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The occurrence of «negative viscosities» is studied within the framework of two-dimensional
magnetohydrodynamics (MHD). We use assumptions which are typical when studying the effects
of smaller-scale fields on larger-scale ones, namely, the small-scale MHD fields are assumed to
be sufficiently weak, jointly stationary, homogeneous and maintained by external sources. The
criteria of large-scale field generation due to negative viscosities are derived for various special
forms of isotropic small-scale fields as well as anisotropic ones; the latter can be regarded as MHD
stochastic analogs of the known Kolmogorov flow.

PACS: 52.30.-q, 52.30.Jb

1. INTRODUCTION

Problems of pattern formation and self-organization have been extensively studied in
various hydrodynamic models of fluids and plasmas for at least three decades. Effects called
«negative viscosity» belong to this wide class of the phenomena. This term was introduced
by geophysicists and specialists in hydrodynamics in the 1950s, when analyzing large-scale
geophysical processes [1,2]. However, it is still not well known, and even seems paradoxical.
Therefore, let us discuss its origin in more detail.

We first consider the classical theory of gases. In this framework, starting with the
Boltzmann equation, one can derive hydrodynamic equations. The equation for momentum
transport has the form

Ov; 1 ap 1o ij

+ =2 T4 .
ot OV T S T p B (1.

Here p, pv are the mass and momentum densities, respectively, z; = z,y, z; p is pressure
(here it is the ideal gas pressure), and 7;; is the viscosity tensor which describes irreversible
«viscous» momentum transport. An explicit form of this tensor is obtained by invoking the A
smallness of the Knudsen number Kn = l,,,5,,/L, where l,,, ;,, is the mean free path and L is
an external scale (scale of inhomogeneity). In the first order of K'n, that is, in the 13-moment
approximation of the Grad method [3], one has

ov; Ov; 2 _ Oug -
L= - ke + J _Z5.. 27K
Tij K (6(1:] (9.’1,'1' 3 6” sz ) ’ (12)
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where 7 is the dynamical viscosity, which is of the order of pvsplm sp, v4n is the thermal velocity,
and 7 is always positive; this is in agreement with the intuitively obvious fact that irreversible
momentum transport proceeds from regions of higher velocity to those of lower velocity.

We now proceed with the thermodynamics of irreversible processes. In this framework the
equation for momentum transport retains the form (1.1) (where the pressure p is determined
by the motion of particles and their interaction). The form of the viscous tensor, however,
cannot be determined from the kinetic equation, but instead has to be established from general
principles [4]. Specifically, (i) viscous momentum transfer appears when different parts of the -
fluid move with different velocities, so 7;; must depend on the space derivatives of the velocity
v; (ii) it is assumed that these derivatives are not too large; thus, viscous momentum transfer
depends on the first derivatives only; and (iii) 7;; must tend to zero when the fluid rotates
uniformly as a whole at some angular frequency Q. Since linear combinations of the type

Ovi , Ov;
Oz; Ox;

tend to zero when v is equal to [Q x x], only those linear combinations are contained in 7;;.
Finally, below we assume an incompressible fluid, p = const, and thus

Sue _y,

8xk
Therefore, the viscous tensor retains the form (1.2) (without the last term in brackets), where 7,
of course, does not obey the simple gas law, but is instead a function of pressure and temperature.
Assuming that the change in viscosity along the fluid is negligible, one can replace the term
—(1/p)0m;;/dz; in Eq. (1.1) with vAv;, where v = 7/p is the kinematic viscosity and A is the
Laplacian. The positivity of i stems from the second law of thermodynamics for irreversible
processes: the entropy S of a closed (isolated) system cannot decrease, dS > 0, whereas
entropy production in a local equilibrium approximation has the same sign as 7; see the detailed
derivation in Ref. [3].

