При атмосферном давлении это условие выполняется для частиц размером $\geq 10^{-4}$ см.

Состав плазмы определяется уравнением сохранения заряда (условие квазинейтральности плазмы) и уравнением непрерывности для электронов и ионов:

$$\frac{\partial N_{-}}{\partial t} + \operatorname{div} \mathbf{j}_{-} = Q - \beta N_{-} N_{+},$$

$$\frac{\partial N_{+}}{\partial t} + \operatorname{div} \mathbf{j}_{+} = Q - \beta N_{-} N_{+},$$

$$\sum_{k} q_{k} n_{dk} + N_{+} = N_{-},$$

$$\operatorname{rot} \mathbf{E} = 0,$$

$$\mathbf{j}_{-} = -D_{-} \nabla N_{-} - K_{-} N_{-} \mathbf{E},$$

$$\mathbf{j}_{+} = -D_{+} \nabla N_{+} + K_{+} N_{+} \mathbf{E}.$$
(1)

Здесь N_{\pm} , \mathbf{j}_{\pm} , D_{\pm} , K_{\pm} — концентрации, плотности тока, коэффициенты диффузии и подвижности ионов (с индексами «+») и электронов (с индексами «-»), \mathbf{E} — напряженность электрического поля, β — коэффициент электрон-ионной рекомбинации; $n_{dk} = n_d(r_k)$ — концентрация частиц с размерами от r_k до r_{k+1} (см. ниже). Эволюция функции распределения частиц по размерам рассматривается в следующем разделе.

В стационарном и в сферически-симметричном случае для токов J_{\pm} можно получить [11]:

$$J_{\pm} = 4\pi e r^2 \left(\pm D_{\pm} \frac{\partial N_{\pm}}{\partial r} - K_{\pm} E N_{\pm} \right).$$
(2)

Подвижности K_{\pm} и коэффициенты диффузии D_{\pm} ионов и электронов связаны соотношениями Эйнштейна

$$kT_{\pm}K_{\pm} = eD_{\pm},\tag{3}$$

где k — постоянная Больцмана, T_{\pm} — температура.

Положим, что заряд частицы в области наиболее сильного изменения плотности ионов и электронов

не экранируется плазмой и напряженность электрического поля в этой области определяется законом Кулона. Данное положение справедливо, главным образом, при выполнении условия

$$L_+ \ll a_d, \tag{4}$$

где

$$L_{+} = \frac{N_{+}^{\infty}}{\left| (\partial N_{+} / \partial r) \right|_{r=r_{d}}}$$

 — характерный размер области наиболее сильного изменения концентрации ионов,

$$a_d = \frac{1}{\sqrt[3]{(4/3)\pi N_d}}$$

— среднее межчастичное расстояние. Отметим, что условие (4) заведомо выполняется при выполнении более простого для оценок условия: $r_d \ll a_d$. Если заряд частицы $|q| \sim 10^2$ и радиус $r_d \sim 10^{-4}$ см, то поле $E \approx 1500$ В/см. Приведенная напряженность электрического поля при атмосферном давлении оказывается достаточно высокой $E/N_0 \approx 5 \cdot 10^{-17}$ В·см² (N_0 — число атомов в единице объема) и происходит отрыв температуры электронов, достигающей в среде инертных газов величины 1–5 эВ.

В стационарном состоянии при выполнении условия (4) для токов справедливо соотношение

$$J_{+} = -J_{-} \approx \text{const.}$$
 (5)

Интегрируя соотношение (5) для случая монодисперсного аэрозоля $n_{dk} = N_d$, $q_k = q$, $r_k = r_d$ для всех частиц с граничными условиями

$$N_{\pm}|_{r=\infty} = N_{\pm}^{\infty}, \quad N_{\pm}|_{r=r_d} = 0,$$
 (6)

находим выражение, связывающее концентрации ионов и электронов вдали от пылевой частицы:

$$\frac{N_{-}^{\infty}}{N_{+}^{\infty}} = \frac{K_{+}}{K_{-}} \frac{1 - \exp\{-qe^{2}/kT_{-}r_{d}\}}{\exp\{qe^{2}/kT_{+}r_{d}\} - 1}.$$
 (7)

