ВЫНУЖДЕННОЕ РАССЕЯНИЕ МАНДЕЛЬШТАМА—БРИЛЛЮЭНА В ПЛАЗМЕ С ИОННО-ЗВУКОВОЙ ТУРБУЛЕНТНОСТЬЮ

К. Ю. Вагин, В. П. Силин, С. А. Урюпин

Физический институт им. П. Н. Лебедева Российской академии наук 117924, Москва, Россия

Поступила в редакцию 18 июня 1999 г.

В условиях, когда для описания ионно-звуковых возмущений плотности электронов можно использовать уравнения двухтемпературной гидродинамики, в рамках представлений о параметрической неустойчивости развита теория вынужденного рассеяния Мандельштама—Бриллюэна (ВРМБ) в плазме с ионнозвуковой турбулентностью. Найдены временной инкремент абсолютной неустойчивости и коэффициент пространственного усиления рассеянной волны. Дано описание зависимости пороговой плотности потока излучения от угла между волновым вектором рассеяния и направлением анизотропии турбулентных шумов. В плазме с высоким уровнем турбулентных шумов предсказано новое явление запрета ВРМБ, обусловленное аномальным турбулентным нагревом ионов.

PACS: 42.65.Es, 52.35.Fp, Nx, Qz, Ra, 52.40.Nk

1. ВВЕДЕНИЕ

Изучению явления вынужденного рассеяния боль-Мандельштама-Бриллюэна посвящено шое число как экспериментальных (см., например, [1-5]), так и теоретических [6-9] работ. В общем случае теоретическое описание этого явления базируется на совместном рассмотрении уравнений для полей падающей и рассеянной волн и уравнения для возмущения плотности электронов, создаваемого полем звуковой волны. Наиболее детально эти уравнения изучены в ламинарной плазме, когда процессы рассеяния электронов и ионов определяются парными столкновениями заряженных частиц. Обычно различают два режима ВРМБ. В одном из них возмущение плотности электронов определяется пондеромоторным воздействием билинейной комбинации полей падающей и рассеянной волн. В другом возмущение плотности обусловлено конкуренцией двух физических явлений: неоднородного нагрева электронов при электрон-ионных столкновениях в полях падающей и рассеянной волн и электронного теплопереноса. В таком случае говорят о тепловом механизме ВРМБ. При этом возмущение плотности электронов существенно зависит от своеобразия переноса тепла в том или ином состоянии плазмы. Теория теплового ВРМБ наиболее детально разработана в тех условиях, когда длины свободного пробега электронов настолько малы по сравнению с длиной волны ионно-звуковых волн, что для описания переноса тепла можно использовать классическую теорию переноса тепла [10]. Сравнительно недавно теория ВРМБ получила развитие в условиях нелокального электронного переноса тепла в ламинарной плазме [11–13]. Установленная теоретически существенная зависимость теплового ВРМБ от определяющих теплоперенос особенностей рассеяния электронов привела к обнаружению качественно новых закономерностей рассеяния в плазме с ионно-звуковой турбулентностью [14]. В такой плазме закономерности электронного переноса тепла в значительной мере определяются рассеянием электронов на ионно-звуковых колебаниях плотности заряда. В [14] дана теория ВРМБ в случае достаточно больших углов рассеяния θ_0 , когда нарушено условие

$$4Zk_0^2 l_t l_{ei} \sin^2(\theta_0/2) \ll 1, \qquad (1.1)$$

где Z — кратность ионизации ионов, k_0 — волновое число основной волны, l_t и l_{ei} — длины свободного пробега электронов при рассеянии на ион-

^{*}E-mail: vagin@sci.lebedev.ru

^{**}E-mail: silin@sci.lpi.ac.ru

но-звуковых колебаниях плотности заряда и ионах. В условиях, когда выполняется неравенство обратное (1.1), корректное описание рассеяния достигается с использованием представлений о нелокальном переносе тепла в турбулентной плазме.

Вместе с тем представляет интерес рассеяние на небольшие углы, когда выполнено условие (1.1). Теория ВРМБ на небольшие углы дана в настоящем сообщении. Такая теория существенно отличается от изложенной в [14], во-первых, возможностью использовать детально разработанную теорию локального переноса в турбулентной плазме, а во-вторых, возможностью самосогласованно учитывать изменение турбулентных шумов из-за длинноволновых ионно-звуковых возмущений температур и плотностей частиц плазмы. Последнее, в частности, позволило не только дать последовательное описание ВРМБ как параметрической неустойчивости, но и выявить условия его запрета из-за аномально эффективного турбулентного нагрева ионов. При рассеянии изменение частоты $\Delta \omega$ определяется частотой звука ω_s ,

$$\Delta \omega = \omega_s = 2k_0 v_s \sin \frac{\theta_0}{2}, \qquad (1.2)$$

где v_s — скорость звука. Поскольку обычно $4Zk_0^2 l_t l_{ei} > 1$, то из (1.2) и неравенства (1.1) следует ограничение на величину относительного изменения частоты:

$$\frac{\Delta\omega}{\omega_0} \ll \sqrt{\frac{m}{m_i}} \frac{\nu_{ei}}{\omega_0} \sqrt{\frac{l_{ei}}{l_t}} \ll 1, \qquad (1.3)$$

где ω_0 — частота волны накачки, *m* и m_i — массы соответственно электрона и иона, ν_{ei} — частота электрон-ионных столкновений. Неравенство (1.3) означает, что для экспериментального наблюдения рассеяния на малые углы необходимо использовать лазеры с достаточно малой шириной линии излучения. Вместе с тем, в силу неравенства $l_t \ll l_{ei}$ реализовать условия (1.1) и (1.3) в турбулентной плазме проще, чем аналогичные условия в ламинарной плазме. Тем самым ограничение на рассматриваемый далее диапазон углов рассеяния в турбулентной плазме плазме оказывается менее жестким, чем в ламинарной.

Во втором разделе приведены необходимые сведения о гидродинамических уравнениях турбулентной плазмы, находящейся в высокочастотном электромагнитном поле. Основываясь на этих уравнениях, в третьем разделе дано описание затухания ионно-звуковых колебаний, имеющих длины волн много большие характерных масштабов турбулентных флуктуаций плотности заряда. Для плазмы без высокочастотного поля указаны условия, в ко-

торых благодаря относительно большому затуханию на ионах, звуковые возмущения гидродинамических величин не приводят к развитию неустойчивости. Явление ВРМБ рассматривается в четвертом разделе. Описание рассеяния в пределе (1.1) достигается с помощью уравнений поля, дополненных системой гидродинамических уравнений, позволяющих найти возмущения плотности электронов в плазме с ионно-звуковой турбулентностью. При этом обсуждаются условия, в которых как квазистационарный спектр турбулентности, так и электронные потоки успевают устанавливаться за характерное время изменения ионно-звуковых возмущений плотности. В этих условиях дано последовательное описание ВРМБ, когда подавлено развитие гидродинамической неустойчивости турбулентной плазмы. Найдена зависимость отвечающей порогу ВРМБ плотности потока излучения от угла θ между волновым вектором рассеяния и осью анизотропии турбулентных шумов. Дано описание зависимости порога ВРМБ от степени неизотермичности плазмы и от вида распределения турбулентных шумов в пространстве волновых векторов. Показано, что в плазме с высоким уровнем турбулентных шумов существуют направления, вдоль которых ВРМБ запрещено. Это качественно новое явление запрета ВРМБ возникает благодаря аномально эффективному турбулентному нагреву ионов. Установлен коэффициент пространственного усиления рассеянной волны. В пятом разделе приведены оценки, демонстрирующие возможность экспериментального наблюдения ВРМБ на малые углы.

2. ГИДРОДИНАМИЧЕСКИЕ УРАВНЕНИЯ ПЕРЕНОСА В ТУРБУЛЕНТНОЙ ПЛАЗМЕ

Рассмотрим неизотермическую плазму с ионно-звуковой турбулентностью в высокочастотном поле вида

$$\frac{1}{2}\mathbf{E}(\mathbf{r},t)\exp(-i\omega_0 t) + \text{c.c.}, \qquad (2.1)$$

где функция $\mathbf{E}(\mathbf{r},t)$ слабо изменяется во времени за период поля $2\pi/\omega_0$. Основную частоту будем считать много большей плазменной частоты электронов ω_{Le} . Это позволяет пренебречь влиянием низкочастотных турбулентных флуктуаций плотности заряда на быстропеременное движение электронов с частотой ω_0 (см., например, [15]). Вместе с тем, медленные макроскопические движения электронов и ионов в значительной мере определяются ионно-звуковой турбулентностью, и для их описания воспользуемся системой гидродинамических уравнений для плотности электронов n, скорости движения плазмы **u**, температур электронов T и ионов T_i [16–18]:

$$\frac{\partial n}{\partial t} + \operatorname{div}(n\mathbf{u}) = 0,$$
 (2.2)

$$\left(\frac{\partial}{\partial t} + \mathbf{u}\frac{\partial}{\partial \mathbf{r}}\right)u_{k} = -\frac{Z}{nm_{i}}\frac{\partial}{\partial r_{k}}p + \frac{Z\eta}{nm_{i}}\left(\Delta u_{k} + \frac{1}{3}\frac{\partial}{\partial r_{k}}\operatorname{div}\mathbf{u}\right) - \frac{Ze^{2}}{4nmm_{i}\omega_{0}^{2}} \times \left\{n\frac{\partial}{\partial r_{k}}|\mathbf{E}|^{2} - \frac{\partial}{\partial r_{j}}\left[n\left(E_{k}E_{j}^{*} + E_{k}^{*}E_{j}\right)\right]\right\}, \quad (2.3)$$

$$\left(\frac{\partial}{\partial t} + \mathbf{u}\frac{\partial}{\partial \mathbf{r}}\right) \left(T + \frac{e^2}{6k_B m \omega_0^2} |\mathbf{E}|^2\right) + \frac{2}{3nk_B} \operatorname{div} \mathbf{q} \times \frac{2}{3} T \operatorname{div} \mathbf{u} = \nu_{ei} \frac{e^2}{3k_B m \omega_0^2} |\mathbf{E}|^2 - \nu_T T, \qquad (2.4)$$

$$\left(\frac{\partial}{\partial t} + \mathbf{u}\frac{\partial}{\partial \mathbf{r}}\right)T_i + \frac{2}{3}T_i\operatorname{div}\mathbf{u} = Z\nu_T T.$$
(2.5)