We now turn to turbulent processes that occur in open hydrodynamic systems. It is assumed

for the turbulence of a fluid that Eqs. (1.1) and (1.2) are also valid for the stochastic velocity
and pressure fields. Thus, we can define mean and fluctuating quantities

v=v+v, p=p+pT,

where the bar denotes statistical averaging, and a superécript T denotes fluctuating (i.e.,
‘turbulent) components. In this paper we also‘use angle brackets (...) to indicate statistical
averaging in correlation functions. For the mean fields one has the equation

0 9 _\_ 1 0p 1.0 .
—t+ —T; | T; = —— == +VAD; — — — T, 1.3
<6t axjv])v > B, VAT paxjﬂ'”’ (1.3)
where
urb — T,T
ij P(”i”j)

are the Reynolds stresses. .
Based on the analogy with the kinetic theory of gases, Boussinesq proposed to approximate
the Reynolds stresses as

[ v; | Ov;
(v; 'v]\) Viurb ( 7z, | o, ) , (1.9
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where v, is the turbulent kinematic viscosity. In contrast to the kinematic viscosity v, which
describes the physical properties of the gas (fluid), the turbulent kinematic viscosity describes
the statistical properties of turbulent flows. An important fact is that v, need not be positive,
because there is no thermodynamic basis for its positivity. Indeed, we can speculate that when
an external force (source) is added to the right hand side of Eq. (1.1), such that momentum
(energy) is pumped into the small-scale component of the turbulence from this source (not
from the mean flow), the momentum (energy) of fluctuations will be transferred to the mean
flow. Assuming that v, does not depend on z, Eq. (1.3) can be rewritten as

o, 9 _ 1 9p —
T+ L 5\ =2 +(y+ ) )
(Bt a.’L']‘ vj) Vs P dz; (v + Viurs)AT;, (1.5)

where the sum v +wv;,,, can be negative, and thus large-scale instability occurs, accompanied
by an increase in the mean flow.

. Approximation (1.3) assumes the locality of the turbulent mechanism of momentum
transport. It implies a small ratio of the characteristic scale of turbulent fluctuations (vortices)
to the scale of the mean flow (by analogy with the Knudsen number). Experimental data [5]
suggest that in many cases the scale of turbulent fluctuations is of the order of that of the mean
flow,. and the gradient approximation (1.4) becomes inadequate. In such cases, the contra-
gradient transport is also observed frequently [6], but this case is much more involved from
a theoretical standpoint. Thus, in this paper we restrict ourselves to the case in which the
scales of fluctuation are much smaller than those of the mean quantities. We also note that in
Ref. [7] the peculiarities of numerical simulation of nonlocal momentum and thermal turbulent
transport are discussed in detail.

In Ref. [2] a qualitative analysis (with an accent on empirical data analysis) is carried
out on a set of geophysical and astrophysical processes and laboratory experiments, in which
negatlve viscosity effects have already been detected, or, can at least be suspected:

1) differential rotation of the Earth’s atmosphere;

2) differential rotation of the Sun photosphere;

3) differential rotation of disks of spiral galaxies;

4) flows in some laboratory experiments;

5) Gulf Stream near American coast.

One can conclude that negative viscosity phenomena are ubiquitous; they occur in systems
possessing various physical and geometrical properties, and on a very different range of scales,
ranging from laboratdry flows a few centimeters in diameter to galaxies that are kiloparsecs in

_diameter. It is worthwhile to note that a similar problem also occurs in a tokamak plasma,
where the peaked profiles in H-mode regime can be attributed to negative turbulent dissipative
coefficients and contragradient transport.

A review of the examples above suggests a necessary condition for maintenance of a
(qua81)stat10nary regime with negative viscosity effects prevailing: turbulence must not be
«passive» [2] in the sense that it is not fed by the kinetic energy of the mean flow, but instead has
another source of energy, e.g., a thermal source, as occurs in Earth’s atmosphere. Therefore, in
papers dealing with a quantitative description of negative viscosity, the problem is formulated as
follows. Suppose that we have a source giving rise to deterministic flows or stationary turbulence
in a hydrodynamic medium. In the former case, the explicit form of the deterministic flows
(or, at least, their symmetry properties) is assumed to be known, whereas in the latter case their
statistical properties are known. The characteristic scale(s) of the given motion is assumed to be
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much smaller than the outer scale of the system of interest. The question is: can these small-sca-
le motions act as a negative turbulent viscosity upon large-scale ones? From a theoretical
standpoint, this implies the appearance of a negative dissipative factor in the equation for the
mean flow, and its growth is understood as a manifestation of long-wavelength instability in a
system of small-scale flows. or vortices, the energy of small-scale motion being constant (it is
mathematically convenient to treat the small-scale motion as being generated by an external
source). This formulation is an example of inverse cascade problems in hydrodynamic systems.
A similar (but not identical) example is related to the description of anomalous flows of the
turbulent kinetic energy through the spectrum toward small wave numbers via local interaction
between turbulent modes, and to the formation of stationary turbulent spectra [8,9].

