ВЛИЯНИЕ ГРАНИЦЫ СРЕДЫ НА КОГЕРЕНТНОЕ ОБРАТНОЕ РАССЕЯНИЕ СВЕТА

В. Л. Кузьмин^а, В. П. Романов^{b*}

 Санкт-Петербургский торгово-экономический институт 194021, Санкт-Петербург, Россия
 Санкт-Петербургский государственный университет 198904, Старый Петергоф, Санкт-Петербург, Россия

Поступила в редакцию 5 мая 1999 г.

В рамках уравнения Бете—Солпитера рассматривается задача о многократном рассеянии света от неоднородной среды, занимающей полупространство. Путем интегрирования уравнения Бете—Солпитера по пространственным переменным получено тождество, которое имеет смысл баланса энергии падающего и рассеянного излучений. С помощью этого соотношения самосогласованным образом получен параметр длины, играющий роль интерполяционной длины Милна. Использование этого параметра в методе зеркальных отображений при описании формы пика когерентного обратного рассеяния для случая изотропного однократного рассеяния дает результаты, практически совпадающие с предсказаниями теории Милна. Применение данного подхода для анизотропной индикатрисы однократного рассеяния приводит к количественному совпадению теории с экспериментами по угловой зависимости когерентного обратного рассеяния. Развитый подход обобщается на случай электромагнитного поля, и исследуются поляризационные эффекты в обратном рассеянии.

PACS: 42.25.Gy, 42.25.Bs, 42.25.Ja, 42.70.Df

1. ВВЕДЕНИЕ

Исследование многократного рассеяния света в сильно неоднородных средах позволило обнаружить целый ряд явлений, обусловленных когерентными и корреляционными эффектами (см. [1–5]). В настоящее время продолжается изучение когерентного обратного рассеяния [6–9], угловых и частотных корреляций отраженного и проходящего света [10, 11], эффектов памяти и универсальности в поведении временной корреляционной функции [12]. Особенно большой интерес к проблеме распространения волн в сильно неоднородных средах начал проявляться, когда было установлено, что методами корреляционной спектроскопии и особенно методами спектроскопии диффузных волн фотонной плотности [1, 2, 13] можно решить проблему визуализации упорядоченных структур и макроскопических неоднородностей в непрозрачных средах [14-17]. В частности, это привело к новому направлению в медицинской технике — диагностике с помощью видимого и ближнего инфракрасного излучений [18].

Для адекватного восстановления структуры непрозрачных сред и более корректного описания когерентных и корреляционных эффектов в настоящее время значительное внимание уделяется развитию теории многократного рассеяния. Одной из суще-

^{*}E-mail: vadim.romanov@pobox.spbu.ru

ственных проблем в этой области является последовательный учет границы раздела сред [19-23]. В рамках диффузионного приближения естественным является метод зеркальных отображений. Однако поскольку диффузионное приближение справедливо вдали от границы, возникает произвол в выборе эффективной границы раздела. Различные варианты такого выбора обсуждались в работе [19]. Обычно положение эффективной границы определяется с помощью интерполяционной длины Милна, полученной из точного решения для скалярного поля в модели точечных рассеивателей: Впервые такой выбор был сделан в работе [23]. Однако сам метод зеркальных отображений не содержит требования совпадения эффективной границы с интерполяционной длиной Милна. В настоящей работе при описании многократного рассеяния от полупространства предлагается самосогласованный метод выбора эффективной границы. Решение строится для скалярного и векторного полей. Для случая изотропного однократного рассеяния для скалярного поля показано, что при описании пика когерентного обратного рассеяния развитый подход дает результат, практически совпадающий с полученным из точного решения Милна. Применение данного подхода к системам с анизотропной индикатрисой приводит к хорошему согласию теории с экспериментальными данными по когерентному обратному рассеянию.

Работа построена следующим образом. Во втором разделе приведены общие выражения для интенсивности многократно рассеянного излучения, обусловленного вкладом лестничных и циклических диаграмм. В третьем разделе рассмотрен случай скалярного поля. Проведен общий анализ системы уравнений при учете в разложении по полиномам Лежандра членов нулевого и первого порядков. В четвертом разделе путем интегрирования уравнения Бете—Солпитера для скалярного поля получено тождество, которое имеет смысл уравнения баланса энергии падающего и рассеянного света. Из этого уравнения самосогласованным образом найден параметр длины, аналогичный интерполяционной длине Милна. С его помощью рассчитана угловая зависимость когерентного обратного рассеяния и проведено сравнение результатов расчетов с экспериментом. В пятом разделе развитый подход распространен на случай электромагнитного поля и рассчитаны поляризованная и деполяризованная компоненты когерентного обратного рассеяния.

2. МНОГОКРАТНОЕ РАССЕЯНИЕ СВЕТА В СИЛЬНО НЕОДНОРОДНОЙ СРЕДЕ

Рассмотрим распространение света в случайной диэлектрической среде. Считая, что изменение неоднородностей среды пренебрежимо мало за время распространения волны [24], волновое уравнение для спектральной составляющей поля $E(\mathbf{r}, \omega)$ можно записать в виде

rot rot
$$\mathbf{E}(\mathbf{r},\omega) - \left(\frac{\omega}{c}\right)^2 \varepsilon(\omega) \mathbf{E}(\mathbf{r},\omega) = \left(\frac{\omega}{c}\right)^2 \delta \varepsilon(\mathbf{r},\omega) \mathbf{E}(\mathbf{r},\omega),$$
 (2.1)

где $\delta \varepsilon(\mathbf{r}, \omega) = \varepsilon(\mathbf{r}, \omega) - \varepsilon(\omega)$ — флуктуация диэлектрической проницаемости, $\varepsilon(\omega) = \varepsilon(\mathbf{r}, \omega)$ — средняя диэлектрическая проницаемость на частоте ω , c — скорость света в вакууме. В дальнейшем для краткости аргумент ω будем опускать. Интенсивность многократно рассеянного излучения в точке **r** можно представить в виде

$$\langle |\delta E_s(\mathbf{r})|^2 \rangle = \int d\mathbf{r}_1 d\mathbf{r}_1' d\mathbf{r}_2 d\mathbf{r}_2' A_{sj}(\mathbf{r} - \mathbf{r}_2) A_{sl}^*(\mathbf{r} - \mathbf{r}_2') \times$$

$$\times \Gamma_{jl,ii}(\mathbf{r}_2, \mathbf{r}'_2, \mathbf{r}_1, \mathbf{r}'_1) \langle E_i(\mathbf{r}_1) \rangle \langle E_i^*(\mathbf{r}'_1) \rangle.$$
(2.2)

Здесь $\delta \mathbf{E}_s(\mathbf{r}) = \mathbf{E}(\mathbf{r}) - \langle \mathbf{E}(\mathbf{r}) \rangle$ — флуктуация поля в среде, $\langle \mathbf{E}(\mathbf{r}) \rangle$ — среднее падающее поле, которое будем считать плоской монохроматической волной, $\langle \mathbf{E}(\mathbf{r}) \rangle = \mathbf{E} \exp(i\mathbf{k}_i \cdot \mathbf{r}), \mathbf{k}_i$ — волновой вектор падающей волны, $\hat{A}(\mathbf{r} - \mathbf{r}_2)$ — функция Грина волнового уравнения. В дальней зоне на больших расстояниях **r** от рассеивающего объема она имеет вид

$$\hat{A}(\mathbf{r} - \mathbf{r}_2) = \frac{1}{r} \left(\hat{I} - \frac{\mathbf{k}_s \mathbf{k}_s}{k^2} \right) e^{-i\mathbf{k}_s \mathbf{r}_2}, \qquad (2.3)$$

где \hat{I} — единичная матрица, $\mathbf{k}_s = k\mathbf{r}/r$ — волновой вектор рассеянной волны, $k = \varepsilon^{1/2}k_0$, $k_0 = \omega/c = 2\pi/\lambda$ — волновое число, λ — длина световой волны. Здесь и в дальнейшем по повторяющимся индексам предполагается суммирование, за исключением индексов i и s, обозначающих поляризации, соответственно, падающего и рассеянного света.