В этих уравнениях e — заряд электрона, $\eta = nk_BT_i/Z\nu_{ii}$ — коэффициент вязкости, k_B постоянная Больцмана, ν_{ii} — частота ион-ионных столкновений, $p = nk_BT$ + $+nk_BT_i/Z$ — давление,

$$\nu_{ei} = \frac{4}{3} \frac{\sqrt{2\pi} Z \Lambda e^4 n}{\sqrt{m} (k_B T)^{3/2}}$$
(2.6)

— частота электрон-ионных столкновений, Λ — кулоновский логарифм, ν_T — турбулентная частота релаксации температуры, q — тепловой поток электронов. Уравнения (2.2)-(2.5) записаны в предположении, что плотность электрического тока ј равна нулю и выполнено условие электронейтральности $n = Z n_i$, где n_i — плотность ионов. Условие **j** = 0 часто используется при рассмотрении гидродинамики лазерной плазмы. В том случае, когда квазистационарное состояние ионно-звуковой турбулентности устанавливается из-за конкуренции черенковского излучения волн электронами и индуцированного рассеяния волн на тепловых ионах, явный вид теплового потока **q** в (2.4) и турбулентной частоты ν_T в (2.4), (2.5) зависит от соотношения между возбуждающей турбулентность плотностью силы **R** (П.1) и величиной [19, 20]

$$R_{NL} = \frac{1}{6\pi} mnv_s \omega_{Li} \frac{r_{De}^2}{r_{Di}^2}, \qquad (2.7)$$

где $v_s = \omega_{Li} r_{De}$ — скорость звука, $r_{De(i)}$ — дебаевский радиус электронов (ионов), ω_{Li} — ленгмюровская частота ионов. С помощью условия отсутствия тока $\mathbf{j} = 0$ и соотношений (П.2), (П.4), исключаем из \mathbf{R} (П.1) неизвестное квазистационарное электрическое поле. В этом случае плотность силы \mathbf{R} и

градиент температуры электронов ∇T направлены вдоль единичного вектора $\mathbf{n} = \nabla T / |\nabla T|$. При этом из (П.5) для $R \gg R_{NL}$ находим

$$R = \frac{3}{2}p|\nabla \ln T|, \qquad (2.8)$$

$$\mathbf{q} = -\frac{128}{3\pi} \beta_{\parallel} p v_s \sqrt{\frac{R}{R_{NL}}} \mathbf{n} \equiv -\mathbf{n}q, \qquad (2.9)$$

где $\beta_{\parallel}=0.25.$ Если $R\ll R_{NL},$ то тепловой поток (П.3) имеет вид

$$\mathbf{q} = -pv_s \left\{ \frac{25}{4} \times \left(1 - \beta_{\parallel}(\alpha) + \frac{\alpha}{12} \right) + \frac{128}{3\pi} \beta_{\parallel}(\alpha) \right\} \mathbf{n} \equiv -\mathbf{n}q, \quad (2.10)$$

где $\beta_{\parallel}(\alpha) = \beta_{\parallel} + C_{\beta}\alpha, \ \beta_{\parallel} = 0.177, \ C_{\beta} = 0.062, \ a \alpha$ — малый параметр,

$$\alpha = \frac{\ln 2}{\ln(3\pi R_{NL}/8R)} \ll 1.$$
 (2.11)

Входящая в выражения (2.10), (2.11) плотность силы R связана с модулем градиента температуры электронов соотношением

$$\frac{p|\nabla \ln T|}{R} = \frac{2}{3} + \frac{\pi}{16\beta_{\parallel}(\alpha)} \left(1 - \beta_{\parallel}(\alpha) + \frac{\alpha}{12}\right). \quad (2.12)$$

В этих же предельных случаях для турбулентной частоты релаксации температуры с учетом (2.8), (2.12) имеем

$$\nu_T = \frac{2}{3} a_T v_s \frac{R}{p} = a_* v_s |\nabla \ln T|, \qquad (2.13)$$

где при $R \ll R_{NL}$ имеем $a_T = 1$, $a_* = [1 + (3\pi/32\beta_{\parallel})(1-\beta_{\parallel})]^{-1} = 0.42$, а при $R \gg R_{NL}$ имеем $a_* = a_T = 1.3$. Отметим, что в последнем выражении для ν_T в (2.13) в пределе $R \ll R_{NL}$ удержаны лишь старшие слагаемые по малому параметру (2.11). С учетом соотношений (2.6)–(2.13) система уравнений (2.2)–(2.5) для плазмы в заданном поле накачки (2.1) является замкнутой и позволяет изучать гидродинамические движения бестоковой плазмы.

Турбулентную частоту релаксации температуры (2.13) по порядку величины можно записать в следующем виде:

$$\nu_T \sim \frac{Zm}{m_i} \nu_t \sqrt{1 + \frac{R}{R_{NL}}}$$

где ν_t — турбулентная частота релаксации импульса электронов:

$$\nu_t = \sqrt{\frac{9\pi}{8}} \, \frac{R}{nmv_s} \,, \quad R \ll R_{NL}, \tag{2.14}$$

$$\nu_t = \sqrt{\frac{9\pi}{8}} \frac{\sqrt{RR_{NL}}}{nmv_s}, \quad R \gg R_{NL}. \tag{2.15}$$

В условиях аномального переноса $\nu_t \gg \nu_{ei}$. Тем самым и частота ν_T значительно превышает $\nu_{\varepsilon} \sim (m/m_i)\nu_{ei}$ — частоту релаксации температуры в ламинарной плазме. Неравенство

$$\nu_T \gg \nu_{\varepsilon}$$
 (2.16)

позволяет не учитывать вклад электрон-ионных столкновений в обмен тепла между электронами и ионами в уравнениях (2.4), (2.5).

С целью описания процесса ВРМБ в турбулентной плазме как параметрической неустойчивости определим ниже основное состояние. Будем считать, что плазма, находящаяся в высокочастотном поле (2.1), в основном состоянии характеризуется плотностью электронов n_0 , а также температурой электронов T_0 и ионов T_{i0} . Пусть L_T — характерный масштаб неоднородности температуры электронов в основном состоянии, определяемый формулой

$$\frac{1}{L_T} = |\nabla \ln T_0|. \tag{2.17}$$

Воспользуемся системой уравнений (2.2)-(2.5) для описания взаимодействия высокочастотного излучения с неизотермической плазмой, гидродинамическим движением которой можно пренебречь, $\mathbf{u} = 0$. Тогда плотность плазмы следует считать не зависящей от времени, а эволюция температур электронов и ионов в рассматриваемом основном состоянии описывается уравнениями

$$\frac{\partial}{\partial t}T_0 + \frac{2}{3n_0k_B} \operatorname{div} \mathbf{q}_0 = (\nu_{ei})_0 \frac{e^2}{3k_B m \omega_0^2} |\mathbf{E}_0|^2 - a_* \frac{v_{s0}}{L_T} T_0,$$
(2.18)

$$\frac{\partial}{\partial t}T_{i0} = Za_* \frac{v_{S0}}{L_T}T_0, \qquad (2.19)$$

непосредственно вытекающими из (2.4), (2.5), (2.13), (2.17). В уравнениях (2.18)-(2.19) величины \mathbf{q}_0 , $(\nu_{ei})_0$, v_{S0} определяются параметрами плазмы в основном состоянии, а амплитуда поля накачки Е₀ считается заданной. Из уравнения (2.19) видно, что в неизотермической плазме с квазистационарным спектром ионно-звуковой турбулентности реализуется сравнительно быстрый нагрев ионов. Согласно уравнению (2.19) характерное время удвоения температуры ионов составляет $|\partial \ln T_{i0}/\partial t|^{-1} \sim (T_{i0}/ZT_0)L_T/v_{S0}$. По мере нагрева ионов степень неизотермичности плазмы ZT_0/T_{i0} уменьшается и на временах порядка L_T/v_{S0} температура ионов T_{i0} становится сравнимой с ZT₀. На столь больших временах при описании состояния плазмы с ионно-звуковой

турбулентностью необходимо учитывать сравнительно большое черенковское затухание звука на ионах, приводящее к существенному изменению электронного теплопереноса и отличию теплового потока от описываемого выражениями (2.9), (2.10). В дальнейшем, отвлекаясь от рассмотрения временных интервалов больших L_T/v_{S0} , ограничимся изучением ВРМБ в сильно неизотермической плазме, когда черенковским затуханием звука на ионах можно пренебречь.