A number of analytic studies of the effects (characterized by the effective viscosity)
of smaller-scale motion on larger-scale motion have begun since the late 1950s, when
A. Kolmogorov proposed to study stability of a plane periodic flow sustained by a one-dimen-
sional space-periodic external source in a viscous incompressible fluid [10]. This problem was
first considered in Ref. [11], where the criterion of large-scale instability of one-dimensional
space-periodic flow was found. Many subsequent papers are devoted to various aspects of the
theory of Kolmogorov flow and its «relatives» in fluids; see, €.g., Refs. [12-15] and references
therein. Being rggarded as an «elementary object» of realistic turbulence with many degrees of
freedom, Kolmogorov flow appears to be very useful in systematic studies of the peculiarities of
the transition to turbulence, of the inverse cascade process in two-dimensional (2D) turbulent
flow, and in coherent structure generation. Experimentally, a 2D flow subject to periodic
forcing was studied in a thin layer of an electrolyte [16]. Two-dimensional hydrodynamic flows
also attract considerable attention because ‘the direct numerical solution of 2D fluid equations
is a simpler problem than the solution of 3D problems [17].

For plasmas an analogous problem was considered in Ref. [18] where the stability of
a gradient-drift wave was studied and coherent nonlinear structures formed as the result of
instability were found.

Kolmogorov flow instability can be regarded as a simple manifestation of the negative
viscosity effect when the small-scale basic flow is one-dimensional and space-periodic. Other
basic forms of small-scale motion in fluids (isotropic time-independent [14] and é-correlated in
time [19]) have also been considered. A possible occurrence of the negative viscosity effect was
studied in Ref. [20] for coherent wave motion, as well as for the small-scale Rossby turbulence
and gradient drift-wave turbulence. We also mention the emergence of negative viscosity in a
ferrofluid in an alternating magnetic field [21, 22].

Electrically conducting fluids exhibit a wide variety of turbulent phenomena. Here
the concept of negative viscosities (both kinematic and magnetic) can also be useful for
understanding the peculiarities of self-organizing processes. In Refs. [23,24] it was pointed
out that in a low-8 plasma such as in a tokamak, small-scale magnetic turbulence acts as
a negative effective magnetic viscosity on large-scale magnetic field perturbations. This leads
to amplification of the large-scale field, and is a very likely mechanism in explosive magnetic
phenomena, such as disruptions in tokamaks and solar flares. The reduced MHD equations [25]
were taken as a starting point in these papers It was found that the turbulent magnetic viscosity
becomes negative if the magnetic energy of small-scale turbulence exceeds the kinetic energy,
whereas the turbulent kinematic viscosity is positive. This problem was reconsidered in Ref. [19].
It was found that in 2D MHD, the conclusions are the same as in Refs. [23, 24], but for reduced
MHD the results are inconsistent with those obtained in these articles. Furthermore, the role
of cross-correlations and anisotropy of fluctuations remains unclear.

1267



A. V. Chechkin XOTD, 1999, 116, ewin. 4(10)

A more recent review [26], as well as numerical simulations [27, 28] (performed for freely
decaying, not forced, turbulence), do not shed light on the problem of interest. Thus, it seems
reasonable to study negative viscosity effects in MHD in more detail. In this paper we consider
the problem in the context of 2D MHD, and based on the formulation of negative viscosities
presented above. N

This paper is organized as follows. In Sec. 2 we obtain general equations governing the
evolution of large-scale MHD fields, and demonstrate explicitly how the negative magnetic
viscosity term can appear in the equation for the mean magnetic potential. In Secs. 3-5, we
study ‘the influence (characterized by the turbulent viscosities) of various small-scale fields on
large-scale fields. Specifically, in Sec. 3, small-scale turbulence is generated by a stationary
white noise source; the transition to the results of Ref. [19] is demonstrated. In Sec. 4, more
general forms of isotropic small-scale turbulence with correlation times spanning a broad range
are used, and the transition to the results of Refs. [14, 24] is shown. Finally, in Sec. 5 we consider
stochastic analogs of Kolmogorov flow for magnetohydrodynamics. In Secs. 3-5 the criteria
for large-scale field growth are also derived. The results are summarized in Sec. 6. A detailed
derivation of the equations governing the evolution of large-scale MHD fields is presented in
the Appendix. ‘