Это выражение совпадает с выражением для определения заряда пылевой частицы, полученным в приближении ограниченной орбитали (см. [1]) с естественной заменой отношения скоростей теплового движения ионов и электронов на отношение скоростей дрейфа или, в конечном счете, подвижностей в рамках диффузионного приближения. Принимая во внимание, что $T_- \gg T_+$ и $K_- \gg K_+$, для случая $N^+_+ \approx N^-_-$ из (7) имеем

$$q = -\frac{kT_{-}r_{d}}{e^{2}}\ln\left(1 + \frac{K_{-}}{K_{+}}\right).$$
 (8)

Таким образом, заряд частиц отрицателен и определяется температурой электронов. В частности, в ксеноне при радиусе $r_d = 10^{-4}$ см и $kT_- = 2$ эВ, $|q| \approx 10^4$. Отношение подвижностей в ксеноне, согласно [12,13], в рассматриваемых условиях $K_-/K_+ \approx 10^3$.

Условие равенства концентраций ионов и электронов на бесконечности выполняется в случае сравнительно невысоких концентраций аэрозольных частиц и достаточно интенсивной ионизации газа, когда концентрация электронов значительно превышает суммарный заряд, собранный на частицах пыли в единице объема. Однако, согласно приведенной оценке заряда, уже при концентрациях пыли $N_d \sim 10^7$ см⁻³ и $N_- \sim 10^{11}$ см⁻³ это условие нарушается.

Попытаемся оценить влияние изменения концентрации электронов на эффект зарядки пылевых частии. В рамках изложенного подхода эта задача может быть решена путем переопределения концентраций электронов и ионов на бесконечности. При выполнении условия (4) можно положить, что эти величины совпадают со средними по объему плазмы \overline{N}_{\pm} . Состав плазмы определяется уравнениями квазинейтральности и баланса скоростей рождения и гибели электронов и ионов:

$$\overline{N}_{+} = \overline{N}_{-} - qN_{d},$$

$$Q = \beta \overline{N}_{+} \overline{N}_{-} + J_{+} N_{d} / e.$$
(9)

Дополнив эти уравнения соотношением (7), связывающим концентрации электронов и ионов вдали от частицы, после несложных преобразований находим систему уравнений для определения заряда q и концентраций \overline{N}_+ и \overline{N}_- :

$$\overline{N}_{+} = \overline{N}_{-} - qN_{d},$$

$$Q = (\beta - \beta_{id}) \overline{N}_{+} \overline{N}_{-} + \beta_{id} \overline{N}_{+}^{2},$$

$$\overline{N}_{-} = \frac{K_{+}}{K_{-}} \frac{1 - \exp\{-qe^{2}/r_{d}kT_{-}\}}{\exp\{qe^{2}/r_{d}kT_{+}\} - 1},$$
(10)

где β_{id} — эффективный коэффициент рекомбинации ионов на частицах пыли, который определяется соотношением

$$\beta_{id} = \frac{4\pi e K_+}{1 - \exp\{q e^2 / r_d k T_+\}} \,. \tag{11}$$

При выполнении условия (4) выражение для β_{id} упрощается и принимает вид

$$\beta_{id} = 4\pi e K_+. \tag{12}$$

Такой же вид имеет выражение для коэффициента

ион-ионной рекомбинации в теории Ланжевена [13] в случае, когда один из ионов (в нашем случае отрицательно заряженная пылевая частица) имеет практически нулевую подвижность.

Легко видеть, что зависимость \overline{N}_+ и \overline{N}_- от параметров пылевой компоненты плазмы определяется отношением q/r_d . Поэтому, согласно (10), само отношение q/r_d является функцией произведения $N_d r_d = \xi$. В связи с этим имеют место следующие соотношения подобия:

$$\overline{N}_{-} = f_1(\xi, Q),$$

$$\overline{N}_{+} = f_2(\xi, Q),$$

$$q/r_d = f_3(\xi, Q).$$
(13)