Функция $\hat{\Gamma}(\mathbf{r}_2, \mathbf{r}'_2, \mathbf{r}_1, \mathbf{r}'_1)$, которая определяет рассеянное поле, в общем случае представляется в виде ряда по степеням флуктуаций диэлектрической проницаемости $\delta \varepsilon$. Этот ряд суммируется и приводит к уравнению Бете—Солпитера. В приближении слабого рассеяния $\lambda \ll l$ (l — длина экстинкции) это уравнение принимает вид

$$\Gamma_{lj,mn}(\mathbf{r}_{2},\mathbf{r}_{2}',\mathbf{r}_{1},\mathbf{r}_{1}') = k_{0}^{4}G(\mathbf{r}_{2}-\mathbf{r}_{2}') \left[\delta(\mathbf{r}_{2}-\mathbf{r}_{1})\delta(\mathbf{r}_{2}'-\mathbf{r}_{1}')\delta_{lm}\delta_{jn} + \int d\mathbf{r}_{3}d\mathbf{r}_{3}'A_{la}(\mathbf{r}_{2}-\mathbf{r}_{3})A_{jb}^{*}(\mathbf{r}_{2}'-\mathbf{r}_{3}')\Gamma_{ab,mn}(\mathbf{r}_{3},\mathbf{r}_{3}',\mathbf{r}_{1},\mathbf{r}_{1}') \right], \quad (2.4)$$

где

$$G(\mathbf{r}_2 - \mathbf{r}_2') = \frac{1}{(4\pi)^2} \left\langle \delta \varepsilon(\mathbf{r}_2) \delta \varepsilon(\mathbf{r}_2') \right\rangle$$
(2.5)

— корреляционная функция флуктуаций диэлектрической проницаемости. Уравнение (2.4) написано в лестничном приближении в предположении о гауссовом характере флуктуаций $\delta \varepsilon$. При выводе этого уравнения предполагается малость параметра $\delta n r_c^3 \rho$, где δn — неоднородность показателя преломления среды, r_c — радиус корреляции неоднородностей, или размер рассеивателей, определяемый функцией (2.5), ρ — плотность неоднородностей, или рассеивателей, в единице объема, $\rho \sim a^{-3}$ (a — среднее расстояние между рассеивателями).

В функции $\hat{\Gamma}(\mathbf{r}_2, \mathbf{r}'_2, \mathbf{r}_1, \mathbf{r}'_1)$ удобно перейти к координатам «центра тяжести» $\mathbf{R}_j = =(\mathbf{r}_j + \mathbf{r}'_j)/2$ и относительным координатам $\mathbf{r}''_j = \mathbf{r}_j - \mathbf{r}'_j$. Для функции $\tilde{\Gamma}_{lj,mn}(\mathbf{R}_2, \mathbf{R}'_2; \mathbf{k}_s, \mathbf{k}_i)$, которая представляет собой фурье-образ по относительным координатам,

$$\tilde{\Gamma}_{lj,mn}(\mathbf{R}_{2},\mathbf{R}_{1};\mathbf{k}_{s},\mathbf{k}_{i}) = \int d\mathbf{r}_{1}^{\prime\prime}\mathbf{r}_{2}^{\prime\prime}\Gamma_{lj,mn}\left(\mathbf{R}_{2}+\frac{\mathbf{r}_{2}^{\prime\prime}}{2},\mathbf{R}_{2}-\frac{\mathbf{r}_{2}^{\prime\prime}}{2},\mathbf{R}_{1}+\frac{\mathbf{r}_{1}^{\prime\prime}}{2},\mathbf{R}_{1}-\frac{\mathbf{r}_{1}^{\prime\prime}}{2}\right) \times \\ \times \exp\left(i\mathbf{k}_{i}\mathbf{r}_{1}^{\prime\prime}-i\mathbf{k}_{s}\mathbf{r}_{2}^{\prime\prime}\right),$$
(2.6)

уравнение (2.4) можно представить в виде

$$\tilde{\Gamma}_{lj,mn}(\mathbf{R}_{2},\mathbf{R}_{1};\mathbf{k}_{s},\mathbf{k}_{i}) = k_{0}^{4}\tilde{G}(\mathbf{k}_{i}-\mathbf{k}_{s})\delta(\mathbf{R}_{21})\delta_{lm}\delta_{jn} + k_{0}^{4}\int d\mathbf{R}_{3}\tilde{G}(\mathbf{k}_{23}-\mathbf{k}_{s})\Lambda_{lj,ab}(\mathbf{R}_{23})\tilde{\Gamma}_{ab,mn}(\mathbf{R}_{3},\mathbf{R}_{1};\mathbf{k}_{23},\mathbf{k}_{i}).$$
(2.7)

Здесь

$$\tilde{G}(\mathbf{q}) = \int d\mathbf{r} \, G(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} \tag{2.8}$$

фурье-образ корреляционной функции,

$$\Lambda_{lj;ab}(\mathbf{R}) = \frac{e^{-R/l}}{R^2} \left(\delta_{la} - \frac{R_l R_a}{R^2} \right) \left(\delta_{jb} - \frac{R_j R_b}{R^2} \right), \qquad (2.9)$$

 $\mathbf{k}_{ij} = k \mathbf{R}_{ij} / R_{ij}$ — волновой вектор волны, распространяющейся между точками \mathbf{R}_i и \mathbf{R}_j .

Будем рассматривать рассеяние от полупространства z > 0, где z — декартова координата, направленная внутрь среды нормально границе z = 0 при углах падения, близких к 180° и нормальном падении. В дальней зоне с учетом (2.3) средний квадрат поля представим в виде

$$\langle |\delta \mathbf{E}_s(\mathbf{r})|^2 \rangle = \frac{1}{r^2} I_{si}(\mathbf{k}_s, \mathbf{k}_i), \qquad (2.10)$$

где

$$I_{si}(\mathbf{k}_{s},\mathbf{k}_{i}) = \int d\mathbf{R}_{1} d\mathbf{R}_{2} \exp\left(-\frac{Z_{1}+Z_{2}}{l}\right) \left(\hat{I}-\frac{\mathbf{k}_{s}\mathbf{k}_{s}}{k^{2}}\right)_{sj} \left(\hat{I}-\frac{\mathbf{k}_{s}\mathbf{k}_{s}}{k^{2}}\right)_{sl} \times \hat{\Gamma}_{jl,ii}(\mathbf{R}_{2},\mathbf{R}_{1};\mathbf{k}_{s},\mathbf{k}_{i})|\mathbf{E}_{i}|^{2}.$$
(2.11)

В силу аксиальной симметрии задачи зависимость от \mathbf{R}_2 , \mathbf{R}_1 сводится к зависимости от относительной поперечной переменной $\rho_{21} = [(X_2 - X_1), (Y_2 - Y_1)]$ и координат Z_2 и Z_1 .