При изучении ВРМБ наряду с описывающими основное состояние плазмы уравнениями (2.18), (2.19) понадобятся уравнения для малых возмущений плотности $\delta n = n - n_0$, температур электронов $\delta T = T - T_0$ и ионов $\delta T_i = T_i - T_{i0}$, изменяющихся на пространственных масштабах много меньших масштабов неоднородности основного состояния. В дальнейшем при рассмотрении ВРМБ во избежание усложнения формул будем опускать индекс «0» у величин n_0 , T_0 и T_{i0} , характеризующих основное состояние плазмы. Тогда для мелкомасштабных возмущений гидродинамических параметров плазмы можно записать следующие уравнения, непосредственно вытекающие из исходных (2.2)–(2.5), (2.9), (2.10), (2.13):

$$\left\{ \frac{\partial^2}{\partial t^2} - \frac{4}{3} \frac{Z\eta}{m_i n} \Delta \frac{\partial}{\partial t} - v_s^2 \Delta \right\} \delta n =$$

$$= \frac{Znk_B}{m_i} \Delta \left\{ \delta T + \frac{\delta T_i}{Z} \right\} + \frac{Ze^2}{2m_i m \omega_0^2} \times$$

$$\times \left\{ \Delta \delta |\mathbf{E}|^2 - \frac{\partial^2}{\partial r_k \partial r_j} \delta (E_k E_j^* + E_k^* E_j) \right\}, \quad (2.20)$$

$$\frac{\partial}{\partial t}\delta T + \frac{2}{3nk_B}\operatorname{div}\delta \mathbf{q} - \frac{2T}{3n}\frac{\partial}{\partial t}\delta n =$$
$$= \nu_{ei}\frac{2e^2\delta|\mathbf{E}|^2}{3k_Bm\omega_0^2} - \delta[\nu_T T], \qquad (2.21)$$

$$\frac{\partial}{\partial t}\delta T_i - \frac{2T_i}{3n}\frac{\partial}{\partial t}\delta n = Z\delta[\nu_T T]. \qquad (2.22)$$

Здесь $\delta |\mathbf{E}|^2$ и $\delta (E_k E_j^* + E_k^* E_j)$ — возмущения билинейных комбинаций компонент высокочастотного поля, $\delta \mathbf{q}$ — возмущение плотности теплового потока электронов:

$$\delta \mathbf{q} = -q \left\{ \frac{\nabla \delta T}{|\nabla T|} - \frac{1}{2} \frac{\nabla T (\nabla \delta T \cdot \nabla T)}{|\nabla T|^3} + \frac{3}{4} \left(\frac{\delta n}{n} + \frac{2}{3} \frac{\delta T_i}{T_i} \right) \frac{\nabla T}{|\nabla T|} \right\}, \quad R \gg R_{NL}, \quad (2.23)$$

$$\delta \mathbf{q} = -q \left\{ \frac{\nabla T \times [\nabla \delta T \times \nabla T]}{|\nabla T|^3} + \frac{\delta n}{n} \frac{\nabla T}{|\nabla T|} \right\} - pv_s \frac{b}{\ln 2} \alpha^2 \times \left[\frac{\nabla T (\nabla \delta T \cdot \nabla T)}{|\nabla T|} + \frac{\delta T_i}{T_i} \frac{\nabla T}{|\nabla T|} \right], \quad R \ll R_{NL}, \quad (2.24)$$

где численный коэффициент
 $b=(25/4)\,(1/12-C_\beta)+$ + $(128/3\pi)C_\beta=0.97,$ а

$$\delta[\nu_T T] = a_* v_s \frac{\nabla T \cdot \nabla \delta T}{|\nabla T|} \tag{2.25}$$

— возмущение электрон-ионного теплообмена. Отметим, что выражение (2.24) написано с необходимой нам в дальнейших вычислениях точностью до членов второго порядка по малому параметру α (2.11).

3. ДЛИННОВОЛНОВЫЕ ИОННО-ЗВУКОВЫЕ КОЛЕБАНИЯ В ПЛАЗМЕ С КОРОТКОВОЛНОВОЙ ТУРБУЛЕНТНОСТЬЮ

В этом разделе остановимся на рассмотрении длинноволнового звука в плазме с ионно-звуковой турбулентностью. Обозначим через **k** волновой вектор длинноволновых ионно-звуковых колебаний. Примем, что волновой вектор звуковых колебаний удовлетворяет условию

$$Zk^2 l_t l_{ei} \ll 1, \tag{3.1}$$

где $l_{ei} = v_T/\nu_{ei}$ и $l_t = v_T/\nu_t$ — длины свободного пробега электронов с тепловой скоростью v_T соответственно при электрон-ионных столкновениях и при рассеянии электронов ионно-звуковыми колебаниями плотности заряда.

Как известно (см., например, [19]), турбулентные шумы сосредоточены в области сравнительно больших волновых чисел, для которых

$$k_t > \frac{\nu_{ii}\omega_{Le}r_{Di}^2}{\omega_{Li}^2r_{De}^3}.$$
(3.2)

В отличие от вектора \mathbf{k} для волновых векторов турбулентных флуктуаций плотности заряда в (3.2) используется обозначение \mathbf{k}_t . Из сравнения неравенств (3.1) и (3.2) видно, что в наиболее интересном случае, когда

$$\frac{\omega_{Le}}{\omega_{Li}} \left(\frac{ZT}{T_i}\right)^{1/2} \left(\frac{Zl_t}{l_{ei}}\right)^{1/2} > 1, \qquad (3.3)$$

рассматриваемые нами длинноволновые возмущения не попадают в область турбулентности, так как $k < k_t$. Следует подчеркнуть, что турбулентные шумы с волновыми векторами $k_t \sim 1/r_{De}$ из интервала (3.2) определяют процессы переноса в плазме [19] и, тем самым, существенно влияют на длинноволновые возмущения гидродинамических величин.

Для рассмотрения длинноволнового звука воспользуемся уравнениями (2.2)–(2.5), в которых нет высокочастотного поля. Примем, что длинноволновое возмущение плотности электронов имеет вид

$$\frac{1}{2}\delta n \exp(-i\omega t + i\mathbf{k} \cdot \mathbf{r}) + \text{ c.c.}$$
(3.4)

В дальнейшем будем рассматривать такие возмущения, волновой вектор **k** которых удовлетворяет условию

$$kL \gg 1, \tag{3.5}$$

где L — наименьший масштаб неоднородности гидродинамических величин n, T и T_i в основном состоянии, а период $2\pi/\omega$ много меньше характерного времени изменения этих величин в основном состоянии плазмы. Кроме того, будем считать, что частота возмущений много меньше как турбулентной частоты релаксации импульса электронов, $\omega \ll \nu_t$, так и $1/t_s$ — обратного времени установления квазистационарного спектра турбулентности в области $k_t \sim 1/r_{De}$:

$$\omega \ll t_s^{-1} \sim \frac{\omega_{Li}^2}{\omega_{Le}} \frac{R/R_{NL}}{\sqrt{1 + R/R_{NL}}} \,. \tag{3.6}$$

В рамках (3.1), (3.5), (3.6), во-первых, распределение турбулентных шумов с $k_t \sim 1/r_{De}$, определяющих электронные потоки и частоту релаксации энергии, успевает следовать за медленным изменением гидродинамических величин. Во-вторых, для описания процессов переноса можно использовать выражения для установившихся потоков заряда и тепла (П.2)–(П.5). В связи с использованием гидродинамических уравнений для ионов отметим, что такой подход имеет смысл, если

$$\nu_{ii} \gg \omega, k v_{Ti}, \tag{3.7}$$

где v_{Ti} — тепловая скорость ионов.

Согласно уравнениям (2.2)–(2.5) возмущение плотности сопровождается возмущениями остальных гидродинамических величин:

$$\frac{1}{2}\delta\mathbf{u}\exp(-i\omega t + i\mathbf{k}\cdot\mathbf{r}) + \text{ c.c.},$$

$$\frac{1}{2}\delta T_{(i)}\exp(-i\omega t + i\mathbf{k}\cdot\mathbf{r}) + \text{ c.c.}$$
(3.8)

Принимая во внимание неравенство (3.5) для малых возмущений δn , $\delta T_{(i)}$, $\delta \mathbf{u}$, из (2.2)–(2.5) имеем линеаризованную систему уравнений

$$\omega \delta n = n(\mathbf{k} \cdot \delta \mathbf{u}), \qquad (3.9)$$

$$\omega\delta T - \frac{2}{3nk_B}\mathbf{k}\cdot\delta\mathbf{q} - \frac{2}{3}T\mathbf{k}\cdot\delta\mathbf{u} = -i\delta[\nu_T T],\quad(3.11)$$

$$\omega\delta T_i - \frac{2}{3}T_i\mathbf{k}\cdot\delta\mathbf{u} = iZ\delta[\nu_T T]. \qquad (3.12)$$

В уравнениях (3.11), (3.12) явный вид возмущения теплового потока $\delta \mathbf{q}$ и возмущения доли энергии $\delta[\nu_T T]$, передаваемой от электронов к ионам, зависит от отношения R к R_{NL} (2.7). Используя (2.23) при $R \gg R_{NL}$, находим

$$\mathbf{k} \cdot \delta \mathbf{q} = -ik^2 \chi_t(\theta) \delta T - \frac{32}{\pi} \beta_{\parallel} p v_s k \cos \theta \times \\ \times \sqrt{\frac{3}{2} \frac{p}{R_{NL} L_T}} \left(\frac{\delta n}{n} + \frac{2\delta T_i}{3T_i} \right), \qquad (3.13)$$

где θ — угол между волновым вектором возмущений **k** и единичным вектором $\nabla T/|\nabla T|$, вдоль которого распространяется тепловой поток (2.9), $\chi_t(\theta)$ — коэффициент эффективной теплопроводности,

$$\chi_t(\theta) = \frac{32}{\pi} \beta_{\parallel} n k_B v_s \sqrt{\frac{2}{3} \frac{p}{R_{NL}} L_T} \left(1 + \sin^2 \theta\right). \quad (3.14)$$

В свою очередь, принимая во внимание выражения (2.24) при $R \ll R_{NL}$, имеем

$$\mathbf{k} \cdot \delta \mathbf{q} = -ik^2 \chi_t(\theta) \delta T - p v_s k \cos \theta \times \\ \times \left[(a + b\alpha) \frac{\delta n}{n} + \frac{b}{\ln 2} \alpha^2 \frac{\delta T_i}{T_i} \right], \qquad (3.15)$$

$$\chi_t(\theta) = nk_B v_s L_T \times \left[(a + b\alpha) \sin^2 \theta + \frac{b}{\ln 2} \alpha^2 \cos^2 \theta \right], \qquad (3.16)$$

где α определяется формулой (2.11), а a — численный коэффициент:

$$a = \frac{25}{4}(1 - \beta_{\parallel}) + \frac{128}{3\pi}\beta_{\parallel} = 7.55.$$
 (3.17)

В этих же предельных случаях с точностью до малых поправок порядка $1/kL \ll 1$ или $\alpha^2 \ll 1$ для возмущения слагаемого, описывающего обмен энергией между электронами и ионами (2.25), с учетом (2.13) имеем соотношение

$$\frac{\delta[\nu_T T]}{\nu_T T} = i \frac{\delta T}{T} k L_T \cos \theta. \tag{3.18}$$

Согласно (3.18) мелкомасштабные (3.5) гидродинамические возмущения (3.4), (3.8) приводят к увеличению относительного изменения доли энергии, передаваемой от электронов к ионам в $kL_T |\cos \theta| \gg 1$ раз для углов θ не близких к $\pi/2$. Как видно из определения (2.13) и соотношений (2.8), (2.12), появление в (3.18) дополнительного параметра $kL_T \cos \theta$ обусловлено тем, что проекция масштаба неоднородности возмущений на направление неоднородности в невозмущенном состоянии определяется величиной $1/k \cos \theta$, а не L_T .