Если положить, что $q \sim r_d$, т.е. $f_3(\xi, Q) = \text{const}$, то ξ пропорционально суммарному заряду, собранному на частицах аэрозоля. При этом соотношения (13) имеют достаточно простой смысл, заключающийся в том, что состав плазмы определяется только мощностью источника и суммарным зарядом, собранным диспергированным в ней аэрозолем. Отметим, что если $f_3 \neq \text{const}$, то параметр ξ уже не характеризует суммарный заряд и простая интерпретация соотношений (13), по-видимому, затруднена. Вместе с тем, соотношения подобия остаются в силе и могут быть использованы при анализе экспериментальных результатов. Отметим, что соотношения подобия для решения системы уравнений (10) можно представить в более простом виде:

$$\overline{N}_{-}/\sqrt{Q} = f_{4}\left(\sqrt{Q}/\xi\right),$$

$$\overline{N}_{+}/\sqrt{Q} = f_{5}\left(\sqrt{Q}/\xi\right),$$

$$q/r_{d} = f_{6}\left(\sqrt{Q}/\xi\right).$$
(14)

На рис. 1–3 приведены численные решения системы (10) для различных скоростей ионизации ксенона при атмосферном давлении. Температура электронов принята равной 0.25 эВ, а ионов — 300 К. Приведенные к атмосферному давлению подвижности составляют: $K_{-} = 3000 \text{ см}^2/\text{B}\cdot\text{c}$ [12] и $K_{+} = 0.55 \text{ см}^2/\text{B}\cdot\text{c}$ [13]. Коэффициент диссоциативной рекомбинации Xe₂⁺ (основных ионов в плазме ксенона при атмосферном давлении) при указанной выше температуре электронов равен $\beta = 0.9 \cdot 10^{-6} \text{ см}^3/\text{c}$ [14].

Согласно проведенным расчетам, кривая $q(\xi)/r_d$ (рис. 1) по форме напоминает слегка размытую ступеньку Ферми. Плавающий потенциал частиц $U = eq/r_d$ остается почти постоянным в широком интервале параметров пылевой компоненты плазмы

Рис. 1. Отношение заряда к радиусу пылевых частиц в зависимости от параметра ξ при различных скоростях ионизации. Кривые 1-5 соответствуют скоростям ионизации $10^{13}-10^{17}$ см⁻³·с⁻¹

Рис.2. Средняя концентрация электронов $\overline{N}_{-}(\xi)$ при различных скоростях ионизации. Соответствие кривых и скоростей ионизации, как на рис. 1

в области $\xi \leq \xi_0$. Величина параметра ξ_0 определяется мощностью источника ионизации. В частности, для $Q = 10^{15}$ см⁻³·с⁻¹ это утверждение справедливо с достаточно хорошей точностью вплоть до $\xi = \xi_0 \approx 10^3$ см⁻². На плоскости (r_d, N_d) область $\xi \leq \xi_0$ расположена между осями координат и гиперболой $N_d = \xi_0/r_d$ (см. рис. 4). Плавающий потенциал частиц остается постоянным при условии, что скорость объемной гибели электронов и ионов за счет электрон-ионной рекомбинации значительно превосходит скорость их гибели на поверхности пылевых частиц. Из выражений (10) и (12) получаем, что это условие выполняется в области параметров

Рис. 3. Средняя концентрация ионов $\overline{N}_+(\xi)$ при различных скоростях ионизации. Соответствие кривых и скоростей ионизации, как на рис. 1

Рис.4. Область выполнения условия $\xi \leq \xi_0$ на плоскости (r_d, N_d) , где плавающий потенциал частиц остается практически постоянным

пылевой компоненты, где

$$\xi \ll \frac{e^2}{T_-} \frac{\sqrt{Q/\beta}}{\ln(1 + K_-/K_+)} \,. \tag{15}$$

Интересно отметить, что если исходные концентрации и размеры частиц аэрозоля удовлетворяют условию $\xi \leq \xi_0$, то в процессе коагуляции, сопровождающейся снижением концентрации частиц и ростом их размеров, неравенство $\xi \leq \xi_0$ остается в силе. Это позволяет провести исследование процесса коагуляции пылевых частиц при условии U = const, задавая исходное значение параметра ξ внутри заштрихованной области (рис. 4). В этом случае, как видно из системы уравнений (1), процесс заряда полидисперсной системы пылевых частиц с функцией распределения по размерам n_{dk} будет такой же, как для монодисперсной системы с параметрами $N_d = \sum_k n_{dk}$ и $r_d = \sum_k n_{dk} r_k / N_d$. Поэтому полученные в этом разделе результаты для монодисперсных частиц могут использоваться и для полидисперсных при соблюдении условия $\xi \leq \xi_0$.

3. ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ ЧАСТИЦ ПО РАЗМЕРАМ

Перейдем теперь к исследованию коагуляции частиц в пылевой плазме. В теории коагуляции аэрозолей обычно исходят из предположения, что частицы коагулируют, т.е. слипаются или сливаются, при каждом соприкосновении. Подтверждение этому можно найти в многочисленных экспериментах [10]. Но если частицы обладают достаточно большими одноименными зарядами, то это предположение кажется не вполне обоснованным из-за электростатического отталкивания. Однако следует иметь в виду, что аэрозольные частицы не являются точечными. Во многих практически интересных случаях частицы обладают достаточно высокой электропроводностью, поэтому на расстояниях, сравнимых с размерами частиц, существенную роль в их взаимодействии друг с другом играет поляризация. Эффект поляризации может быть столь значителен, что приводит к притяжению одноименно заряженных частиц пыли. Кроме того, важную роль во взаимодействии заряженных пылевых частиц играет экранирование зарядов в плазме. Поэтому для последовательного решения задачи коагуляции, вообще говоря, необходим самосогласованный расчет взаимодействия по крайней мере двух неточечных частиц в ионизированном газе.

В наиболее примитивной модели коагуляции монодисперсного аэрозоля для упрощения задачи предполагают, что одна из частиц неподвижна, и определяют частоту соприкосновения с ней других частиц, совершающих тепловое движение. При этом форма и размер неподвижной частицы считаются неизменными. Такой подход позволяет оценить изменение концентрации аэрозольных частиц во времени. Полагая, что каждое соприкосновение уменьшает число частиц на единицу, записывают основное уравнение коагуляции в виде [6]

$$\frac{dN_d}{dt} = -GN_d^2. \tag{16}$$

Константа коагуляции G выражается формулой

$$G = 8\pi r_d D, \tag{17}$$

где D — коэффициент диффузии пыли. Например, в воздухе константа коагуляции частиц размером 10^{-4} см составляет $3.44 \cdot 10^{-10}$ см³·с⁻¹ [6]. Согласно формуле (14), время уменьшения концентрации аэрозоля с $N_d = 3 \cdot 10^8$ см⁻³ вдвое равно $t_{1/2} = 1/GN_d \approx 10$ с.

Описание коагуляции полидисперсной системы с произвольным начальным распределением частиц по размерам основано на решении системы кинетических уравнений

$$\frac{\partial n_d(r_k, t)}{\partial t} =
= -\sum_i (1 - (1/2)\delta_{ik}) G(r_i, r_k) n_d(r_i, t) n_d(r_k, t) +
+ (1/2) \sum_i \sum_j G(r_i, r_j) \theta^k_{ij} n_d(r_i, t) n_d(r_j, t), \quad (18)$$

где $n_d(r_k, t)$ — концентрация частиц с радиусами от r_k до r_{k+1} в момент времени t, $G(r_i, r_j)$ — константы коагуляции частиц с радиусами r_i и r_j соответственно, δ_{ik} — символ Кронекера, θ_{ij}^k — коэффициент интерполяции $(i, j = 1 \div N)$, причем $(V_i$ — объем частицы радиуса r_i) [15]:

$$\begin{split} \theta_{ij}^{k} &= \frac{V_{k+1} - (V_i + V_j)}{V_{k+1} - V_k}, \quad \text{если} \quad (V_i + V_j) \in [V_k, V_{k+1}], \\ \theta_{ij}^{k} &= \frac{V_{k-1} - (V_i + V_j)}{V_{k-1} - V_k}, \quad \text{если} \quad (V_i + V_j) \in [V_{k-1}, V_k], \\ \theta_{ij}^{k} &= 0 \quad & \text{в остальных случаях.} \end{split}$$

В случае диффузионной коагуляции константы определяются соотношениями [6]

$$G(r_i, r_j) = \frac{kT}{3\eta}(r_i + r_j) \left(\frac{1}{r_i} + \frac{1}{r_j}\right), \qquad (20)$$

(19)

где η — вязкость газа.