Как видно из уравнения (2.11), для задач рассеяния при нормальном падении достаточно рассмотреть функцию

$$\hat{\Gamma}(\boldsymbol{\rho}_{21}, Z_2; \mathbf{k}_s, \mathbf{k}_i) = \int_0^\infty \tilde{\tilde{\Gamma}}(\mathbf{R}_2, \mathbf{R}_1; \mathbf{k}_s, \mathbf{k}_i) \exp(-Z_1/l) dZ_1.$$
(2.12)

Согласно (2.7) эта функция удовлетворяет уравнению

$$\Gamma_{lj,mn}(\rho_{21}, Z_2; \mathbf{k}_s, \mathbf{k}_i) = k_0^4 \tilde{G}(\mathbf{k}_i - \mathbf{k}_s) \theta(Z_2) \delta(\rho_{21}) \exp(-Z_2/l) \delta_{lm} \delta_{jn} + k_0^4 \int \tilde{G}(\mathbf{k}_{23} - \mathbf{k}_s) \Lambda_{lj,ab}(\mathbf{R}_{23}) \Gamma_{ab,mn}(\rho_{31}, Z_3; \mathbf{k}_{23}, \mathbf{k}_i) d\mathbf{R}_3.$$
(2.13)

В рассматриваемой геометрии имеем $\mathbf{k}_i = (0, 0, k)$, $\mathbf{k}_s = (k_0 \theta_s, 0, -k)$, где θ_s — угол рассеяния, отсчитываемый от обратного направления. Формула (2.11) принимает вид

$$I_{si}(\mathbf{k}_s, \mathbf{k}_i) = |\mathbf{E}_i|^2 S \int d\boldsymbol{\rho}_{21} \int_0^\infty dZ_2 \Gamma_{ss,ii}(\boldsymbol{\rho}_{21}, Z_2; \mathbf{k}_s, \mathbf{k}_i) \exp(-Z_2/l), \qquad (2.14)$$

где S — освещенная область.

При малых θ_s наряду с вкладом лестничных диаграмм следует также учесть интерференционный член, который имеет вид [19]

$$I_{si}^{(c)}(\mathbf{k}_{s},\mathbf{k}_{i}) = |\mathbf{E}_{i}|^{2}S \int d\boldsymbol{\rho}_{21} \int_{0}^{\infty} dZ_{2} \left[\Gamma_{si,is}(\boldsymbol{\rho}_{21}, Z_{2}; \mathbf{k}_{s}, \mathbf{k}_{i}) - \delta(\boldsymbol{\rho}_{21})\delta_{si}k_{0}^{4}\tilde{G}(\mathbf{k}_{s} - \mathbf{k}_{i})\exp(-Z_{2}/l) \right] \exp\left(-Z_{2}l^{-1} + ik_{0}\theta_{s}\left(X_{2} - X_{1}\right)\right). \quad (2.15)$$

Выражение (2.15) представляет собой вклад циклических диаграмм. При его получении из вклада лестничных диаграмм (2.14) необходимо, в частности, переставить индексы и вычесть вклад однократного рассеяния (см., например, [4]).

Анизотропия однократного рассеяния приводит к зависимости функции $\hat{\Gamma}(\rho, Z_2; \mathbf{k}_s, \mathbf{k}_i)$ от ориентации волновых векторов. В силу структуры уравнения (2.13) ориентацию волнового вектора падающей волны \mathbf{k}_i можно зафиксировать и рассмотреть зависимость только от ориентации \mathbf{k}_s . В общем случае эту зависимость от \mathbf{k}_s можно представить в виде разложения по сферическим функциям. Мы ограничимся учетом полиномов Лежандра нулевого и первого порядков, что соответствует диффузионному приближению

$$\hat{\Gamma}(\boldsymbol{\rho}_{21}, Z_2, \mathbf{k}_s, \mathbf{k}_i) = \frac{1}{4\pi l} \left[\hat{\gamma}_0(\boldsymbol{\rho}_{21}, Z_2) + \hat{\gamma}_n(\boldsymbol{\rho}_{21}, Z_2) \cos\theta + \hat{\gamma}_t(\boldsymbol{\rho}_{21}, Z_2) \cos\theta_t \right], \quad (2.16)$$

где

$$\cos\theta = (\mathbf{k}_s \mathbf{e}_3) k^{-1}, \quad \cos\theta_t = (\mathbf{k}_s \boldsymbol{\rho}_{21}) k^{-1} \rho_{21}^{-1},$$

 \mathbf{e}_3 — орт вдоль оси Z. При этом также учтено, что $\mathbf{k}_i \parallel \mathbf{e}_3$.

Используя свойство ортогональности полиномов Лежандра, уравнение (2.13) можно свести к системе интегральных уравнений для функций $\hat{\gamma}_0$, $\hat{\gamma}_n$, $\hat{\gamma}_t$:

$$\begin{aligned} \hat{\gamma}_{0}(\boldsymbol{\rho}_{21}, Z_{2}) &= \frac{3}{2}\theta(Z_{2})\exp\left(-\frac{Z_{2}}{l}\right)\delta(\boldsymbol{\rho}_{21})\hat{I} + \frac{3}{8\pi l}\int d\mathbf{R}_{3}\hat{\Lambda}(R_{23})\times \\ &\times \left[\hat{\gamma}_{0}(\boldsymbol{\rho}_{31}, Z_{3}) + \left(\frac{\mathbf{k}_{23}\boldsymbol{\rho}_{31}}{k\rho_{31}}\right)\hat{\gamma}_{t}(\boldsymbol{\rho}_{31}, Z_{3}) + \left(\frac{\mathbf{k}_{23}\mathbf{e}_{3}}{k}\right)\hat{\gamma}_{n}(\boldsymbol{\rho}_{31}, Z_{3})\right], \\ \hat{\gamma}_{t}(\boldsymbol{\rho}_{21}, Z_{2}) &= \frac{9\mu}{8\pi l}\int d\mathbf{R}_{3}\frac{\boldsymbol{\rho}_{21}\mathbf{R}_{23}}{\rho_{21}R_{23}}\hat{\Lambda}(R_{23})\times \\ &\times \left[\hat{\gamma}_{0}(\boldsymbol{\rho}_{31}, Z_{3}) + \left(\frac{\mathbf{k}_{23}\boldsymbol{\rho}_{31}}{k\rho_{31}}\right)\hat{\gamma}_{t}(\boldsymbol{\rho}_{31}, Z_{3}) + \left(\frac{\mathbf{k}_{23}\mathbf{e}_{3}}{k}\right)\hat{\gamma}_{n}(\boldsymbol{\rho}_{31}, Z_{3})\right], \end{aligned}$$
(2.17)
$$\hat{\gamma}_{n}(\boldsymbol{\rho}_{21}, Z_{2}, t) &= \frac{9}{2}\mu\theta(Z_{2})\exp(-Z_{2}/l)\delta(\boldsymbol{\rho}_{21})\hat{I} + \frac{9\mu}{8\pi l}\int d\mathbf{R}_{3}\frac{\mathbf{R}_{23}\mathbf{e}_{3}}{R_{23}}\hat{\Lambda}(R_{23})\times \\ &\times \left[\hat{\gamma}_{0}(\boldsymbol{\rho}_{31}, Z_{3}, t) + \left(\frac{\mathbf{k}_{23}\boldsymbol{\rho}_{31}}{k\rho_{31}}\right)\hat{\gamma}_{t}(\boldsymbol{\rho}_{31}, Z_{3}) + \left(\frac{\mathbf{k}_{23}\mathbf{e}_{3}}{k}\right)\hat{\gamma}_{n}(\boldsymbol{\rho}_{31}, Z_{3})\right], \end{aligned}$$

где $\theta(Z)$ — тета-функция Хэвисайда, $\mu = \overline{\cos \theta}$ — косинус угла рассеяния, усредненный по индикатрисе однократного рассеяния. При выводе (2.17) использовалась оптическая теорема

$$l^{-1} = \frac{2}{3} k_0^4 \int d\Omega_s \tilde{G}(\mathbf{k}_s - \mathbf{k}_i).$$
(2.18)

Мы рассматриваем среду, в которой ослабление света обусловлено рассеянием, а не поглощением, т. е. длина экстинкции *l* значительно меньше длины затухания.

Система (2.17) представляет собой обобщение уравнения Милна на случай электромагнитного поля. Анизотропия однократного рассеяния при этом учитывается в P_1 -приближении. Решение этой системы уравнений позволяет найти функцию $\hat{\Gamma}(\rho_{21}, Z_2, \mathbf{k}_s, \mathbf{k}_i)$ и, следовательно, определить интенсивность рассеяния, определяемую формулой (2.11).