Рассмотрение уравнений (3.9)-(3.18) позволяет получить следующее дисперсионное уравнение, связывающее комплексную частоту ω с волновым вектором возмущений **k**:

$$\left\{ \omega^{2} + 2i\omega\gamma_{i} - k^{2}v_{sT}^{2} - \omega_{s}^{2}\left(1 - \frac{\nu_{T}}{\omega}kL_{T}\cos\theta\right) \times \left(\omega - \omega_{s}a_{q}\frac{q}{pv_{s}}\cos\theta\right) \times \left[i\frac{k^{2}}{nk_{B}}\chi_{t}(\theta) - \frac{ZT}{T_{i}}kL_{T}\frac{\nu_{T}}{pv_{s}}\frac{\omega_{s}}{\omega} \times \left(\frac{\partial q}{\partial\ln R}\right)\cos^{2}\theta\right]^{-1} \right\} = 0, \quad (3.19)$$

где $\omega_s = kv_s$ — частота ионно-звуковых колебаний с длиной волны много большей дебаевского радиуса электронов, $a_q = 1$ при $R \ll R_{NL}$ и $a_q = 13/12$ при $R \gg R_{NL}$,

$$\gamma_i = \frac{2}{3}k^2 \frac{Z}{nm_i}\eta \tag{3.20}$$

 декремент затухания звука на ионах. При получении уравнения (3.19) учтено, что

$$kL_T \gg 1, \tag{3.21}$$

$$ZT/T_i \gg 1. \tag{3.22}$$

Неравенство (3.22) отвечает условиям существования ионно-звуковой турбулентности [19, 20]. Следует отметить, что в рамках (3.22) отличие выражения для скорости звука $v_{sT} = \sqrt{k_B/m_i(ZT + 5T_i/3)}$, являющегося изотермическим для электронов и адиабатическим для ионов [16], от скорости ионного звука $v_s = \sqrt{Zk_BT/m_i}$ мало и далее им пренебрегается.

В пределе $R \gg R_{NL}$ неравенство (3.21) обеспечивает выполнение уравнения (3.19) при всех значениях угла θ . В противоположном пределе, $R \ll R_{NL}$, и для малых углов $\theta \ll \alpha$ уравнение (3.19) имеет место, если

$$\alpha^2 \max(kL_T, ZT/T_i) \gg 1. \tag{3.23}$$

В этом же пределе, но при $\theta \gg \alpha$ условие применимости (3.19) менее жесткое,

$$\alpha^2 ZT/T_i + kL_T \sin^2 \theta \gg 1. \tag{3.24}$$

Дисперсионное уравнение (3.19) имеет решения, описывающие звуковые колебания в плазме с частотой ω , отличающейся от частоты звука ω_s на малую мнимую поправку $\omega \simeq \omega_s + i\gamma$, $|\gamma| \ll \omega_s$. Пренебрегая при дальнейшем рассмотрении малым изменением частоты ионно-звуковых колебаний, из (3.19) находим

$$\gamma = -\gamma_s(\theta) \equiv -\gamma_i - \gamma_e(\theta), \qquad (3.25)$$

где функция $\gamma_e(\theta)$, характеризующая взаимодействие ионно-звуковых волн с электронами, имеет вид

$$\gamma_e(\theta) = \frac{\nu_t}{2} \frac{\omega_{Li}^2}{\omega_{Le}^2} \psi(\theta) (1 - a_* \cos \theta) \left(1 - a_q \frac{q}{pv_s} \cos \theta \right).$$
(3.26)

Определяющая величину $\gamma_e(\theta)$ (3.26) функция $\psi(\theta)$ существенно зависит от коэффициента теплопроводности в турбулентной плазме $\chi_t(\theta)$ (3.14), (3.16) и положительна для всех значений угла θ . Явный вид функции $\psi(\theta)$ в (3.26) зависит от отношения R/R_{NL} . При $R \ll R_{NL}$

$$\psi(\theta) = \frac{4\sqrt{2}}{9\sqrt{\pi} a_*} \left[a \sin^2 \theta + \frac{b}{\ln 2} \alpha^2 \cos^2 \theta \right] \times \\ \times \left\{ \left[a \sin^2 \theta + \frac{b}{\ln 2} \alpha^2 \cos^2 \theta \right]^2 + \left[\frac{a_*}{kL_T} \frac{ZT}{T_i} \frac{b}{\ln 2} \alpha^2 \cos^2 \theta \right]^2 \right\}^{-1} > 0, \quad (3.27)$$

а в противоположном пределе, $R \gg R_{NL}$,

$$\psi(\theta) = \frac{\sqrt{2\pi}}{48\beta_{\parallel}} \left(2 - \cos^2\theta\right) \times \left[\left(2 - \cos^2\theta\right)^2 + \left(\frac{a_*}{kL_T}\frac{ZT}{T_i}\cos^2\theta\right)^2\right]^{-1} > 0. \quad (3.28)$$

В той области углов, где $\gamma_e(\theta) > 0$, выражение (3.26) описывает затухание ионно-звуковых волн на электронах, а для тех углов, где $\gamma_e(\theta) < 0$, имеет место генерация волн.

Как уже указывалось ранее [18], наличие аномального переноса приводит к необходимости рассмотрения устойчивости возникающих гидродинамических структур. Из выражения (3.25) видно, что плазма с развитой ионно-звуковой турбулентностью устойчива по отношению к рассматриваемым нами малым возмущениям вида (3.4), (3.8), если выполнено неравенство

$$\gamma_i > \max\left(-\gamma_e(\theta)\right). \tag{3.29}$$

ЖЭТФ, том 117, вып. 1, 2000

В пределе $R \ll R_{NL}$ (3.29) может быть представлено в виде

$$\min\left(1, \frac{kL_T}{0.84ZT/T_i}\right) \frac{1.3}{\alpha^2} \frac{\Lambda_i}{\Lambda} \left(\frac{ZT}{T_i}\right)^{5/2} \times \sqrt{\frac{Zm}{m_i}} < k^2 l_t l_{ei},$$
(3.30)

напротив, при $R \gg R_{NL}$ условию (3.29) отвечает соотношение

$$\frac{0.04}{1 + \frac{0.1}{kL_T} \frac{ZT}{T_i}} \frac{\Lambda_i}{\Lambda} \sqrt{\frac{R}{R_{NL}}} \left(\frac{ZT}{T_i}\right)^{5/2} \times \\
\times \sqrt{\frac{Zm}{m_i}} < k^2 l_t l_{ei},$$
(3.31)

где Λ_i — ионный кулоновский логарифм. При рассмотрении неравенств (3.30) и (3.31) необходимо помнить, что они должны выполняться совместно с условием (3.1).

4. ВЫНУЖДЕННОЕ РАССЕЯНИЕ МАНДЕЛЬШТАМА-БРИЛЛЮЭНА

Обращаясь к рассмотрению рассеяния электромагнитного излучения в плазме с ионно-звуковой турбулентностью, представим высокочастотное поле (2.1) в виде суммы поля накачки

$$\frac{1}{2}\mathbf{E}_0 \exp(-i\omega_0 t + i\mathbf{k}_0 \cdot \mathbf{r}) + \text{ c.c.}$$
(4.1)

и рассеянной волн

$$\frac{1}{2}\mathbf{E}_{-1}\exp(-i\omega_{-1}t + i\mathbf{k}_{-1}\cdot\mathbf{r}) + \text{ c.c.}, \qquad (4.2)$$

частоты ω_0 и ω_{-1} которых связаны с волновыми векторами \mathbf{k}_0 и \mathbf{k}_{-1} соотношениями

$$\omega_0^2 = \omega_{Le}^2 + k_0^2 c^2, \quad \omega_{-1}^2 = \omega_{Le}^2 + k_{-1}^2 c^2, \tag{4.3}$$

где *с* — скорость света в вакууме. Частоты и волновые векторы падающей и рассеянной волн различаются на частоту ω и волновой вектор **k** возмущений плотности электронов,

$$\omega_{-1} = \omega_0 - \omega, \quad \mathbf{k}_{-1} = \mathbf{k}_0 - \mathbf{k}. \tag{4.4}$$

При этом само возмущение плотности имеет вид (3.4).