2. EQUATIONS FOR LARGE-SCALE FIELD EVOLUTION AND THE ORIGIN OF THE
" NEGATIVE MAGNETIC VISCOSITY TERM

We study a 2D incompressible conducting fluid with velocity field v(x, t) = [e, V], and
magnetic field B(x,t) = [e,Val],, both in the zy plane, x = (z,y); v is the stream function,
a is the magnetic potential, V = e,0/0x +e,0/0y, [...], implies z-projection of the vector
product. The 2D MHD equations can be written as [26]

5 o
— W +vWW = BVj +vAW,

ot ,

5 2.1)
— a+vVa=BVj + nAa.
ot

Here W = V21 is the vorticity, j = V2a is the current, V2 = A = §2/9z? + 0% /0y?, and v, 1)
are the kinematic and the magnetic viscosities, respectively. In (2.1) the density of the fluid is
assumed to be unity, and the magnetic field has the dimension of velocity. Furthermore, it is
normally assumed that the kinematic and magnetic viscosities are of the same order. For our
purposes it is convenient to rewrite (2.1) as

, ?gti + [V x VAY], = [Va x VAal, + vA%y,

da
=+ =
5 [V¢ x Val, = nAa.

Now we divide ) and a into mean and fluctuating (turbulent) components:

p=9+y7,

(2.2)

a=a+a’,
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where the bar denotes statistical averaging, and T signifies «turbulent». Below we also use angle
brackets (...) for the statistical averaging.
From Egs. (2.2) we obtain

9 o
(a’ - VA) A’l[) =
= —([vyT x vapT] )+ ([Va" x VaaT] ) - [V¥ x VAY] +[Va x VAz],, (2.3)
(%—nA)F—([V«pT x VaT] ) - [V¥ x Va] , (24
whereas for the fluctuating components we obtain, by éubtracting Egs. (2.3) and (2.4) from (2.2),

((% - VA) apT + [VyT x VAP + [V x VaypT]_+ ([VyT x vayT] -
— ([vyT x Vap] ) = [VaT x Vag]  + [Va x VAaT] + ([VaT x VAaT] -

- ([VaT x VAaT]z)) , (2.5)
(% - nA) oT + [Vy" x Va], + [V x VaT], + ([V47 x VaT], -
~([vyT x VaT] ) =0. 26)

To derive a closed set of equations for z_p-, @ it is necessary to express the quantities

Qi =—([VoT x VayT] ), Q.7
Q2= ([VaT x VaaT] ), (2.8)
Qs =—([VyT x VaT] ) (2.9)

in terms of ¥, @ (see Egs. (2.3) and (2.4)). Since we are interested in calculating turbulent
viscosity (but not in the problems related to the evaluation of the turbulent spectrum), we
use an approach developed in Ref. [20] to study negative viscosity in Rossby and drift-wave
turbulence, and resembling an approach previously used in the dynamo problem [29, 30]. It
also resembles the «quasilinear approximation» frequently employed to calculate the turbulent
transport coefficients in magnetized inhomogeneous plasmas [31]. In so doing, we assume (in
accordance with the discussion in Sec. 1) that the mean quantities vary on spatial and temporal
scales that are larger than the characteristic scales of the fluctuating fields; that the statistical
properties of the small-scale fields are known; and that quadratic terms in 97 and a can be
neglected in Egs. (2.5) and (2.6). Thus, instead of Egs. (2.5) and (2.6) we obtain

(% - vA) AyT + [VyT x VAP + [V x VayT] =
= [Va x Vag], + [Vax VaaT] +Fy, (2.10)
(% - nA) o + [VyT x V@], + [V x VaT|_=F,, (2.11)
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where the stochastic sources Fy(x,t) and F,(x,t) which maintain the stationary level of
MHD fluctuations, are formally added to the right-hand side of the equations. We then
solve Egs. (2.10) and (2.11), insert the solutions into Egs. (2.7)-(2.9) and then into Egs. (2.3)
and (2.4), and obtain the evolution equations for the mean fields 1, @. Because we invoke a
two-scale approximation for our problem, we introduce the «slow» variable X and the «fast»
variable x. The mean quantities depend on the slow variable only, whereas the fluctuating
components depend on both fast and slow variables. We also have

9 d
bi~4m<ﬁ54~kh

where K and k are large-scale and small-scale wave vectors, respectively.
. We seek solutions of Egs. (2.10) and (2.11) in powers of K, that is,