Подстановка в формулу (2.11) в качестве функции $\hat{\Gamma}$ решения для неограниченной среды приводит, как известно, к расходящемуся выражению. Стандартная процедура устранения этой расходимости состоит в использовании по аналогии с задачами электростатики метода зеркальных отображений. Решение системы уравнений (2.17) не приводит к расходимости, поскольку ограниченность среды здесь учитывается явным образом. Однако эта система уравнений достаточно сложна, и решение трудно получить даже численно [20, 25]. В отличие от электромагнитного поля, для скалярного случая имеется точное решение для системы точечных рассеивателей. Поскольку наличие точного решения позволяет проанализировать степень оправданности приближенных подходов, мы обсудим сначала случай скалярного поля.

3. СКАЛЯРНОЕ ПОЛЕ

В скалярном аналоге системы уравнений (2.17) легко перейти к спектру Фурье по поперечным переменным. Имеем

$$\begin{split} \tilde{\gamma}_{0}(\mathbf{Q}, Z_{2}) &= \theta(Z_{2}) \exp\left(-\frac{Z_{2}}{l}\right) + \frac{1}{4\pi l} \int_{0}^{\infty} dZ_{3} \times \\ &\times \left\{ \tilde{\Lambda}(\mathbf{Q}, Z_{23}) \tilde{\gamma}_{0}(\mathbf{Q}, Z_{3}) + \tilde{\Lambda}_{1}(\mathbf{Q}, Z_{23}) \left[\tilde{\gamma}_{t}(\mathbf{Q}, Z_{3}) + \mathbf{e}_{3} \tilde{\gamma}_{n}(\mathbf{Q}, Z_{3}) \right] \right\}, \\ \tilde{\gamma}_{t}(\mathbf{Q}, Z_{2}) &= \frac{3\mu}{4\pi l} \int_{0}^{\infty} dZ_{3} \left\{ \tilde{\Lambda}_{1}(\mathbf{Q}, Z_{23}) \tilde{\gamma}_{0}(\mathbf{Q}, Z_{3}) + \hat{\tilde{\Lambda}}_{2}(\mathbf{Q}, Z_{23}) \left[\tilde{\gamma}_{t}(\mathbf{Q}, Z_{3}) + \mathbf{e}_{3} \tilde{\gamma}_{n}(\mathbf{Q}, Z_{3}) \right] \right\}, \\ \tilde{\gamma}_{n}(\mathbf{Q}, Z_{2}) &= 3\mu \left\{ \theta(Z_{2}) \exp\left(-\frac{Z_{2}}{l}\right) + \frac{1}{4\pi l} \int_{0}^{\infty} dZ_{3} \times \\ &\times \mathbf{e}_{3} \left\{ \tilde{\Lambda}_{1}(\mathbf{Q}, Z_{23}) \tilde{\gamma}_{0}(\mathbf{Q}, Z_{3}) + \hat{\tilde{\Lambda}}_{2}(\mathbf{Q}, Z_{23}) \left[\tilde{\gamma}_{t}(\mathbf{Q}, Z_{3}) + \mathbf{e}_{3} \tilde{\gamma}_{n}(\mathbf{Q}, Z_{3}) \right] \right\} \right\}, \end{split}$$

$$(3.1)$$

Здесь и в дальнейшем величины с тильдами обозначают соответствующие двумерные фурье-образы

$$f(\boldsymbol{\rho}, Z) = \int \frac{d^2 \mathbf{Q}}{(2\pi)^2} \,\tilde{f}(\mathbf{Q}, Z) \exp(i\mathbf{Q}\boldsymbol{\rho}) \tag{3.2}$$

искомых функций $\gamma_0(\rho, Z)$, $\gamma_t(\rho, Z) = \rho \gamma_t(\rho, Z)/\rho$, $\gamma_n(\rho, Z)$ и интегральных ядер $\Lambda(R)$, $\Lambda_1(R) = \mathbf{R}\Lambda(R)/R$ и $\Lambda_2(R) = \mathbf{RR}\Lambda(R)/R^2$. Величина

$$\Lambda(R) = \exp(-R/l)/R^2 \tag{3.3}$$

является скалярным аналогом тензора (2.8).

Для удобства перейдем к безразмерным переменным z = Z/l и $\mathbf{q} = l\mathbf{Q}$. Выполним по переменной z в системе уравнений (3.1) преобразование Лапласа. Определим лаплас-образы в виде

$$g_m(\mathbf{q},s) = \int_0^\infty dz \, \tilde{\gamma}_m(\mathbf{q},z) e^{-zs}, \quad m = 0, n, t.$$
(3.4)

При этом функция $\tilde{\gamma}_t$ была параметризована в виде $\tilde{\gamma}_t = \mathbf{q}\gamma_t(\mathbf{q}, z)$ в силу ее ортогональности оси z. Система (3.1) для лаплас-образов принимает вид

$$[1 - p_{0}(w)] g_{0}(\mathbf{q}, s) - q^{2} p_{1}(w) g_{t}(\mathbf{q}, s) + s p_{1}(w) g_{n}(\mathbf{q}, s) = a_{0}(\mathbf{q}, s),$$

$$3\mu p_{1}(w) g_{0}(\mathbf{q}, s) + \left\{ 1 - \frac{3\mu}{2} \frac{s^{2} [p_{0}(w) - p_{1}(w)] - 2q^{2} p_{1}(w)}{w^{2}} \right\} g_{t}(\mathbf{q}, s) + \frac{3\mu s}{w^{2}} [p_{0}(w) - 3p_{1}(w)] g_{n}(\mathbf{q}, s) = a_{t}(\mathbf{q}, s),$$

$$3\mu s p_{1}(w) g_{0}(\mathbf{q}, s) - \frac{3\mu q^{2} s [p_{0}(w) - 3p_{1}(w)]}{w^{2}} g_{t}(\mathbf{q}, s) + \left\{ 1 - \frac{3\mu}{2} \frac{2s^{2} p_{1}(w) - q^{2} [p_{0}(w) - p_{1}(w)]}{w^{2}} \right\} g_{n}(\mathbf{q}, s) = a_{n}(\mathbf{q}, s),$$

$$(3.5)$$

где

$$w^{2} = s^{2} - q^{2}, \quad p_{0}(w) = \frac{1}{2w} \ln \frac{1+w}{1-w}, \quad p_{1}(w) = \frac{p_{0}(w) - 1}{w^{2}},$$

$$a_{0}(\mathbf{q}, s) = \frac{1}{1+s} - \frac{1}{4\pi} \int_{0}^{2\pi} d\phi \int_{1}^{\infty} \frac{dr}{r} \frac{1}{\chi - s} \left[g_{0}(\mathbf{q}, \chi) - \frac{1}{r} g_{n}(\mathbf{q}, \chi) + \frac{q^{2}}{r^{2}} g_{t}(\mathbf{q}, \chi) \right],$$

$$a_{t}(\mathbf{q}, s) = \frac{3\mu}{2} \int_{1}^{\infty} \frac{dr}{r} \frac{1}{r-s} \left[\frac{1}{r^{2}} g_{0}(\mathbf{q}, r) - \frac{1}{2} \left(1 - \frac{1}{r^{2}} \right) g_{t}(\mathbf{q}, r) - \frac{1}{2} \left(\frac{3}{r^{3}} - \frac{1}{r} \right) g_{n}(\mathbf{q}, r) \right],$$

$$a_{n}(\mathbf{q}, s) = \frac{3\mu}{1+s} + \frac{3\mu}{4\pi} \int_{0}^{2\pi} d\phi \int_{1}^{\infty} \frac{dr}{r} \frac{1}{\chi - s} \left[g_{0}(\mathbf{q}, \chi) + \frac{q^{2}}{4} \left(\frac{3}{r^{2}} - 1 \right) g_{t}(\mathbf{q}, \chi) - \frac{1}{r} g_{n}(\mathbf{q}, \chi) \right],$$
(3.6)

 $\chi = r + iql\sqrt{r^2 - 1}\cos\phi$. Система уравнений (3.5) представляет собой обобщение уравнения Милна на случай анизотропного рассеяния ($\mu \neq 0$) и с учетом интерференционного вклада ($q \neq 0$). Отметим, что функции $g_n(\mathbf{q}, s)$ и $g_t(\mathbf{q}, s)$ являются величинами первого порядка по μ .