Считая поле \mathbf{E}_0 основной волны заданным, для определения амплитуды \mathbf{E}_{-1} поля рассеянной волны воспользуемся уравнением

$$\begin{bmatrix} \omega_{-1}^{2} - k_{-1}^{2}c^{2} - \omega_{Le}^{2} \left(1 + i\frac{\nu_{ei}}{\omega_{-1}} \right) \end{bmatrix} \mathbf{E}_{-1}^{*} = \\ = \frac{\delta n}{2n} \omega_{Le}^{2} \mathbf{E}_{0}^{*}, \tag{4.5}$$

в которое входит подлежащая самосогласованному определению амплитуда возмущений плотности электронов. Падающая \mathbf{E}_0 и рассеянная \mathbf{E}_{-1} волны представляют собой плоские поперечные электромагнитные волны, для которых выполнены условия $\mathbf{k}_0 \cdot \mathbf{E}_0 = \mathbf{k}_{-1} \cdot \mathbf{E}_{-1}$, и, как видно из (4.5), направления векторов \mathbf{E}_0 и \mathbf{E}_{-1} совпадают. Для отыскания δn воспользуемся приведенной во втором разделе системой гидродинамических уравнений (2.20)–(2.22), которая в случае возмущений (3.4), (3.8) может быть записана в виде

$$\left\{\omega^{2} + 2i\omega\gamma_{i} - \omega_{s}^{2}\right\}\delta n = \frac{Znk_{B}}{m_{i}}k^{2}\left\{\delta T + \frac{\delta T_{i}}{Z}\right\} + \frac{Z}{2m_{i}}k^{2}\frac{e^{2}\mathbf{E}_{0}\cdot\mathbf{E}_{-1}^{*}}{m\omega_{0}^{2}},$$
(4.6)

$$\omega_s \delta T - \frac{2}{3} \omega_s T \frac{\delta n}{n} - \frac{2}{3nk_B} \mathbf{k} \cdot \delta \mathbf{q} =$$
$$= i\nu_{ei} \frac{2e^2 \mathbf{E}_0 \cdot \mathbf{E}^*_{-1}}{3k_B m \omega_0^2} + a_* k v_s \delta T \cos \theta, \qquad (4.7)$$

$$\omega_s \delta T_i - \frac{2}{3} \omega_s T_i \frac{\delta n}{n} = -a_* k v_s Z \delta T \cos \theta.$$
 (4.8)

В уравнениях (4.7), (4.8) пренебрежено малым отличием частоты ω от частоты звука ω_s . В отличие от системы (3.9)–(3.12), описывающей длинноволновые звуковые возмущения в турбулентной плазме, система (4.6)–(4.8) содержит слагаемые пропорциональные \mathbf{E}_{-1}^* и совместно с уравнением (4.5) описывает рассеяние поля накачки (4.1) на низкочастотных длинноволновых звуковых возмущениях плотности заряда.

Рассмотрим стоящий в правой части (4.6) вклад в возмущение давления

$$k_B n (\delta T + \delta T_i / Z), \qquad (4.9)$$

обусловленный возмущениями температур электронов δT и ионов δT_i . Из уравнения (4.8) получаем для возмущения температуры ионов

$$\delta T_i = \frac{2}{3} T_i \frac{\delta n}{n} - a_* Z \delta T \cos \theta.$$
(4.10)

Первое слагаемое в правой части (4.10) обусловливает адиабатический вклад ионов в скорость звука, хорошо известный в гидродинамике ламинарной плазмы. Как уже было показано в предыдущем разделе, в рамках условия (3.22) этот вклад в скорость звука мал по сравнению с изотермическим вкладом электронов. Далее эти вкладом пренебрегаем. В отличие от ламинарной плазмы в турбулентной плазме описываемое вторым слагаемым правой части (4.10) приращение температуры ионов благодаря обмену

7 ЖЭТФ, вып.1

энергией с электронами не мало. Такое существенное увеличение вклада электрон-ионного теплообмена в δT_i вызвано, во-первых, увеличением частоты релаксации температуры в турбулентной плазме (2.16) по сравнению с ламинарной плазмой, а во-вторых, увеличением относительного изменения доли энергии (3.18), передаваемой от электронов к ионам, реализующимся при $kL_T |\cos \theta| \gg 1$. С учетом (4.10) и сделанных замечаний для возмущения давления получаем

$$k_B n(\delta T + \delta T_i/Z) = k_B n(1 - a_* \cos \theta) \delta T. \qquad (4.11)$$

Для $R > R_{NL}$, когда $a_* = 1.3$, из правой части (4.11) следует, что существуют такие углы θ , для которых вклад в возмущение давления (4.9) находится в противофазе с возмущением температуры электронов δT . Это имеет место тогда, когда, во-первых, вклад в возмущение ионной температуры δT_i , обусловленный теплообменом с электронами, по модулю превышает $|Z\delta T|$, а во-вторых, находится в противофазе с δT .

Вклад в последнее слагаемое левой части уравнения (4.7) электронной теплопроводности (3.14), (3.16), входящей в дивергенцию теплового потока электронов (3.13), (3.15), может быть записан (по порядку величины) в виде

$$\frac{k^2}{nk_B}\chi_t(\theta)\delta T \sim kv_{eff}(k)\delta T.$$
(4.12)

Здесь $v_{eff}(k) \sim (kL_T)\sqrt{1 + R/R_{NL}}v_s$ характеризует эффективную скорость выноса тепла за счет электронного теплопереноса из области действия греющего поля. Первое слагаемое левой части (4.7), отвечающее изменению δT во времени, дается выражением $kv_s\delta T$. С учетом (3.21) оно мало по сравнению с (4.12). Далее, последнее слагаемое в правой части (4.7), описывающее обмен энергией между электронами и ионами, по порядку величины также определяется выражением $\sim kv_s\delta T$ и также дает малый по сравнению с (4.12) вклад в электронный баланс тепла. С учетом всего этого, подставляя (4.10) в (4.7) и используя (3.13)–(3.16), (3.26)–(3.28), из уравнения (4.7) находим возмущение температуры электронов

$$\delta T = \frac{e^2 \mathbf{E}_0 \cdot \mathbf{E}_{-1}^*}{k_B m \omega_0^2} \frac{\psi(\theta)}{k^2 l_t l_{ei}} - 2i \frac{\gamma_e(\theta)}{\omega_s} T \frac{\delta n}{n}.$$
 (4.13)

При написании (4.13) пренебрежено малыми величинами порядка $1/kL_T$, дающими малые поправки к вещественной частоте ω_s . Первое слагаемое в правой части (4.13) описывает возмущение температуры электронов δT , вызванное смешением поля

рассеянной волны \mathbf{E}_{-1}^* с полем накачки \mathbf{E}_0 , и отвечает балансу неоднородного нагрева электронов при обратном тормозном поглощении такого интерференционного поля и электронного теплопереноса. Второе слагаемое в правой части (4.13) отвечает малому диссипативному вкладу электронов в инкремент ионного звука $\gamma_s(\theta)$.

Исключая с помощью (4.10), (4.13) δT и δT_i , вместо системы (4.6)–(4.8) запишем одно уравнение для определения возмущения плотности, создаваемого билинейной комбинацией полей падающей и рассеянной волн:

$$\left[\omega^{2} - \omega_{s}^{2} + 2i\omega\gamma_{s}(\theta)\right]\frac{\delta n}{n} = \frac{1}{2}\mathbf{E}_{0} \cdot \mathbf{E}_{-1}^{*}\left(\frac{e\omega_{s}}{m\omega_{0}v_{T}}\right)^{2} \times \left[1 + 2(1 - a_{*}\cos\theta)\frac{\psi(\theta)}{k^{2}l_{t}l_{ei}}\right].$$
(4.14)

Слагаемые в квадратных скобках в правой части формулы (4.14) имеют различную природу. Первое из них — единица — возникает из-за пондеромоторного воздействия полей. Второе, которое содержит в знаменателе малый параметр $k^2 l_t l_{ei} \ll 1$ (см. (3.1)), описывает возмущение плотности из-за вклада в возмущение давления (4.11), порожденного билинейной интерференционной комбинацией полей $\mathbf{E}_0 \cdot \mathbf{E}_{-1}^*$.

Совместное рассмотрение уравнений (4.5)и (4.14) позволяет получить следующее дисперсионное уравнение, описывающее параметрическую неустойчивость и связывающее частоту ω , вообще говоря комплексную, с волновым вектором возмущений **k**

$$- (\omega - \Delta + i\gamma_E) \left[\omega^2 - \omega_s^2 + 2i\omega\gamma_s(\theta) \right] =$$

$$= \frac{\omega_s^2}{8\omega_0 r_{De}^2} v_E^2 \left[1 + 2(1 - a_* \cos \theta) \frac{\psi(\theta)}{k^2 l_t l_{ei}} \right], \quad (4.15)$$

где $v_E = |e\mathbf{E}_0/m\omega_0|$ — амплитуда скорости осцилляций электрона в поле основной волны,

$$\Delta = \frac{c^2}{2\omega_0} (2\mathbf{k} \cdot \mathbf{k}_0 - k^2), \quad \gamma_E = \nu_{ei} \frac{\omega_{Le}^2}{2\omega_0^2}. \quad (4.16)$$

При получении уравнения (4.15), так же как и при рассмотрении звуковых возмущений в отсутствие поля накачки, считались выполненными условия (3.21)–(3.24). Помимо этих неравенств, при выводе уравнения (4.15) использовано ограничение

$$\omega \ll \omega_0, \tag{4.17}$$

которое заведомо выполнено при $\omega \sim \omega_s \ll \omega_0$.

Для полноты картины отметим, что нерелятивистское движение плазмы со скоростью $u \ll c$ приводит к доплеровскому сдвигу частоты ω и учитывается заменой ω на $\omega' = \omega - \mathbf{k} \cdot \mathbf{u}$ в уравнении (4.15). Далее будем считать $\omega \simeq \omega_s + i\gamma$, где $|\gamma| \ll \omega_s$ (не следует путать с γ из третьего раздела). Будем рассматривать условия, при которых для расстройки резонанса Δ выполнено равенство

$$\Delta = \omega_s$$

и процесс ВРМБ идет наиболее эффективно. Тогда для определения мнимой поправки γ из (4.15) имеем

$$(\gamma + \gamma_E) \left[\gamma + \gamma_s(\theta)\right] = \frac{1}{4} W_E(\theta), \qquad (4.18)$$

где $\gamma_s(\theta)$ описывается соотношениями (3.25)–(3.28), а

$$W_E(\theta) = \frac{\omega_s}{4\omega_0} \frac{v_E^2}{r_{De}^2} \left[1 + 2(1 - a_* \cos \theta) \frac{\psi(\theta)}{k^2 l_t l_{ei}} \right].$$
 (4.19)

Как уже указывалось в третьем разделе, определяющая $W_E(\theta)$ функция $\psi(\theta)$ (3.27), (3.28) существенно зависит от коэффициента теплопроводности в турбулентной плазме $\chi_t(\theta)$ (3.14), (3.16) и положительна для всех значений угла θ .