T =900, 1) + O X, 1) + ..,

aT =a0x, t) +aPx, X, )+ ...,

where the terms @, a© are sustained by external sources; whereas ¥V, @ etc. appear
because of the interaction between small- and large-scale components. Assuming that the
small-scale fluctuations are jointly stationary and homogeneous (which, in turn, implies
that both fields are stationary and homogeneous), we introduce their correlation and cross-‘
. correlation functions Cyy, Caq, Cyq as well as their space-time spectral functions C’W,, C,m,
C,,,a e.g., as

dkdw A
Q@nyp

The propeﬁies of the spectral functions of zeroth-order quantities are listed in Appendix,
along with a detailed derivation of Q1,5,3. Here we present the final result. For the evolution
of the mean quantities v, @ instead of Eqgs. (2.3) and (2.4), we have

5 _ W %Y @ Pa__
—— = v . aAY Aav +
<3t ”A“> AV B {5‘"Paxkax 5%, * " 0X,0X 0%,

2A oy 2
gt O ) Tl
0X0Xm 0X0Xm 0X0Xm0X,0X,

(W00, a0, 1)) = Cyalx—x,t—t') = C¢a(k w) exp [—iw(t — t') + ik(x — x)] .

o'a
(2)
Yinpr 9 X, 0X 0 X,0X, } ’ 2.12)
0 o%a o 0%
A mn + 1) .
(at K ) T Eke {"‘"aX Xy " 5Xe0Xm 213
where A, = 9%/0X?+ 8?/0Y?, €y is the unit antisymmetric tensor of the second rank, and
dkdw ¢ ¢
M sa____ Cyy
00, = [ G 2ikiknky {—z’w+nk2 —z'w+1/k2}’
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i

.A‘ é*
6@ = dkdezklkk{ Cya__ _ Va }

tnp "~ (2r)3 —iw+nk?  —iw+ vk?

(1)_/ kk Caa  Cyy
QY —iw k2 —iw+vk? [’

=_/dkdwklk Coa __ Cia
Qre ") —iwt+nk?  —iwtuvk? [’

o [ dkdw 4k,knk,,k,{ Cow v nk? . }

Vinor = | Gy R | S s o (i 0 % T T i O
) - / dkd(l.) 4k1knkpk'r 'l']k'2 é’ C C,:Za _ yk2 Ax
tnpr [ @n)} k2 (—iw+ gk VT S uk? T (Ciw + vk?)? ’
dkdw o) Caa |
1) — PP _ aa
Min Qn) ik { —iw+nk? —iw+ ukz}

o_ [ddw, | Cya __ Cia
Mlin QR ) Siw+ok? T —iw gk [

The reality of all coefficients in Egs. (2.12) and (2.13) is easily demonstrated using the

properties (A.9) of the space-time spectral functions.

The resulting equations enable us to study the influence (characterized by the turbulent
viscosities) of various forms of small-scale fields on large-scale fields. However, in order to
make the results more transparent, in this Section we also demonstrate explicitly how negative
magnetic viscosity originates in Eqgs. (2.4) and (2.10). For this purpose it is convenient to assume
that the field o is given. Then the smallness of large-scale gradients enables us to derive
from Eq. (2.10) the following relation between the small-scale Fourier-components 17 (k, w),
aT (k, w):

ikn da

AT = ——————— ————
v kw)=emn —iw+vk? 0X,,

aT + (other  terms). (2.14)

Here we explicitly write the term that derives from [Va x VAaT], in Eq. (2.10). Further, we
note that the terms entering into Q3 = —([V¢T x VaT],) include

([5-%1):

which, after inserting 'J)T from Eq. (2.14), gives rise to the term

(2.15)

—Ekl€mn

&a dkdw ki < (AT)2>
0X10Xm J (27)} —iw +vk? kw
on the right-hand side of Eq. (2.4); here <(&T)2>k is the spectrum of the small-scale magnetic

9

potential. Assuming isotropy and integrating over azimuthal angle in k-space, one can easily
show that the term (2.15) can be rewritten as
-vTAg, (2.16)
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/

where

kdkdw vk 2 '
v = / 872 w?+ 12kt <(aT) >k,w ’ 217

Equations (2.16) and (2.17) reveal a term of negative viscosity type in the equation for the mean
component of the magnetic potential.