Система уравнений (18) решается численно в целом ряде компьютерных программ, в частности, в коде NAUA [15]. Программа NAUA позволяет анализировать основные параметры коагулирующего аэрозоля и исследовать его осаждение в заданной геометрии. Однако зарядка частиц в этой программе до настоящего времени в расчет не принималась. Вообще говоря, модификация программы, позволяющая последовательно учесть заряжение частиц в плазме, представляет собой довольно сложную задачу. Однако предварительные оценки степени влияния заряжения частиц на процесс коагуляции и деформацию функции распределения по размерам могут быть выполнены при некоторых упрощающих предположениях.

Оценим константу коагуляции шарообразных частиц с радиусами r_i и r_k и зарядами q_i и q_k , следуя логике работы [6]. По-видимому, мы не сделаем

большой ошибки, используя метод [6] в случае частиц различного размера, так как константа скорости диффузионной коагуляции в рассматриваемой области слабо зависит от размеров частиц [10]. Обозначим силу электростатического взаимодействия частиц F(r), где r — расстояние между их центрами. В процессе коагуляции мы имеем дело с диффузией броуновских частиц к поглощающей сфере в присутствии радиальной электростатической силы, под действием которой заряженные частицы приобретают скорость V = BF, где B — подвижность заряженных частиц пыли. В стационарном режиме

$$D\Delta n_d = B \operatorname{div}(\mathbf{F} n_d). \tag{21}$$

Учитывая сферическую симметрию задачи, находим

$$4\pi r^2 \left(D \frac{\partial n_d}{\partial r} - BF n_d \right) = J = \text{const.}$$
(22)

Отметим, что это уравнение вполне аналогично использованному выше соотношению (2). Первый член в левой части равен числу частиц, проходящих в единицу времени через сферическую поверхность за счет диффузии, а второй — благодаря упорядоченному движению в электрическом поле. В сумме они дают скорость осаждения частиц на сфере. Функция $n_d(r)$ должна удовлетворять граничным условиям $n_d = n_{d0}$ при $r = \infty$ и $n_d = 0$ при $r = r_i + r_k$, где n_{d0} — исходная концентрация пылевых частиц. Используя граничные условия и принимая во внимание соотношение Эйнштейна D = BkT, находим отношение констант коагуляции заряженных и незаряженных частиц ($\gamma = J/J_0$):

$$\gamma_{ik} = \left(\int_{0}^{1} \exp\left\{\frac{1}{kT}\Psi_{ik}\left(\frac{r_i + r_k}{x}\right)\right\} dx\right)^{-1}, \quad (23)$$
$$\Psi_{ik}(r) = eq_k\varphi_i(r),$$

где φ_i — электростатический потенциал, $x = (r_i + r_k)/r.$

В случае монополярной зарядки частиц аэрозоля заметную роль может играть эффект поляризации, особенно если отличие в зарядах частиц велико. Однако в настоящей работе его влияние мы в расчет не принимаем и учитываем лишь экранированный кулоновский вклад

$$\varphi_i(r) = \frac{eq_i}{r} \exp\left\{-\frac{r}{R_d}\right\},$$
(24)

где R_d — дебаевский радиус экранирования. В отсутствие экранирования, т.е. в предельном случае Коагуляция заряженных частиц ...