Выражение (4.19) описывает нелинейное взаимодействие рассеянной (4.2) и звуковой (3.4) волн, и именно его знак характеризует возможность развития ВРМБ. При положительном знаке (4.19) ВРМБ возможно, а при отрицательном — невозможно. Поскольку в обсуждаемых условиях (3.1) параметр $k^2 l_t l_{ei} \ll 1$, основной вклад в нелинейное взаимодействие дает вклад в возмущение давления (4.11), что отвечает тепловому механизму ВРМБ. Поэтому при $R > R_{NL}$ для углов θ , при которых вклад в возмущение давления и порождающая его билинейная комбинация $\mathbf{E}_0 \cdot \mathbf{E}_{-1}^*$ сдвинуты по фазе на 180° , т.е. $(1 - a_* \cos \theta) < 0$, знак нелинейного взаимодействия отрицателен и развитие ВРМБ невозможно. Следует отметить, что для достаточно высокой степени неизотермичности плазмы, когда выполнено условие $ZT/T_i > 0.5L_T (l_t l_{ei})^{-1/2} > 1$, даже в рамках (3.1) ВРМБ определяется пондеромоторным механизмом и возможность его запрета не реализуется.

В уравнении (4.18) абсолютная величина декремента $|\gamma_s(\theta)|$ мала по сравнению с частотой ω_s , которая сама невелика в рассматриваемом здесь пределе (3.1) достаточно больших длин волн. Для таких параметров лазерной плазмы величина $|\gamma_s(\theta)|$ может оказаться как больше, так и меньше $2\pi/\tau$ — обратной длительности лазерных импульсов, используемых для исследования ВРМБ. Поэтому представляет интерес обсудить обе возможности. Остановимся вначале на рассмотрении такой ситуации, когда длительность импульса накачки τ велика и справедливо неравенство

$$|\gamma_s(\theta)|\tau \gg 2\pi. \tag{4.20}$$

Будем рассматривать условия, при которых суммарный декремент затухания звука на ионах и электронах $\gamma_s(\theta)$ положителен при всех значениях угла θ , т. е. выполнено неравенство (3.29), и в плазме не развивается гидродинамическая неустойчивость. Тогда отвечающий возможности ВРМБ корень квадратного уравнения (4.18) имеет вид

$$\gamma = -\frac{1}{2} \left[\gamma_E + \gamma_s(\theta) \right] + \frac{1}{2} \sqrt{\left[\gamma_E - \gamma_s(\theta) \right]^2 + W_E(\theta)}.$$
(4.21)

Согласно (4.21) пороговое для ВРМБ значение интенсивности излучения находится из соотношения

$$W_E(\theta) = 4\gamma_E\gamma_s(\theta) > 0. \tag{4.22}$$

Как показывают оценки, для большинства лазерных плазм справедливо условие $|\gamma_s(\theta)| \ll \gamma_E$, и решение (4.21) вблизи порога можно представить в следующем простом виде:

$$\gamma \simeq -\gamma_s(\theta) + \frac{W_E(\theta)}{4\gamma_E}.$$
 (4.23)

Далее, используя соотношения (3.20), (3.25), (3.27), (3.28), (4.16), представим условие (4.22) в виде

$$\begin{aligned} \frac{(v_E^2)_{th}}{v_T^2} &= 8 \frac{\nu_{ei}}{\omega_0} \frac{\gamma_i + \gamma_e(\theta)}{\omega_s} \times \\ &\times \frac{1}{1 + 2(1 - a_* \cos \theta) \psi(\theta) / k^2 l_t l_{ei}} > 0. \end{aligned}$$
(4.24)

Перейдем к обсуждению выражения (4.24), определяющего интенсивность излучения накачки, при которой возникает ВРМБ. Как обычно в теории ВРМБ, наличие в правой части (4.24) двух малых параметров, ν_{ei}/ω_0 и $\gamma_s(\theta)/\omega_s$, позволяет видеть, что ВРМБ возникает при сравнительно небольшой интенсивности излучения, когда амплитуда скорости осцилляций электрона в поле основной волны значительно меньше тепловой скорости электронов. При обсуждении соотношения (4.24) удобно ввести угол рассеяния θ_0 между волновыми векторами падающей \mathbf{k}_0 и рассеянной \mathbf{k}_{-1} волн, который уже использовался нами в формулах (1.1), (1.2). При этом для определяющего рассеяние волнового вектора \mathbf{k} звуковых волн имеем

$$k = 2k_0 \sin \frac{\theta_0}{2}.$$

С учетом этого определения и в том случае, когда

выполнены условия (3.30), (3.31), из (4.24) приближенно находим

$$\begin{aligned} &\frac{(v_E^2)_{th}}{v_T^2} = \frac{32}{3} \times \\ &\times \frac{(T_i/ZT)(\nu_{ei}/\nu_{ii})(k_0 v_s/\omega_0)\sin(\theta_0/2)}{1 + (1 - a_*\cos\theta)\psi(\theta)/(2k_0^2 l_t l_{ei}\sin^2(\theta_0/2))} {>}0. \end{aligned}$$

$$(4.25)$$

Из (4.25) следует, что по мере уменьшения существенной зависимости, отвечающей порогу плотности потока излучения от θ — угла между вектором рассеяния и осью анизотропии турбулентных шумов — запрет на ВРМБ снимается. Такая зависимость проявляется особенно ярко в пределе $R > R_{NL}$, когда, как уже отмечалось при обсуждении уравнения (4.14) и соотношения (4.19), на 180° изменяется сдвиг фазы между вкладом в возмущение давления (4.9) и билинейной комбинацией полей $\mathbf{E}_0 \cdot \mathbf{E}_{-1}^*$. Изменение фазового синхронизма при малых θ_0 приводит к тому, что вместо раскачки ионно-звуковых колебаний плотности имеет место их подавление. Следствием подавления ионно-звуковых колебаний является запрет на ВРМБ под теми углами θ , где отрицательно выражение (4.25). Функции

$$I(\theta) = \frac{(v_E^2)_{th}}{v_T^2} \frac{\omega_0}{8\nu_{ei}} \frac{\omega_s}{\gamma_i}$$

во всем диапазоне углов θ приведены на рис. 1–3 для значений параметра $(\nu_t/2\gamma_i)(\omega_{Li}^2/\omega_{Le}^2)$, отвечающего выполнению условия (3.29). Согласно рис. 1 при малом силовом воздействии на электроны, когда $R \ll R_{NL}$ и $(\nu_t/2\gamma_i)(\omega_{Li}^2/\omega_{Le}^2) = 0.02$, порог ВРМБ минимален для тех возмущений плотности электронов, волновой вектор которых **k** направлен вдоль **R**. Для векторов **k**, ориентированных в поперечных к **R** направлениях, порог **ВРМБ** значительно выше. Напротив, при $R \gg R_{NL}$ и $(\nu_t/2\gamma_i)(\omega_{Li}^2/\omega_{Le}^2) = 2$ и сравнительно небольшой неизотермичности, когда, например, $kL_T = ZT/T_i = 10$, порог ВРМБ минимален для векторов k, направленных под большими углами к **R** (см. рис. 2). Для направлений **k** близких к **R** порог ВРМБ резко увеличивается. Такое увеличение особенно значимо при $k^2 l_t l_{ei} \ll 1$ и, как следует из (4.19), (4.24), (4.25) и рис. 2, может приводить к запрету ВРМБ в той области углов, где $W_E(\theta) < 0$. Следует подчеркнуть, что формула (4.25) имеет смысл лишь в той области углов θ , где ее знаменатель положителен. Условие обращения в нуль знаменателя (4.25) отвечает граничному углу θ_* , разделяющему пространство углов θ на область, где ВРМБ может развиваться, и на область, в которой ВРМБ запрещено. Из (4.23) следует, что

Рис. 1. Зависимость порога ВРМБ от угла между вектором ионно-звуковых волн и вектором плотности силы **R**. Кривые $I(\theta)$ получены при $\alpha = 0.3$, $ZT/T_i = 10$, $kL_T = 50$, $(\nu_t/2\gamma_i)(\omega_{Li}^2/\omega_{Le}^2) = 0.02$ и $k^2 l_t l_{ei} = 0.1$ (1), 0.01 (2)

Рис.2. Вид функции $I(\theta)$ при $R = 16R_{NL}$, $kL_T = 10, (\nu_t/2\gamma_i)(\omega_{Li}^2/\omega_{Le}^2) = 2$. Остальные параметры те же, что и на рис. 1

Рис. 3. Вид функции $I(\theta)$ при $R = 16R_{NL}$. В отличие от рис. 2, неизотермичность плазмы в 5 раз выше, $ZT/T_i = 50$. Остальные параметры те же

для векторов **k**, попадающих в область углов, при которых $W_E(\theta) < 0$, декремент γ отрицателен и нарастания возмущений нет. Зависимости, представленные на рис. 2, претерпевают существенное изменение с увеличением неизотермичности плазмы. Как показано на рис. 3, при выбранных параметрах плазмы увеличение неизотермичности в 5 раз снимает запрет на ВРМБ для **k**, ориентированных вдоль **R**, а наименьшие значения порога ВРМБ имеют место для **k**, направленных поперек **R**.