3. SMALL-SCALE ISOTROPIC TURBULENCE GENERATED BY STATIONARY
WHITE NOISE SOURCE

It is mathematically convenient to treat small-scale turbulence as being generated by a
stationary white noise source, to keep the statistical properties as simple as possible. This kind
of the source, possessing zero cross-correlations, was considered in Ref. [19], so we are able
not only to compare the results but also to clarify the role of cross-correlation terms. We define
the properties of the sources Fy, F, in Egs. (2.10) and (2.11) as follows:

(F‘GIJ):(Fa):O,

(Fy(x, ) Fy (X', 1)) = ¥(x — x)é(t — t'),
(Fa(x, ) Fo (X, 1)) = A(x — X)5(t — t'), (3.1)
(Fyx, t)Fo(x',t')) = H(x — x)8(t — t').

Since fluctuations 9@, (¥ are related to the sources F,, F,, by Egs. (A.4), we find for the
space-time spectral functions of the small-scale turbulence

X YK

Coullow) = i 0y’

) _ A®

Caa,(ka (U) = ma (32)
) _ H()

Cyalk,w) k2w + vk?)(iw + nk?)’

where ‘i‘, fi, H are the spatial Fourier transforms of ¥, A, H, respectively, e.g.,
¥(k) = / dr ¥(k) exp(—ikk).

It is also useful to express space-time spectral functions (3.2) in terms of spatial functions,

(o}

. dw
Cyalk) = / % Gyalhow).

-—00
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Integrating over w in Egs. (3.2), we express the sources in terms of spatial spectral functions
and obtain .

. 2 k2

A _ 217/&:2 A

Caalk,w) = PR Caa(k), (3.3
A v +n)k? A

Cpallyw) = — 21D Cpall).

(—iw + vk?)(iw + nk?)

We then insert Egs. (3.3) into the coefficients of Egs.- (2.12) and (2.13) and integrate over w:

s, =0 |
5@ = _ [ 9K Kikakp (é¢a(k) B C.‘La(k))
lnp 4r a2’ k2 n P

L0 = “dk klk Caal®) C¢¢(k)
in 4n? ' 2K2 n v ’

M =/ dk _kiknkpkr (36'1/:1/;(1‘)_ éa.a,(k))

Yinpr = [ 4m T R

g K (3.4)
l/(2) ﬂ klkn C¢a(k) - C:/:a(k)
In 42 2k? i v ’
W [ 4k kikakok, Cyak)  3C;.(K)
lnpr 47('2 k4 n v )

= [ k—,(f-’“;—) (Con® - Coat®),

2 =
nia =0.

- We note that if we set C‘¢a = 0, then Egs. (2.12) and (2.13) together with Egs. (3.4) appear
to be in complete agreement with Egs. (2.15) and (3.12)—(3.15) of Ref. [19] after some easy
transforms. In this Section we assume isotropy of the small-scale spectra; the spatial spectral
functions in Egs. (3.4) therefore depend on k = |k|. Integrating over the azimuthal angle ¢ in
k-space in Egs. (3.4) using the subsidiary integrals

/ do kmkn = 7k*6mn,

27

' 4
/d(p kkklkmkn = %‘ (6k16mn + 6kn61m + 6km61’n)a
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Egs. (2.11) and (2.12) take the form

0 — — ~
(5t' - VAs) As"/) = VturbAi'lp + 6Vtu'rbA§a;

0 3.5)
where
({97 (@)
Vturb = g + ,
8 v n
1 1 © 40 3.6)
hurs = (; + 5) ((» 8a ))’

s = 5 ({990 = (@)))

'

<(z,b(°))2>, <(a‘°’)2> are the stream-function and magnetic-potential variances of the small-
scale fields, respectively:

and

($a®)) =/;_:Eé¢a(k)'

It follows from Egs. (3.5) and (3.6) that for the case of small-scale turbulence generated by a

stationary white noise source, the turbulent viscosity is always positive, the turbulent magnetic
viscosity is negative if

(@) > (@), 3.7

and if cross-correlations vanish, the large-scale magnetic field grows if |7¢,,.| is.large enough
that (n + 7n:.rp) becomes negative, while the large-scale velocity field does not grow. The
existence of nonzero cross-correlations leads to amplification of both large-scale fields when
(n+n:.rp) becomes negative; the latter conclusion is unaffected by the sign of cross-correlations

((w0a)).
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4. MORE GENERAL FORMS OF ISOTROPIC SMALL-SCALE TURBULENCE

. f
To provide a more general treatment of the isotropic case with zero cross-correlations, we
define space-time spectral functions as follows:

R ) R
Cyilh,w) = =% Gy (),

w7
5 __2m A : @4.1)
Caalhs) = oy Coalh),
Cyalk,w) =0.