 $R_d \to \infty$ соотношение (23) легко интегрируется аналитически:

$$\gamma_{ik} = \frac{\lambda_{ik}}{e^{\lambda_{ik}} - 1}, \quad \lambda_{ik} = \frac{q_i q_k e^2}{(r_i + r_k)kT}.$$
 (25)

Проведем оценку величины γ_{ik} в случае $q_i = q_k = 10, r_i = r_k = 5 \cdot 10^{-5}$ см, T = 300 К¹). При этом $\gamma \sim 1.5 \cdot 10^{-2}$. Если же заряд частиц возрастает до 50, то $\gamma \sim 10^{-63}$. В последнем случае коагуляция, по-видимому, оказывается практически полностью подавленной. Согласно приведенным формулам, отношение констант коагуляции при условии $r_i = r_k$ (в области, представляющей практический интерес, $\lambda_{ik} > 1$) является монотонно убывающей функцией размера частиц. Однако учет экранирования приводит к качественно иному поведению константы коагуляции заряженных частиц. Рассмотрим более подробно ситуацию, в которой U = const, т.е. $eq_i = r_i U$ и $eq_k = r_k U$, тогда

$$\Psi_{ik}\left(\frac{r_i + r_k}{x}\right) = xU^2 \frac{r_i r_k}{r_i + r_k} \exp\left\{-\frac{r_i + r_k}{xR_d}\right\}.$$
 (26)

Соответственно этому матрица констант коагуляции заряженных частиц с радиусами r_i и r_k описывается соотношением

$$G(r_i, r_k) = \frac{kT}{3\eta} \frac{(r_i + r_k)^2}{r_i r_k} \times \left[\int_0^1 \exp\left\{\frac{1}{kT} \Psi_{ik}\left(\frac{r_i + r_k}{x}\right)\right\} dx \right]^{-1}.$$
 (27)

Результаты численного интегрирования соотношений (27) приведены на рис. 5 (U = 0.15 В, $R_d = 8.4 \cdot 10^{-4}$ см, T = 300 К). Согласно полученным результатам, характер поведения констант коагуляции в пылевой плазме радикально изменяется. Скорость коагуляции очень малых заряженных частиц с более крупными остается весьма высокой. Это связано, с одной стороны, с малой величиной заряда на таких частицах, а с другой, со сравнительно высокой их броуновской подвижностью. С возрастанием размера константы коагуляции частиц резко уменьшаются вследствие электростатического отталкивания зарядов. Однако, если размер по крайней ме-

¹⁾ Отметим, что диапазон изменения размеров частиц заметно расширяется в сторону малых размеров путем введения поправки Каннингема [6]. Учет этой поправки приводит к уменьшению констант коагуляции малых частиц. Однако уменьшение коагуляции за счет электростатического отталкивания заряженных частиц на порядки величины превышает этот эффект и его вклад в рассматриваемом диапазоне размеров приводит к небольшим количественным изменениям.

Рис. 5. Матрица констант коагуляции полидисперсного аэрозоля в пылевой плазме в зависимости от радиусов сталкивающихся частиц

ре одной из двух сталкивающихся частиц превышает дебаевский радиус, существенную роль начинает играть экранирование зарядов. При этом функция $G(r_i, r_k)$ с увеличением размеров частиц проходит через минимум, образуя глубокий провал, на внешнем берегу которого константа скорости коагуляции приближается к своему значению, характерному для незаряженного аэрозоля. Характерные размеры и форма образующегося провала определяются параметрами плазмы, поэтому в реальных ситуациях спектр их изменения весьма широк. Это приводит к разнообразным эффектам в поведении пылевых структур в процессе их самоорганизации.

Необходимо отметить, что дополнительным стимулом к объединению крупных частиц с мелкими является упомянутый выше эффект поляризации, приводящий к притяжению одноименно заряженных частиц на расстояниях порядка радиуса большей частицы. При этом, если дебаевский радиус того же порядка величины, электростатическое взаимодействие между частицами может изменить знак, что приведет к возрастанию скорости коагуляции даже по сравнению с ее значением в незаряженном аэрозоле. Немонотонная зависимость константы коагуляции от размеров частиц существенно меняет поведение функции распределения частиц по размерам.

Полученные формулы позволяют достаточно про-

сто модифицировать блок NAUA, описывающий коагуляцию аэрозолей, путем перенормировки констант коагуляции в уравнении (18) в соответствии с соотношениями (26) и (27). В расчетной схеме принято разбиение интервала изменения размеров частиц (r_{min}, r_{max}) в соответствии с соотношением

$$(m-1)\ln(r_k/r_{k-1}) = \ln(r_{max}/r_{min}),$$

где m — число точек разбиения (m = 60). Для того чтобы частицы максимального размера не накапливались в системе и не деформировали функцию распределения, введено их осаждение.