Рассмотрим представляющий интерес для приложений коэффициент пространственного усиления ВРМБ. Для этого при анализе дисперсионного уравнения (4.15) примем, что частота ω действительна и $\omega = \omega_s$, $\Delta = \omega_s$, а волновой вектор имеет малую мнимую часть $-i\mathbf{G}$, $G \ll k$. Тогда для коэффициента пространственного усиления вдоль направления распространения рассеянной волны $G_{-1} = \mathbf{k}_{-1} \cdot \mathbf{G}/k_{-1}$ находим

$$G_{-1} = \frac{\nu_{ei}\omega_{Le}^2}{2\omega_0 k_0 c^2} \left\{ \frac{v_E^2}{(v_E^2)_{th}} - 1 \right\},$$
(4.26)

где зависимость функции $(v_E^2)_{th}$ от угла θ описывается выражением (4.24). Согласно (4.26) пространственное усиление рассеянной волны наиболее эффективно для тех углов θ , под которыми реализуется наибольшее превышение порога ВРМБ. Вместе с тем, так как при выводе соотношения (4.26) считалось $G_{-1} \ll k_{-1}$ (или $G \ll k$), в условиях его применимости превышение порога ВРМБ не должно быть аномально большим.

Обсудим ВРМБ в пределе, противоположном (4.20), когда длительность импульса поля накачки (4.1) мала по сравнению с характерным временем изменения амплитуд гидродинамических возмущений в плазме,

$$|\gamma_s(\theta)| \tau \ll 2\pi. \tag{4.27}$$

Определим пороговое для ВРМБ значение интенсивности поля накачки, как это принято для коротких импульсов, из соотношения

$$\gamma \tau = 2\pi, \tag{4.28}$$

где γ определяется формулой (4.21). Тогда для пороговой интенсивности поля накачки получаем следующее выражение:

$$\frac{(v_E^2)_{th,\tau}}{v_T^2} = 8 \frac{\nu_{ei}}{\omega_0} \frac{2\pi}{\omega_s \tau} \left[1 + \frac{2\pi}{\gamma_E \tau} \right] \times \\ \times \left[1 + 2(1 - a_* \cos \theta) \frac{\psi(\theta)}{k^2 l_t l_{ei}} \right]^{-1} > 0.$$
(4.29)

Как и в случае (4.24), из формулы (4.29), условий $|\gamma| \ll \omega_s$ и (4.28) следует, что амплитуда скорости осцилляций электронов, отвечающая пороговому значению интенсивности поля накачки, также мала по сравнению с тепловой скоростью электронов. Следует отметить, что сравнительно невысокое значение пороговой плотности потока энергии (4.29) поля накачки с длительностью импульса (4.27) превышает значение соответствующей величины (4.24) для длинного импульса в

$$\frac{(v_E^2)_{th,\tau}}{(v_E^2)_{th}} = \frac{2\pi}{\max|\gamma_s(\theta)|\tau} \left[1 + \frac{2\pi}{\gamma_E\tau}\right] \gg 1 \qquad (4.30)$$

раз. Таким образом, для возможности развития ВРМБ в лазерных импульсах малой длительности необходимы более высокие значения плотности потока энергии этих полей, чем это требуется в случае импульсов большой длительности. Так же как и в случае больших длительностей импульса накачки, пороговое значение величины (4.29) существенно зависит от угла между векторами **n** и **k**. В силу (3.29), (4.27) соответствующие зависимости подобны приведенным на рис. 1–3.

В заключение этого раздела отметим, что и в случае предела коротких импульсов поля накачки (4.27) для коэффициента пространственного усиления ВРМБ вблизи порога справедлива формула (4.26), в которой $(v_E^2)_{th}$ следует заменить на $(v_E^2)_{th,\tau}$ согласно (4.29).

5. ОБСУЖДЕНИЕ

Остановимся на рассмотрении условий, в которых возможно наблюдение ВРМБ в плазме с ионно-звуковой турбулентностью. Согласно неравенству (3.5) характерный масштаб определяющих возмущение гидродинамических величин должен быть меньше пространственного масштаба изменения самих величин. Это означает, что угол рассеяния θ_0 должен быть не слишком малым,

$$2\sin\frac{\theta_0}{2} \approx \theta_0 \gg 1.5 \cdot 10^{-3} \left[\frac{10^{-2}}{L_T [\text{cM}]}\right] \left[\frac{2 \cdot 10^{15}}{\omega_0 [\text{ c}^{-1}]}\right], \quad (5.1)$$

где принято $L \sim L_T$. Вообще говоря, еще одно ограничение снизу на величину θ_0 дают неравенства (3.30), (3.31). Однако в наиболее интересном случае лазерных импульсов небольшой длительности, когда $|\gamma_s(\theta)| \tau \ll 2\pi$, такого ограничения нет. С другой стороны, использование гидродинамического описания возмущений предполагает малость параметра $Zk^2l_tl_{ei}$ (3.1) по сравнению с единицей, что дает

$$\begin{aligned} \theta_0 &< 0.1 \left(\frac{\Lambda}{5}\right)^{1/2} \left[\frac{10^{-2}}{L_T [\text{cM}]}\right]^{1/4} \left[\frac{2 \cdot 10^{15}}{\omega_0 [\text{c}^{-1}]}\right] \times \\ &\times \left[\frac{ZT}{10T_i}\right]^{1/4} \left[\frac{R}{p} L_T\right]^{1/4} \left[\frac{100}{T [\text{3B}]}\right]^{9/8} \left[\frac{n [\text{cM}^{-3}]}{10^{20}}\right]^{5/8}. \end{aligned}$$
(5.2)

Еще одно ограничение изложенной выше теории связано с предположением о малости характерного времени установления квазистационарного спектра турбулентных шумов по сравнению со временем изменения возмущений гидродинамических величин (см. (3.6)). В рамках неравенств (3.1), (3.6) спектр турбулентных шумов и электронные потоки успевают следовать за сравнительно медленным изменением возмущений. Неравенство (3.6) дает еще одно ограничение сверху на величину угла θ_0 :

$$\theta_{0} < 0.2 \left[\frac{10^{-2}}{L_{T} [\text{cM}]} \right]^{1/2} \left[\frac{2 \cdot 10^{15}}{\omega_{0} [\text{c}^{-1}]} \right] \left[\frac{10T_{i}}{ZT} \right]^{1/2} \times \left[\frac{R}{p} L_{T} \right]^{1/2} \left[\frac{100}{T [\text{sB}]} \right]^{1/4} \left[\frac{n [\text{cM}^{-3}]}{10^{20}} \right]^{1/4}.$$
 (5.3)

Рассмотрим ограничения (5.1)-(5.3) в случае лазерной плазмы железа в условиях, характерных для эксперимента [21, 22], когда T = 200 эВ, $n = 10^{20}$ см⁻³, Z = 5, $L_T = 100$ мкм, $ZT/T_i = 20$. Для таких параметров плазмы неравенства (5.1), (5.2) налагают следующие ограничения на величину угла рассеяния в градусах:

$$0.2^{\circ} < \theta_0 < 4^{\circ},$$
 (5.4)

а неравенство (5.3) оказывается более слабым, чем (5.2). Отметим, что для $k \approx k_0 \theta_0$ выполнены также и неравенства (3.7), допускающие возможность гидродинамического описания ионов. Следовательно, обнаруженные выше особенности анизотропии порога ВРМБ в турбулентной плазме должны наблюдаться в интервале сравнительно малых углов рассеяния. Для столь малых углов θ_0 волновой вектор рассеяния ${f k}$ практически перпендикулярен волновому вектору падающей волны \mathbf{k}_0 . Это означает, что для волн, распространяющихся вдоль **n** — направления анизотропии ионно-звуковой турбулентности, — особенности рассеяния будут определяться векторами k практически ортогональными **n**. Напротив, если $\mathbf{k}_0 \perp \mathbf{n}$, то рассеяние на малые углы определяется векторами k, ориентированными вдоль n.

Для полноты картины напомним следующее. Вне интервала углов (5.4) волновой вектор рассеяния велик настолько, что выполнено неравенство

$$Zk^2 l_t l_{ei} \gg 1. \tag{5.5}$$

Для описания рассеяния в рамках соотношения (5.5) необходимо учитывать нелокальность электронного переноса тепла. В том случае, когда распределение турбулентных шумов задано, теория ВРМБ в условиях (5.5) дана в недавно опубликованной работе [14].

Заканчивая обсуждение особенностей рассеяния на малые углы, отметим также, что, как видно из соотношения (4.29), для приведенных в этом разделе параметров плазмы и в случае импульсов излучения с $2\pi/\gamma_E \ll \tau \ll 2\pi/|\gamma_s|$ порог ВРМБ не превышает ~ $10^{10}-10^{11}(2\pi/|\gamma_s|\tau)$ Вт/см². Отсюда, в частности, при $\gamma_s \sim 10^8$ с⁻¹ и $\tau \sim 1$ нс пороговая плотность потока энергии составляет ~ $10^{12}-10^{13}$ Вт/см².