‘The w-dependent part of the spectrum is taken in the Lorentzian form here. This form is
frequently used in the literature; however, we choose it for convenience only. It can be easily
verified that the results are changed only by a factor of order unity if one chooses other shapes,
for example, the Gaussian shape or the rectangular one. Inserting Egs. (4.1) into Egs. (2.12)
and (2.13) and integrdting over w and ¢ in the coefficients, we arrive at Egs. (3.5), where

dk k* { vk?

A ’72k A
= +—=
Viurb ar e + 0RO Cyy(k) e + DR Caa.(k)} )

, R . (4.2)
o /dkk’ { Copk)  Caalk) }
Turd = - 5

dr | vk tnk? vt vk?

whereas §vzurp = 0. For yix = vk?, Yax = nk* we naturally obtain viurs, Teurs Of Sec. 3; see
Egs. (3.6). Here we consider two special cases.

1. Long correlation times of the small-scale fluctuations, vz, v2x < vk?,nk?. In this
limit :

()

Viurb =

—
4.3)
®°)") (@)’
ﬂturb=< m >—< 2w >»

and vy, coincides with that obtained in Ref. [14] for time-independent random basic flow
(Which, in fact, corresponds to i, — 0) in the ordinary fluid, B = 0. In the case considered,
the turbulent magnetic viscosity is negative if

<(a(o))2> > <(¢<o>)2> , (4.4)

v
n
whereas v, is always positive.
2. Short correlation times, ik, Yyax > vk?, nk?.
Assuming that
Mk = Y = 17,
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where 7, is the correlation time, which is independent of k, we obtain from Egs. (4.2)

s = = ((B0)?),

=3 ()= (07,

where <(v(°))2> and <(B‘9’)2> are the velocity and magnetic-field variances, respectively. In

this limit the turbulent viscosities are the same as those obtained in Ref. [24]. From the second
equation, it follows that the turbulent magnetic viscosity is negative if

' <(B(0))2> > <(v(0))2>’ (4.6)

whereas vy, iS again always positive.

Now we consider the role of cross-correlations. Whereas the general form (4.1) of the
space-time spectral functions Cyy, C,, is natural and widely used, it is not so easy, in the
author’s opinion, to choose an analogous general form of the cross-correlation spectrum. We
therefore restrict attention to time-independent isotropic fluctuations (special case 1; see above)
of @, q©:

4.5)

Cyyp(k,w) = 218(w)Cyy k), |
Caa(k,w) = 216(w)Caa(k), 4.7)
Cypalk,w) = 216(W)Cya(k).

Inserting Egs. (4.7) into Eqgs. (2.12) and (2.13),( we have

v/

3 _ _
(5? - VAs) As’l/) = VtyrbA.zs'(/) + 5VturbA§aa

5 4.8)
(5; - nAs> a= nturbAs-d + 577turbAs'47;1
where vy, and 7,5 are given by Egs. (4.3), whereas
_ (@)
6Vtu.rb _TV_, (4 9)
ONturs = ((¥?a®)) 1_1 .
UT 2 v n .

Since we want to illustrate the role of cross-correlations, we consider the simplest

case v =1. This is the usual assumption in numerical simulations; see, e.g., Ref. [28].

Equations (4.8) then take the form of Egs. (3.5). In this case, both large-scale fields grow

if 9+ n¢urs < 0, regardless of the sign of the cross-correlations ((¢©a®)), just as in the case
- of §-correlated sources; see Sec. 3.

5. STOCHASTIC ANALOGS OF KOLMOGOROYV FLOW FOR MAGNETOHYDRODYNAMICS

In this Section we consider specific examples of anisotropic time-independent fields, which
can be regarded as magnetohydrodynamic stochastic analogs of Kolmogorov flow. In particular,
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we choose 9@ and a© to be
PO, t) = Al cos(kox + a),
5.1)
a®(x,t) = A; cos(kox + ¢ + @),

where A; and A, are the constant amplitudes of the zeroth-order stream function and magnetic
potential, respectively; a is a random phase, uniformly distributed in [0; 27]; and ¢ is a constant
phase. The spectral functions are

Cuplk,w) = 2r° A16(w) [6(k + ko) + 6k — ko)], )
Caalk,w) = 2° A36(w) [6(k + ko) + 6(k — ko), (5.2)
Cpa(k,w) = 27° A1 A26(w) {cos o [6(k+Hko) +6(k—ko)] +i sin i [6(k-+ko)— 5 (Kk—ko)]} -