Выполненные нами с учетом сказанного расчеты зависимостей концентраций от размеров частиц приведены на рис. 6а, б-8а, б. Для сравнения даны графики $n_d(r_k, t)$ незаряженного аэрозоля в различные моменты времени (рис. 6а–8а). В качестве исходного на рис. 6а, б выбрано довольно широкое нормально-логарифмическое распределение частиц по размерам со стандартным геометрическим отклонением равным двум, и средним радиусом $\overline{r}_{k} = 10^{-4}$ см (исходная полная концентрация пылевых частиц равна 10⁸ см⁻³). Расчеты проведены для плазмы с дебаевским радиусом $R_d = 8.4 \cdot 10^{-4}$ см и плавающим потенциалом U = 0.15 В. Интервал изменения размеров частиц ($r_{min} = 10^{-6}$ см, $r_{max} = 3 \cdot 10^{-3}$ см). Как и следовало ожидать для незаряженного аэрозоля (рис. 6а), на начальном этапе концентрация частиц быстро уменьшается, а их средний размер растет. На рис. 6б представлены кривые, описывающие распределение одноименно заряженных частиц в пылевой плазме. Сравнение рис. 6а и 6б показывает, что зарядка частиц приводит к общему торможению процесса коагуляции. Вместе с тем качественно меняется и характер поведения функции распределения. В начальный период времени интенсивно «выедается» мелкая фракция, испытывающая существенно меньшее торможение коагуляции по сравнению с более крупными частицами. За счет этого, по-видимому, появляются кластеры со структурой типа «цветной капусты», состоящие из множества мелких частиц. Столкновения более крупных частиц между собой затруднены возникающим кулоновским барьером. В своем движении в сторону увеличения размера частиц функция распределения как бы «наталкивается» на кулоновский барьер. Однако для частиц с размерами, сравнимыми или превышающими дебаевский радиус, эффект электростатического отталкивания снижается и их коагуляция оказывается вполне вероятной. Распределение сужается и его дисперсия уменьшается. Определенную роль в этом играет и осаждение более крупных частиц. Кроме того, по форме распределение становится более похожим на нор-

Рис. 6. Динамика изменения широкого распределения частиц по размерам в незаряженном полидисперсном аэрозоле (a) и в пылевой плазме (b) с $\overline{r}_k = 1 \cdot 10^{-4}$ см

Рис. 7. Динамика изменения узкого распределения частиц по размерам в незаряженном полидисперсном аэрозоле (a) и в пылевой плазме (b) с $\overline{r}_k = 1 \cdot 10^{-4}$ см. Функции распределения для t = 0 с и для $t = 10^5$ с практически совпадают, поэтому последняя кривая сдвинута на одно деление вверх для удобства представления

мальное. Еще одной интересной особенностью поведения функции распределения в рассматриваемых условиях является возможность уменьшения среднего размера частиц с течением времени.

Выше дан анализ поведения распределения частиц по размерам со сравнительно широкой дисперсией. Если в качестве исходной принять достаточно узкую функцию распределения с $\overline{r}_k < R_d$ и исключить осаждение, связанное, в основном, с контактом со стенками и гравитацией, то сильно заряженный аэрозоль сможет существовать на протяжении длительного времени без ощутимых изменений концентрации частиц. Для иллюстрации этого утверждения на рис. 7а, б приведены распределения частиц по размерам в различные моменты времени с $\overline{r}_k = 10^{-4}$ см, существенно меньшим дебаевского радиуса ($R_d = 8.45 \cdot 10^{-4}$ см). Здесь и ниже стандартное геометрическое отклонение исходных распределений принимали равным 0.5, а интервал изменения размеров частиц $(r_{min} = 10^{-6} \text{ см}, r_{max} = 3 \cdot 10^{-2} \text{ см}).$