Рис. 4. Объемная диаграмма рассеяния

Рис.5. Диаграмма рассеяния в плоскости, перпендикулярной вектору \mathbf{k}_0 . В заштрихованной области азимутальных углов φ вектора \mathbf{k}_{-1} ВРМБ запрещено

До сих пор не обсуждены условия запрета ВРМБ. Остановимся на этом качественно новом явлении специально. Как было показано, при $Zk^2l_tl_{ei} \ll 1$ или (5.2) запрет ВРМБ возникает в пределе больших значений возбуждающей турбулентность эффективной плотности силы R, когда $R \gg R_{NL}$. При этом запрет возникает тогда, когда угол θ между направлением единичного вектора $\mathbf{n} = \nabla T / |\nabla T|$ (определяющего ось анизотропии ионно-звуковой турбулентности) и разностью $\mathbf{k}_0 - \mathbf{k}_{-1}$ (волновых векторов поля накачки \mathbf{k}_0 и рассеянной волны \mathbf{k}_{-1}) оказывается равным или меньшим θ_* . Угол θ_* определяется из условия обращения в нуль знаменателя формулы (4.25) и разделяет область углов θ на две части — разрешенную для реализации ВРМБ, когда $\theta_* < \theta < \pi$, и запрещенную, когда $0 \leq \theta \leq \theta_*$. Пусть θ_p — угол между векторами **n** и **k**₀, который можно назвать углом падения. Выберем полярную ось сферической системы координат вдоль вектора k₀. Тогда направление вектора \mathbf{k}_{-1} , задающее направление наблюдения рассеянной волны, будет определяться полярным углом θ_0 (углом рассеяния) и азимутальным углом φ , отсчитанным от проекции вектора **n** на плоскость, перпендикулярную **k**₀ (см. рис. 4). Для экспериментального наблюдения запрета на ВРМБ

необходимо выполнение следующего условия:

$$\cos\varphi \le \frac{\cos\theta_p \sin(\theta_0/2) - \cos\theta_*}{\sin\theta_n \cos(\theta_0/2)}, \qquad (5.6)$$

обеспечивающего выполнение неравенства $0 \leq \theta \leq \theta_*$. Поскольку построенная нами при (3.1) теория ВРМБ справедлива для малых углов рассеяния (5.2), в нулевом приближении по малому вкладу величин порядка $\theta_0 \ll 1$ (5.6) можно записать в виде

$$\pi - \arccos\left(\frac{\cos\theta_*}{\sin\theta_p}\right) \le \varphi \le \pi + \arccos\left(\frac{\cos\theta_*}{\sin\theta_p}\right), \quad (5.7)$$

где угол падения θ_p заключен в области

$$\pi/2 - \theta_* \le \theta_p \le \pi/2 + \theta_*. \tag{5.8}$$

В частности, при обсуждаемых условиях теплового ВРМБ

$$\theta_* = \arccos \frac{1}{a_*} \simeq 40^\circ, \tag{5.9}$$

а неравенство (5.8) имеет вид

$$50^{\circ} \le \theta_p \le 130^{\circ}. \tag{5.10}$$

На рисунке 5 заштрихованная область графически иллюстрирует диапазон азимутальных углов φ вектора \mathbf{k}_{-1} , в котором выполнено (5.7) и ВРМБ запрещено. Здесь $\mathbf{k}_{-1\perp}$ и \mathbf{n}_{\perp} — компоненты векторов \mathbf{k}_{-1} и \mathbf{n} , перпендикулярные \mathbf{k}_0 . Из (5.7) следует, что максимальная ширина области азимутальных углов φ вектора \mathbf{k}_{-1} , в которой ВРМБ запрещено, составляет

$$\pi - \theta_* \le \varphi \le \pi + \theta_* \tag{5.11}$$

и реализуется, когда угол падения $\theta_p \simeq \pi/2$, т.е. волна накачки падает практически перпендикулярно оси анизотропии турбулентности. При условиях теплового ВРМБ неравенства (5.11) имеют вид

$$140^{\circ} \le \varphi \le 220^{\circ}$$
.

Экспериментальное нахождение граничных значений углов θ_p и φ , при которых возникает запрет на ВРМБ, позволит найти θ_* и проверить не только численное значение константы a_* , но и — что самое главное — экспериментально проверить давно сделанное в литературе утверждение об аномально эффективном нагреве ионов в плазме с ионно-звуковой турбулентностью.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты 96-02-16779, 99-02-18075), программы Государственной поддержки ведущих научных школ (проект 96-15-96750) и федеральной целевой научно-технической программы «Исследования и разработки по приоритетным направлениям развития науки и техники гражданского назначения» — подпрограмма «Физика квантовых и волновых процессов».

ПРИЛОЖЕНИЕ

В сильно неизотермической плазме число ионов, взаимодействующих с ионно-звуковыми волнами согласно механизму черенковского рассеяния, сравнительно невелико и их влиянием на спектр турбулентности можно пренебречь. В такой плазме квазистационарное состояние ионно-звуковой турбулентности устанавливается под влиянием таких процессов, как черенковское излучение волн электронами и индуцированное рассеяние волн на тепловых ионах. В этих условиях закономерности электронного переноса зависят от соотношения возбуждающей турбулентность эффективной плотности силы

$$\mathbf{R} = en\mathbf{E}_q - \frac{\partial}{\partial \mathbf{r}} p \tag{\Pi.1}$$

и характеризующей влияние индуцированного рассеяния волн на ионах плотности силы R_{NL} (см. (2.7)), где \mathbf{E}_q — квазистационарное электрическое поле в плазме. Когда $R \ll R_{NL}$, плотность тока и теплового потока электронов описываются соотношениями [19]

$$\mathbf{j} = env_s \left\{ \left[\frac{3}{2} \left(1 - \beta_{\parallel}(\alpha) + \frac{\alpha}{12} \right) + \frac{16}{\pi} \beta_{\parallel}(\alpha) \right] \times \mathbf{n} - \frac{24}{\pi} \left(\beta_{\parallel}(\alpha) \mathbf{n} \cdot \boldsymbol{\zeta} \mathbf{n} + \beta_{\perp} \mathbf{n} \times [\boldsymbol{\zeta} \times \mathbf{n}] \right) \right\}, \quad (\Pi.2)$$

$$\mathbf{q} = pv_s \left\{ \left[\frac{15}{4} \left(1 - \beta_{\parallel}(\alpha) + \frac{\alpha}{12} \right) + \frac{64}{\pi} \beta_{\parallel}(\alpha) \right] \times \mathbf{n} - \frac{160}{\pi} \left(\beta_{\parallel}(\alpha) \mathbf{n} \cdot \boldsymbol{\zeta} \mathbf{n} + \beta_{\perp} \mathbf{n} \times [\boldsymbol{\zeta} \times \mathbf{n}] \right) \right\}, \quad (\Pi.3)$$

где $\mathbf{n} = \mathbf{R}/R$, $\boldsymbol{\zeta} = (p/R)\partial \ln T/\partial \mathbf{r}$, $\beta_{\perp} = 0.02$. В противоположном предельном случае, когда $R \gg R_{NL}$, электронные потоки имеют вид [19]

$$\mathbf{j} = \frac{16}{\pi} env_s \sqrt{\frac{R}{R_{NL}}} \times \left\{ \beta_{\parallel} \mathbf{n} - \frac{3}{2} \left(\beta_{\parallel} \mathbf{n} \cdot \boldsymbol{\zeta} \mathbf{n} + \beta_{\perp} \mathbf{n} \times [\boldsymbol{\zeta} \times \mathbf{n}] \right) \right\}, \quad (\Pi.4)$$

$$\mathbf{q} = \frac{64}{\pi} p v_s \sqrt{\frac{R}{R_{NL}}} \times \left\{ \beta_{\parallel} \mathbf{n} - \frac{5}{2} \left(\beta_{\parallel} \mathbf{n} \cdot \boldsymbol{\zeta} \mathbf{n} + \beta_{\perp} \mathbf{n} \times [\boldsymbol{\zeta} \times \mathbf{n}] \right) \right\}, \quad (\Pi.5)$$

где $\beta_{\perp} = 0.80$. Выражения (П.2)–(П.5) позволяют рассматривать электронные потоки заряда и тепла как вдоль, так и поперек оси анизотропии турбулентных шумов.

ЛИТЕРАТУРА

- H. A. Baldis and C. J. Walsh, Phys. Fluids 26, 3426 (1983).
- K. Tanaka, L. M. Goldman, W. Seka, R. W. Short, and E. A. Williams, Phys. Fluids 27, 2960 (1984).
- P. E. Young, K. G. Estabrook, W. L. Kruer, E. A. Williams, P. J. Wegner, R. P. Drake, H. A. Baldis, and T. W. Johnston, Phys. Fluids B 2, 1907 (1990).
- G. P. Banfi, K. Eidmann, and R. Sigel, Opt. Commun. 52, 35 (1984).
- J. Handke, S. A. H. Rizvi, and B. Kronast, Appl. Phys. 25, 109 (1981).
- S. J. Karttunen and R. R. E. Salomaa, Phys. Lett. A 88, 350 (1982).
- 7. J. F. Drake, P. K. Kaw, Y. C. Lee, G. Sekmidt, C. S. Liu, and M. N. Rosenbluth, Phys. Fluids 17, 778 (1974).
- W. M. Manheimer and D. G. Colombant, Phys. Fluids 24, 2319 (1981).
- 9. W. L. Kruer, Phys. Fluids 23, 1273 (1980).
- 10. L. Spitzer, Jr., and R. Harm, Phys. Rev. 89, 977 (1953).
- 11. R. W. Short and E. M. Epperlein, Phys. Rev. Lett. 68, 3307 (1992).
- 12. P. K. Shukla, Phys. Fluids B 5, 4253 (1993).
- A. V. Maximov and V. P. Silin, Phys. Lett. A 192, 67 (1994).
- 14. К. Н. Овчинников, В. П. Силин, С. А. Урюпин, ЖЭТФ 113, 629 (1998).
- 15. В. П. Силин, С. А. Урюпин, ЖЭТФ 98, 117 (1990).
- 16. А. В. Максимов, В. П. Силин, М. В. Чеготов, Физика плазмы 16, 575 (1990).
- **17**. В. П. Силин, С. А. Урюпин, Физика плазмы **22**, 790 (1996).

- **18**. В. Ю. Быченков, В. П. Силин, Физика плазмы **13**, 1097 (1987).
- V. Yu. Bychenkov, V. P. Silin, and S. A. Uryupin, Phys. Rep. 164, 119 (1988).
- 20. V. Yu. Bychenkov, V. P. Silin, and S. A. Uryupin, Comments on Plasma Physics and Controlled Fusion XIII, 1990, p. 239.
- 21. L. L. Losev and V. I. Soskov, Opt. Commun. 135, 71 (1998).
- 22. А. А. Антипов, А. З. Грасюк, С. В. Ефимовский, С. В. Курбасов, Л. Л. Лосев, В. И. Сосков, КЭ 25, 31 (1998).