Согласно формулам (2.13)–(2.15) интенсивность рассеяния представляет собой лаплас-образ от (2.13) по z при s = 1 и фурье-образ по поперечным переменным при $q = lk_0\theta_s$. В рассматриваемом случае рассеяния почти назад, $\cos\theta = \cos(\pi - \theta_s) \approx -1$, $\cos\theta_t \approx 0$, интерференционный вклад имеет вид

$$I_{si}^{(c)}(\mathbf{k}_{s},\mathbf{k}_{i}) = |E_{i}|^{2}A\left\{\frac{1}{4\pi}\left[g_{0}(q,1) - g_{n}(q,1)\right] - \frac{1}{2}k_{0}^{4}l\tilde{G}(2k)\right\}.$$
 (3.7)

Таким образом, для решения задачи обратного рассеяния достаточно найти комбинации компонент $g_0(\mathbf{q}, s) - s^{-1}g_n(\mathbf{q}, s)$.

В случае изотропного рассеяния ($\mu = 0$) система уравнений (3.5) сводится к единственному уравнению

$$[1 - p_0(w)] g_0(\mathbf{q}, s) = \frac{1}{1 + s} - \frac{1}{4\pi} \int_0^{2\pi} d\phi \int_1^{\infty} \frac{dr}{r} \frac{g_0(\mathbf{q}, \chi)}{\chi - s}.$$
 (3.8)

При решении уравнения (3.8) (см. [26]) существенно используются его следующие свойства. Правая часть регулярна при Re s < 0, искомая функция $g_0(\mathbf{q}, s)$ по определению регулярна при Re s > 0, а функция $1 - p_0(w)$ является четной функцией по s и аналитична в комплексной плоскости s с двумя разрезами ($-\infty$, -1) и ($1, \infty$). Эти свойства позволяют найти решение этого уравнения методом, аналогичным методу Винера—Хопфа. Оно имеет вид [21]

$$g_0(\mathbf{q},s) = \frac{1}{p_1(iq)(1+s)(1+q)(s+q)} \exp\left\{\frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \frac{ds'}{s'} \left(\frac{s}{s'-s} + \frac{1}{s'-1}\right) \ln\left[\frac{p_1(w')}{p_1(iq)}\right]\right\}, \quad (3.9)$$

где $w' = \sqrt{s'^2 - q^2}$.

Полагая в (3.9) s = 1 и переходя к вещественной переменной интегрирования $s' = iq_z$, угловую зависимость интенсивности когерентного обратного рассеяния при $\mu = 0$ согласно (3.7) можно представить в виде

$$I_{Miln}^{(c)}(q) \sim \frac{1}{2(1+q)^2 p_1(iq)} \exp\left\{-\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{dq_z}{q_z^2+1} \ln\left[\frac{\dot{p}_1(iv)}{p_1(iq)}\right]\right\} - \frac{1}{2}, \quad (3.10)$$

где $v = \sqrt{q_z^2 + q^2}$. Сравним угловую зависимость когерентного обратного рассеяния, даваемую точной формулой (3.10), с угловой зависимостью, получаемой известным методом зеркальных отображений, согласно формуле [4,27]

$$I_{mir}^{(c)}(q) \sim \int_{0}^{\infty} dq_{z} \frac{(1/v) \arctan v}{1 - (1/v) \arctan v} f(q_{z}), \qquad (3.11)$$

$$f(q_z) = \frac{1 + q_z^2 - (1 - q_z^2)\cos(2z^*q_z) + 2q_z\sin(2z^*q_z)}{(1 + q_z^2)^2}.$$
 (3.12)

Как видно, формула (3.12) содержит параметр z^* , который должен быть определен только из дополнительных соображений. Обычно положение плоскости зеркального отражения z^* выбирается в общем случае в согласии с решением Милна равным $z^* = 0.7104(1 - \mu)^{-1}$ [23].

Мы провели расчет $I^{(c)}(q)$ для $\mu = 0$ по точной формуле (3.10) и по формулам (3.11), (3.12) с $z^* = 0.7104$. Результаты расчетов приведены в таблице (столбцы 2 и 4). Как видно, результаты, полученные по этим формулам, различаются примерно на процент, по крайней мере, до значений $q \le 1$. При учете в подынтегральном выражении (3.11) только диффузионного полюса

$$\frac{v^{-1}\operatorname{arctg} v}{1 - v^{-1}\operatorname{arctg} v} \to \frac{3}{v^2}$$
(3.13)

расхождение с точным результатом возрастает до 10% (см. столбец 5 таблицы).

Таблица

Интенсивность когерентного обратного рассеяния, нормированная на высоту пика, для скалярного поля при $\cos \theta = 0$ для различных углов рассеяния ($q = kl \sin \theta_{s}$)

q	$I_{Miln}^{(c)}$	$I_{mir}^{(c)}$ $z^* = 0.74$	$I_{mir}^{(c)}$ $z^* = 0.71$	$I_{dif}^{(c)}$ $z^* = 0.71$
0 ′	1	1	1	1
0.1	0.806	0.806	0.808	0.793
0.2	0.663	0.664	0.667	0.642
0.3	0.556	0.556	0.560	0.527
0.4	0.473	0.473	0.478	0.439
0.5	0.409	0.409	0.413	0.374

4. САМОСОГЛАСОВАННОЕ ОПРЕДЕЛЕНИЕ ИНТЕРПОЛЯЦИОННОЙ ДЛИНЫ ИЗ БАЛАНСА ЭНЕРГИИ

Выбор параметра z^* в виде $z^* = 0.7104$ в описанной схеме, строго говоря, не является однозначным. Мы для его определения используем точное интегральное соотношение, следующее из уравнения Бете—Солпитера. Рассмотрим уравнения (3.1) при q = 0. Эти уравнения формально имеют смысл и вне среды, т.е. при Z < 0. Интегрируя первое уравнение (3.1) по Z_2 , т.е. вычисляя интеграл от $\gamma_0(\rho_{21}, Z_2)$ по всему объему, получаем

$$\int_{-\infty}^{\infty} \tilde{\gamma}_0(0, Z_2) dZ_2 = l + \frac{1}{4\pi l} \int d\mathbf{R}_2 \int_0^{\infty} dZ_3 \Lambda(\mathbf{R}_{23}) \tilde{\gamma}_0(0, Z_3).$$
(4.1)

Интеграл по объему от векторной функции Λ_1 исчезает из соображений симметрии. Из (3.16) с учетом соотношения $\int d\mathbf{R} \Lambda(\mathbf{R}) = 4\pi l$ получаем

$$\int_{-\infty}^{0} \tilde{\gamma}_0(0, Z) dZ = l.$$
(4.2)

Соотношение (4.2) является точным. Оно имеет смысл баланса энергии падающего и рассеянного излучений. Покажем это для случая точечных рассеивателей, $\mu = 0$. Согласно (2.2) полная интенсивность многократного рассеяния плоской волны с волновым вектором \mathbf{k}_i точке **г** в лестничном приближении имеет вид

$$\langle |\delta E(\mathbf{R})|^2 \rangle = \tilde{\gamma}_0(0, Z) |E|^2. \tag{4.3}$$

Отметим, что в данной геометрии средняя интенсивность рассеянного поля зависит только от расстояния до границы среды,

$$\langle |\delta E(\mathbf{R})|^2 \rangle = \langle |\delta E(Z)|^2 \rangle.$$

Интегрируя равенство (4.3) по области $-\infty < Z < 0$, т.е. вне рассеивающей среды, с учетом (4.2) получаем

$$l|E|^{2} = \int_{-\infty}^{0} \langle |\delta E(Z)|^{2} \rangle dZ.$$
(4.4)

Правая часть представляет собой полную энергию рассеянного назад излучения, отнесенную к единице площади. Выражение в левой части можно записать в виде

$$l|E|^{2} = \int_{-\infty}^{0} E^{2} \exp\left[i(\mathbf{k}_{i} - \mathbf{k}_{i}^{*})\mathbf{R}\right] dZ.$$
(4.5)

Этот интеграл имеет смысл энергии излучения, упавшего на границу раздела Z = 0 и эффективно затухшего в слое толщиной *l*. Таким образом, равенство (4.4) действительно представляет собой баланс падающего и рассеянного излучений, поскольку, согласно (4.4), вся приходящая на единицу площади энергия излучения вернется назад в виде энергии диффузного излучения в рассматриваемом случае упругого рассеяния.