Рисунок 7*a* соответствует незаряженному, а рис. 7*б* - заряженному аэрозолю при отсутствии осаждения. Расчеты показывают, что в пылевой плазме (рис. 76) заметные изменения в форме распределения отсутствуют для промежутков времени вплоть до 10^7 с. Что касается незаряженного аэрозоля, то его концентрация падает за счет коагуляции на порядки величины за время $\sim 10^3$ с (рис. 7*a*). На рис. 8 приведены графики распределений частиц по размерам с $\overline{r}_k = 2\cdot 10^{-3}$ см в незаряженном аэрозоле (рис. 8*a*) и в пылевой плазме с $R_d = 8.45 \cdot 10^{-4}$ см (рис. 86). В этом случае ($\overline{r}_k > R_d$) влияние заряжения на скорость коагуляции пылевых частиц оказывается не столь значительным по сравнению с предыдущим. Вместе с тем обращает на себя внимание тот факт, что в отсутствие осаждения в процессе коагуляции в области более крупных размеров на графике $n_d(r_k)$ возникает дополнительный максимум (рис. 8б).

Таким образом, поведение распределения частиц

Рис. 8. Динамика изменения узкого распределения частиц по размерам в незаряженном полидисперсном аэрозоле (a) и в пылевой плазме (b) с $\overline{r}_k = 2 \cdot 10^{-3}$ см

по размерам в пылевой плазме аномально и обладает рядом интересных особенностей, которые могут привести к некоторым необычным физическим явлениям, например, левитации долгоживущей «квазижидкой» пылевой структуры в электростатической ловушке. Время существования незаряженного аэрозоля с концентрацией частиц более 10⁹ см⁻³ весьма ограничено, и его свойства, по-видимому, практически не исследованы. Поэтому создание стабильного аэрозоля со столь высокой плотностью частиц представляет не только прикладной, но и чисто научный интерес.

В заключение следует отметить, что настоящее исследование выполнено в диффузионном приближении. Однако качественно сходные результаты, по-видимому, имеют место и в случае низких давлений и более мелких частиц, т.е. в ситуации молекулярного течения. В связи с этим особый интерес представляет влияние рассмотренных эффектов на процессы структурной перестройки в космических пылевых объектах. Однако этот вопрос требует специального изучения.

Авторы выражают глубокую благодарность В. Ю. Баранову, В. Е. Фортову и Г. Хоре (Н. Hora) за интерес к работе и полезное обсуждение.

ЛИТЕРАТУРА

- 1. В. Н. Цытович, УФН 167, 57 (1997).
- S. J. Choi and M. J. Kushner, J. Appl. Phys. 74, 853 (1993).

- **3.** С. А. Крапивина, *Плазмохимические технологические процессы*, Изд-во Химия, Ленинград (1981).
- S. R. Forrest and T. A. Witten, J. Phys. A: Math. Gen. 12, L109 (1979).
- F. J. Huang and M. J. Kushner, J. Appl. Phys. 81, 5960 (1997).
- 6. Н. А. Фукс, *Механика аэрозолей*, Изд-во АН СССР, Москва (1955).
- В. Ю. Баранов, И. А. Белов, А. В. Демьянов, и др., Препринт ИАЭ-6105/6, Москва (1998); И. А. Белов, А. С. Иванов, Д. А. Иванов, и др., Письма в ЖТФ 25, 89 (1999).
- 8. G. M. Hidy and J. R. Brock, J. Col. Sci. 20, 123 (1965).
- 9. G. M. Hidy and J. R. Brock, *The Dynamics of Aerocolloidal Systems*, Pergamon, Oxford (1970).
- **10**. П. Райст, *Аэрозоли. Введение в теорию*, Мир, Москва (1987).
- 11. Б. М. Смирнов, Аэрозоли в газе и плазме, ИВТАН, Москва (1990).
- 12. J. J. Dutton, J. Chem. Phys. Ref. Data 4, 577 (1975).
- 13. Б. М. Смирнов, Ионы и возбужденные атомы в плазме, Атомиздат, Москва (1974).
- 14. J. B. A. Mitchell, Phys. Rep. 186, 215 (1990).
- H. Bunz, M. Kouro, and W. Schock, NAUA Mod 4, KfK 3554, Karlsruhe (1983).