Мы используем тождество (4.2), для того чтобы определить параметр z^* . Будем исходить из первого уравнения системы (2.17), записанного для скалярного случая:

$$\gamma_0(\rho_{21}, Z_2) = \frac{1}{2}\theta(Z_2) \exp\left(-\frac{Z_2}{l}\right) \delta(\rho_{21}) + \frac{1}{4\pi l} \int d\mathbf{R}_3 \Lambda(R_{23}) \Gamma(\rho_{31}, Z_3, \mathbf{k}_{23}, \mathbf{k}_i).$$
(4.6)

В качестве функции Γ в подынтегральном выражении мы будем использовать известное решение, даваемое методом зеркальных отображений. В методе зеркальных отображений функция $\Gamma(\mathbf{R}_2, \mathbf{R}_1, \mathbf{k}_s, \mathbf{k}_i)$ заменяется на разность [27]

$$\Gamma(\mathbf{R}_2, \mathbf{R}_1, \mathbf{k}_s, \mathbf{k}_i) \to \Gamma(\mathbf{R}_2, \mathbf{R}_1) = \Gamma_0\left(|\mathbf{R}_1 - \mathbf{R}_2|\right) - \Gamma_0\left(|\mathbf{R}_1 - \mathbf{R}_2^{(mir)}|\right), \qquad (4.7)$$

где $\mathbf{R}_{2}^{(mir)} = (X_2, Y_2, -Z_2 - 2Z^*)$ — зеркальное отображение точки $\mathbf{R}_2(X_2, Y_2, Z_2)$ относительно плоскости $Z = -z^*l$, а функция $\Gamma_0(R) = 3(1-\mu)/4\pi l^3 R$ — решение уравнения Бете—Солпитера для бесконечной среды. В этом решении опущены члены, описывающие анизотропию многократного рассеяния в неограниченной среде. В результате, учитывая также вклад однократного рассеяния, можно написать

$$\Gamma(\mathbf{R}_2,\mathbf{R}_1) = \frac{3(1-\mu)}{4\pi l^3} \left[\frac{1}{|\mathbf{R}_1 - \mathbf{R}_2|} - \frac{1}{|\mathbf{R}_1 - \mathbf{R}_2^{(mir)}|} \right] + \frac{1}{l} \delta(\mathbf{R}_1 - \mathbf{R}_2).$$
(4.8)

2 ЖЭТФ, №6(12)

1921

Интегрируя уравнение (4.6) по поперечным переменным, а также по Z_2 в интервале $(-\infty, 0)$, получим

$$\int_{-\infty}^{0} \tilde{\gamma}_{0}(0, Z_{2}) dZ_{2} = l = \frac{1}{4\pi l} \int_{-\infty}^{0} dZ_{2} \int_{0}^{\infty} dZ_{3} \tilde{\Lambda}(0, Z_{23}) \tilde{\gamma}_{0}^{(mir)}(0, z_{3}),$$
(4.9)

где

$$\tilde{\gamma}_{0}^{(mir)}(0, z_{3}) = \int d\rho_{31} \int_{0}^{\infty} dZ_{1} e^{-Z_{1}/l} \Gamma(\mathbf{R}_{3}, \mathbf{R}_{1}).$$
(4.10)

Подставляя в (4.10) выражение (4.8), получим

$$\tilde{\gamma}_0^{(mir)}(0,z) = 3(1-\mu) \left[1 + z^* - \exp(-z) \right] + \exp(-z).$$
(4.11)

В результате из уравнения (4.9) находим

$$z^* = \frac{1}{1-\mu} \left[\frac{1}{3} (5-4\ln 2) + (2\ln 2 - 1)\mu \right] \approx \frac{0.7425 + 0.3863\mu}{1-\mu}.$$
 (4.12)

Выражение (4.12) фактически является следствием самосогласования диффузионного приближения с тождеством, следующим из закона сохранения энергии.

Мы рассчитали угловую зависимость когерентного обратного рассеяния для изотропной индикатрисы, $\mu = 0$, по формуле (3.11), используя полученное значение $z^* = 0.7425$. Результаты приведены в столбце 3 таблицы. Обращает на себя внимание практически полное совпадение данного самосогласованного подхода с точными результатами (с точностью ~ 0.1%). Это позволяет надеяться, что такой подход к определению z^* будет эффективным и при конечных значениях μ .

Существенно отметить, что полученное значение z^* при $\mu = 0$ достаточно близко к интерполяционной длине Милна. Однако при достаточно больших значениях μ величина z^* заметно превосходит значение $0.71(1-\mu)^{-1}$, даваемое чисто диффузионным подходом.

Мы использовали формулу (4.12) для сравнения с экспериментальными данными по измерению угловой зависимости когерентного обратного рассеяния на частицах конечных размеров [28, 29]. Мы выбрали результаты измерений в двух системах, для которых приведены значения параметра μ . В частности, в работе [28] проводились измерения для водной суспензии частиц латекса диаметром d = 1.091 мкм, длина волны падающего излучения $\lambda = 0.633$ мкм, показатель преломления среды n = 1.33. Для этой системы была измерена длина экстинкции l = 2.6 мкм и из данных по однократному рассеянию света получено значение $\mu = 0.93$. У пика когерентного обратного рассеяния измеренное значения полуширины на половине высоты $W_{exp} = 1.58$ мрад. Наши расчеты для данного значения μ дают: высота пика, рассчитанная по формулам (3.11) и (4.12), уменьшается в два раза при значении параметра $q = kl\theta_s = 0.0525$. При приведенных значениях $k = 2\pi n/\lambda$ и l мы получаем $W_{theor} = 1.53$ мрад в неплохом согласии с экспериментом.

В работе [29] для суспензии частиц латекса диаметром d = 0.46 мкм при значениях параметров $\lambda = 0.515$ мкм, n = 1.33, l = 2.8 мкм было получено значение полной

Рис. 1. Сравнение результатов расчета интенсивности когерентного обратного рассеяния с результатами эксперимента для водной суспензии частиц латекса диаметром 1.091 мкм [28] (*a*) и 0.46 мкм [29] (*b*). Штриховые линии — результаты расчета для $\mu = 0.93$ (*a*), 0.85 (*b*)

ширины на половине высоты пика $2W_{exp} = 4.9$ мрад. Для этой системы значения параметров l^* и μ приведены в [27]: $l^* = 19$ мкм, $\mu = 0.85$. Наши расчеты при этих значениях l^* и μ дают $2W_{theor} = 4.4$ мрад.

На рис. 1 мы привели в едином масштабе экспериментальные и расчетные данные для этих двух систем. Видно, что теоретические и экспериментальные результаты хорошо согласуются. Проведенное сравнение с экспериментом показывает, что интерес представляют измерения в более широком интервале углов с одновременным определением параметров, описывающих индикатрису однократного рассеяния. В частности, это позволит выяснить, как влияет на форму пика когерентного обратного рассеяния не только $\cos \theta$, но и моменты более высокого порядка, $\cos^n \theta$ [30]. Эти вклады могут быть существенны в области больших углов, где, как видно из рис. 1, теоретические кривые идут выше экспериментальных.

5. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ

Обобщим развитый подход для определения аналога интерполяционной длины Милна z^* в электромагнитном поле. Интегрируя по объему уравнение для тензора $\hat{\gamma}^{(0)}(\rho_{21}, Z_2)$ системы (2.17), получим

$$\int_{0}^{\infty} \tilde{\gamma}_{ss,11}^{(0)}(0,z) dz + \int_{-\infty}^{0} \tilde{\gamma}_{ss,11}^{(0)}(0,z) dz = \frac{3}{2} \delta_{s1} l + \frac{3}{8\pi l} \int d\mathbf{R}_{1} \int_{0}^{\infty} dZ_{2} \Lambda_{ss,jj}(\mathbf{R}_{12}) \tilde{\gamma}_{jj,11}^{(0)}(0,Z_{2}).$$
(5.1)

Интегралы по полному объему от компонент тензора $\Lambda_{jj,ll}$ легко вычисляются. Имеем

$$\int \Lambda_{jj,ii}(\mathbf{R})d\mathbf{R} = \frac{1}{8} \int \Lambda_{jj,jj}(\mathbf{R})d\mathbf{R} = \frac{4\pi l}{15}.$$
 (5.2)

2*

В. Л. Кузьмин, В. П. Романов

Подставляя (5.2) в (5.1) и суммируя по индексам, получаем

$$\sum_{s} \int_{-\infty}^{0} \tilde{\gamma}_{ss,11}^{(0)}(0,Z) dZ = \frac{3}{2}l.$$
(5.3)

Соотношение (5.3) является обобщением интегрального тождества (4.2) на случай электромагнитного поля. Для изотропного рассеяния здесь также легко установить эквивалентность этого соотношения уравнению баланса. В лестничном приближении из уравнения (2.2) для Z < 0 можно написать

$$\langle |\delta E_s(Z)|^2 \rangle = \frac{1}{lk_0^4 \int \tilde{G}(\mathbf{k}_i - \mathbf{k}_s) d\Omega_s} \,\tilde{\gamma}_{ss,11}^{(0)}(0,Z) |E|^2.$$
(5.4)

Интегрируя это соотношение в интервале $-\infty < z < 0$ и суммируя по поляризациям рассеянного излучения, получим с учетом оптической теоремы (2.18) и формулы (5.3)

$$\sum_{s} \int_{-\infty}^{0} \langle |\delta E_{s}(Z)|^{2} \rangle dZ = l|E|^{2}.$$
(5.5)

Соотношение (5.5) означает, что энергия падающего поляризованного излучения полностью возвращается из среды в виде рассеянного излучения всех поляризаций.

Проинтегрируем первое из трех уравнений (2.17) по полупространству $Z_2 < 0$ и просуммируем по выходным поляризациям. С учетом (5.3) получим

$$\frac{3}{2}l = \frac{3}{8\pi l} \sum_{s} \int_{-\infty}^{0} dZ_2 \int_{Z_1>0} d\mathbf{R}_3 \Lambda_{ss,jj}(\mathbf{R}_{23}) \tilde{\gamma}_{jj,11}^{(0)}(0, Z_3).$$
(5.6)

Как и в скалярном случае, подставим в правую часть для $\hat{\gamma}^{(0)}$ выражение, полученное методом зеркальных отображений

$$\tilde{\gamma}_{jj,11}^{(0)mir}(0,z) = \frac{3}{2}(1-\mu)(1+z^*-e^{-z}) + \frac{3}{2}\delta_{1j}e^{-z}.$$
(5.7)

Непосредственное интегрирование дает

$$\frac{3}{4\pi l^2} \int_{-\infty}^{0} dZ_2 \int_{Z_3>0} d\mathbf{R}_3 \Lambda_{ss,11}(\mathbf{R}_{23}) \exp(-z_3) = \begin{cases} 0.18394, \ s = 1, \\ 0.01458, \ s = 2, \\ 0.025, \ s = 3, \end{cases}$$
(5.8)
$$M_{11,11} = M_{22,22} = 3\pi l \left(0.12856 + \frac{5}{16} z^* \right),$$
$$M_{11,22} = M_{22,11} = 3\pi l \left(0.00625 + \frac{1}{48} z^* \right),$$
$$M_{11,33} = M_{33,11} = M_{22,33} = M_{33,22} = 3\pi l \left(0.01666 + \frac{1}{24} z^* \right),$$
$$M_{33,33} = M_{22,11} = 3\pi l \left(0.07648 + \frac{1}{6} z^* \right),$$

где введены обозначения

$$M_{ss,jj} = \frac{3}{2} \int_{-\infty}^{0} dz_2 \int_{0}^{\infty} dz_3 \tilde{\Lambda}_{ss,jj}(0, |z_{23}|) \left[1 + z^* - \exp(-z)\right].$$
(5.10)

Подставляя (5.8)-(5.10) в (5.6), получим

$$z^* = \frac{1}{1 - \mu} \left(0.697 + 0.4127 \mu \right). \tag{5.11}$$

Значение $z^* = 0.697$ весьма близко к интерполяционной длине Милна $z^* = 0.7104$, и, таким образом, полученный результат (5.11) можно считать оправданием использования интерполяционной длины Милна, полученной для скалярного поля, в случае электромагнитного поля.

Мы использовали формулу (5.11) для расчета поляризованной и деполяризованной компонент обратно рассеянного света для различных μ .

При учете граничных условий методом зеркальных отображений поляризованная и деполяризованная компоненты когерентного обратного рассеяния имеют вид [4, 31]

$$I_{VV}^{(c)}(q) \sim \int_{-\infty}^{\infty} dq_z f(q_z) \gamma_{11,11}(v), \qquad (5.12)$$

$$I_{VH}^{(c)}(q) \sim \int_{-\infty}^{\infty} dq_z f(q_z) \left(\gamma_{12,21}(v) \frac{q_z^2}{v^2} + \gamma_{13,31}(v) \frac{q^2}{v^2} \right),$$

где

$$\gamma_{11,11} = \frac{1}{2} \left\{ \frac{\tilde{\Lambda}_{11,11} - \tilde{\Lambda}_{11,22}}{1 - \xi \left[\tilde{\Lambda}_{11,11} + \tilde{\Lambda}_{11,22} \right]} + \frac{\left(1 - \xi \tilde{\Lambda}_{33,33}\right) \left(\tilde{\Lambda}_{11,11} + \tilde{\Lambda}_{11,22} \right) + 2\xi \tilde{\Lambda}_{11,33}^2}{\left(1 - \xi \tilde{\Lambda}_{33,33}\right) \left[1 - \xi \left(\tilde{\Lambda}_{11,11} + \tilde{\Lambda}_{11,22} \right) \right] - 2\xi^2 \tilde{\Lambda}_{11,33}^2} \right\},$$

$$\gamma_{1j,1j} = \frac{\tilde{\Lambda}_{11,jj}}{\left(1 - \xi \tilde{\Lambda}_{1j,1j}\right)^2 - \xi^2 \tilde{\Lambda}_{11,jj}^2}, \quad j = 2, 3, \quad (5.13)$$

$$\xi = \frac{3}{8\pi l}.$$

Функции $\tilde{\Lambda}_{ij,kl}$ представляют собой фурье-образы от компонент тензора (2.9) и имеют вид

$$\begin{split} \tilde{\Lambda}_{11,11} &= \frac{\pi l}{2} (3m_0 + 2m_1 + 3m_2), \\ \tilde{\Lambda}_{11,22} &= \frac{1}{8} \tilde{\Lambda}_{33,33} = \frac{\pi l}{2} (m_0 - 2m_1 + m_2), \\ \tilde{\Lambda}_{12,12} &= \frac{\pi l}{2} (m_0 + 6m_1 + m_2), \\ \tilde{\Lambda}_{11,33} &= \frac{\pi l}{2} (m_1 - m_2), \\ \tilde{\Lambda}_{13,13} &= \frac{\pi l}{2} (m_0 - m_2), \end{split}$$
(5.14)

где

$$m_0(v) = \frac{1}{v} \operatorname{arctg} v, \quad m_1(v) = \frac{1}{v^2} \left[1 - m_0(v) \right],$$

$$m_2(v) = \frac{1}{v^2} \left[\frac{1}{3} - m_1(v) \right].$$
(5.15)

Величины $\hat{\gamma}(v)$ возникают после фурье-преобразования тензора $\hat{\Gamma}(\mathbf{R}_1, \mathbf{R}_2 | \mathbf{k}_s, \mathbf{k}_i)$ (2.6) в безграничной среде.

Результаты расчета поляризованной и деполяризованной компонент когерентного обратного рассеяния для различных значений параметра μ приведены на рис. 2. Как известно, треугольную форму пика имеет только поляризованная компонента. Как видно из рис. 2*a*, с ростом анизотропии однократного рассеяния крутизна пика, как и в скалярном случае, резко возрастает в соответствии с экспериментом и теоретическими предсказаниями. Мы привели на том же рисунке угловую зависимость для случая скалярного поля.

Линейный наклон пика, как известно, обусловлен наличием диффузионного полюса. В случае электромагнитного поля, как видно из рис. 2a наклон нормированной поляризованной компоненты несколько меньше, чем наклон, рассчитанный для скалярного поля для тех же значений μ . Это свидетельствует о том, что в случае векторного поля относительный вклад недиффузионных членов возрастает.

В деполяризованную компоненту диффузионный полюс вообще не вносит вклада, что, как видно из рис. 26, приводит к пику типа лоренциана.

Мы не привели сравнения результатов расчета по формулам (5.11), (5.12) с экспериментом, поскольку значения численных параметров для z^* в скалярном (4.12) и векторном (5.11) случаях близки и с учетом точности эксперимента приводят практически к одинаковым результатам для поляризованной компоненты.

6. ЗАКЛЮЧЕНИЕ

Мы рассмотрели уравнение Бете—Солпитера для сильно неоднородной среды с анизотропной индикатрисой однократного рассеяния. Для случая среды, занимающей полупространство, это уравнение сведено к системе уравнений для коэффициентов разложения по полиномам Лежандра. Путем свертки по пространственным переменным мы получили интегральное соотношение, имеющее смысл баланса энергии падающего и рассеянного излучений. Использование метода зеркальных отображений в этом интегральном тождестве приводит к простому выражению для параметра, определяющего положение эффективной границы зеркального отображения для общего случая анизотропного однократного рассеяния.

Эти результаты количественно сравниваются, с одной стороны, с точными теоретическим результатами Милна для изотропного рассеяния и, с другой стороны, с имеющимися экспериментальными данными по угловой зависимости когерентного обратного рассеяния в системах с большим значением параметра μ , ответственным за анизотропию однократного рассеяния.

В случае изотропного рассеяния при описании формы пика получается согласие с предсказаниями теории Милна с точностью до долей процента. Для анизотропного рассеяния точной теории пока нет, и в качестве критерия достоверности полученных результатов мы использовали хорошее совпадение с экспериментом.

Развитый подход обобщен на случай электромагнитного поля. Рассчитаны угловые и поляризационные зависимости когерентного обратного рассеяния для различных значений μ . Мы провели сравнение предсказаний теории для пика обратного рассеяния для модели скалярных волн и для электромагнитного поля с целью выяснения влияния векторного характера поля на когерентные эффекты в многократном рассеянии. Оказалось, что учет векторной природы электромагнитного поля приводит к относительному уменьшению вклада диффузионного полюса, ответственного за эффекты когерентного обратного рассеяния.

Проведенное рассмотрение справедливо в приближении слабого рассеяния, $\lambda \ll l$. Однако параметр l имеет также ограничение сверху, обусловленное современной точностью эксперимента. Ширина пика когерентного обратного рассеяния θ_w определяется из соотношения $kl^*\theta_w \sim 1$. Полагая, что точность угловых измерений порядка 10^{-3} , получаем $l^* < (10^2 - 10^3)\lambda$, т.е. $l < (1 - \mu)(10^2 - 10^3)\lambda$. Это условие заметно сужает набор систем, в которых пик обратного рассеяния доступен для наблюдения, и, в частности, исключает системы, в которых режим многократного рассеяния реализуется только за счет больших толщин образца.

Полученные в данной работе результаты могут быть обобщены на случай более сложных геометрий рассеивающих систем. Развитый метод также применим к расчетам временных корреляционных функций и при решении задач визуализации структуры непрозрачных систем в методе спектроскопии диффузных волн.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 98-02-18201).

Литература

- 1. P. J. Pine, D. A. Weitz, G. Maret, P. E. Wolf, E. Herbolzheimer, and P. M. Chaikin, in *Scattering* and Localization of Classical Waves in Random Media, ed. by P. Sheng, World Scientific, Singapore (1989).
- P. E. Wolf and G. Maret, in Scattering in Volumes and Surfaces, ed. by M. Nieto-Vesperanos and J. C. Dainty, Amsterdam, Elsevier (1990), p. 37.
- 3. Yu. N. Barabanenkov, Yu. A. Kravtsov, V. D. Ozrin, and A. I. Saichev, in *Progress in Optics*, ed. by E. Wolf, Vol. 29, 247 (1991).
- 4. В. Л. Кузьмин, В. П. Романов, УФН 166, 247 (1996).
- 5. B. A. van Tiggelen, R. Maynard, in *Waves in Random and Other Complex Media*, ed. by G. Papanicolaou, R. Burridge, and L. Pastor, Springer-Verlag (1997).
- 6. Д. Б. Рогозкин, ЖЭТФ 111, 1674 (1997).
- 7. E. E. Gorodnichev and D. B. Rogozkin, Waves in Random Media 4, 51 (1994).
- 8. D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, Phys. Rev. Lett. 74, 4193 (1993).
- 9. M. U. Vera, P.-A. Lemieux, and D. J. Durian, J. Opt. Soc. Amer. A 14, 2800 (1997).
- 10. F. Scheffold, W. Hartl, G. Maret, and E. Matijevic, Phys. Rev. B 56, 10942 (1997).
- 11. Л. В. Королев, Д. Б. Рогозкин, ЖЭТФ 113, 291 (1998).
- 12. F. Scheffold and G. Maret, Phys. Rev. Lett. 81, 5800 (1998).
- 13. A. Yodh and B. Chance, Phys. Today 10, 34 (1995).
- 14. D. Bicout and G. Maret, Physica A 210, 87 (1994).
- 15. M. Heckmeier and G. Maret, Europhys. Lett. 34, 257 (1996).
- 16. M. Heckmeier, S. E. Skipetrov, G. Maret, and R. Maynard, J. Opt. Soc. Amer. A 14, 185 (1997).
- 17. С. Е. Скипетров, И. В. Меглинский, ЖЭТФ 113, 1213 (1998).
- 18. В. В. Тучин, УФН 167, 517 (1997).
- 19. Ю. Н. Барабаненков, В. Д. Озрин, ЖЭТФ 94, 56 (1988).
- 20. M. B. van der Mark, M. P. van Albada, and A. Lagendijk, Phys. Rev. B 37, 3575 (1988).
- 21. Th. M. Nieuwenhuizen and J. M. Luck, Phys. Rev. E 48, 569 (1993).
- 22. R. Aronson, J. Opt. Soc. Amer. A 12, 2532 (1995).
- 23. А. А. Голубенцев, ЖЭТФ 86, 47 (1984).
- 24. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, Москва (1982).
- 25. E. Amic, J. M. Luck, and Th. M. Nieuwenhuizen, J. Phys. A 29, 4915 (1996).
- 26. Б. Дэвисон, Теория переноса нейтронов, Атомиздат, Москва (1960).
- 27. E. Akkermans, P. E. Wolf, and R. Maynard, Phys. Rev. Lett. 56, 1471 (1986).
- 28. M. P. van Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985).
- 29. P. E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696 (1985).
- 30. В. Л. Кузьмин, В. П. Романов, ЖЭТФ 113, 2022 (1998).
- 31. V. L. Kuzmin and V. P. Romanov, Phys. Rev. E 56, 6008 (1997).