It follows from Egs. (5.1) and (5.2).that the zeroth-order fields so chosen are jointly
homogeneous; that one is able to consider various forms of cross-correlations by varying ;
and that if there are different random phases (say, o and j) in Egs. (5.1), then there are no
cross-correlations. Thus, Egs. (5.1) enable one to study a set of interesting consequences. Here
we consider only the simple case,

©=0, ko= koes. (5.3)
Inserting Eqgs. (5.2) and (5.3) into Egs. (2.12) and (2.13), we obtain

E; _ (A A\ & 442 242\ %
(E —va ) At == <2_u a _) yadedt (— - _) 9X20Y?

2
_ A (i_g) 64a +A1A2 (_ 1> 0 AT, (5.4)
v o v

0X29Y? 2 ay?

a A)g= AA; 321/) A A3\ o4
ot~ o 2 \v av: " \2y ") ave
Examples resulting from subsequent simplifications are as follows.
1. A, =0. There is no small-scale magnetic field. Equations (5.4) reduce to

‘2 2 2 "N
(E—VA )A3E=—ﬁ -a—-ASE+%1- 09

ot 2 Y2 X205y’

(5.5)
6 A a = £ 6_2_;
ot 2 Y%

It follows from Egs. (5.5) that the «turbulent» magnetic viscosity is always positive, and thus

no large-scale magnetic field is generated. The growth rate for large-scale perturbations of the
stream function is ‘

212

a4 KK,
v K?'
where K is the wave vector of large-scale perturbations, K2 = K 3,- +K ; The growth rate (5.6)
naturally coincides with that of Kolmogorov flow in an ordinary fluid; the latter has been
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calculated via the multi-scales expansion technique of Ref. [14]. The most «dangerous» (that is,
those that appear first when the amplitude of the small-scale field increases) are the large-scale
perturbations with a wave vector, perpendicular to that of the small-scale field, i.e., K, = 0.
Such perturbations grow if

A1 > Ajmin = V2v. (5.7)

The criterion (5.7) is derived for an ordinary fluid in Ref. [11] for a regular small-scale velocity
field. 2
2. A; = 0. There is no small-scale velocity field. Equations (5.4) take the form

o — 242 8% A B _

_—— = - 4=
( ”A’) AV axtevt o v Y (5.8)
E A2 0% '

(a*"*)““a:aw

The second equation signals the onset of negative magnetic viscosity. The most dangerous are
large-scale magnetic field perturbations with a wave vector perpendicular to that of the small-
scale field, K, = 0. The instability criterion is then

AZ > AZmin =V 2V77 . (59)

A large-scale velocity field with only a K,-component_does not grow. However, it can be
shown that ¥ grows if its wave vector makes an acute angle with the x axis. This special case
is studied in detail in Ref. [32] using multiple-scale methods.

3. A = A, = A. We note that equal amplitudes (or energies) of the magnetic and
velocity fields are frequently chosen at ¢ = 0 in numerical simulations of freely decaying
magnetohydrodynamic turbulence; see Refs. [27, 28]. Taking 9, @ in the form

¥ =Rexp (vt +iK, X +iK,Y), (5.10)
a=Pexp (yt+iK. X +iK,Y),
and inserting Egs. (5.10) into Eqs. (5.4), we obtain a linear system with unknown P and R.
The equation for the growth rate then follows by equating the determinant to zero:
ay+by+c=0, / (5.11)
where

a=K?
b=(+nK*-2AK’K] + MK.K],
=vnK® — A + n)K*K. + AmK’K2K2,

) .
2 \v 1 v .
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Introducing polar coordinates
K. =Kcosf, K,=Ksinf
we obtain an equation for the neutral curve v = 0 in terms of A4, 6:

A2

5 - (Pry,)* — 4(2 - Pry,) cos’ 0] sin’ 6 = 1, (5.12)

where Pr,, = v/7 is the magnetic Prandtl nixmber. Insiability is possible for

Pr,, <'1
and .
1 [1-(Prn)2 ]
|COS€| < 5 [ﬁm—] .

The most dangérous perturbations are those with K, = 0 (as can be seen by comparing A%(9)
with A%(r/2) estimated from Eq. (5:12)). In this case, the instability criterion is

Vv
V1= Pr,)?’

whereas the grbwth rate takes the form !

’7={A—V;"+1/A2+-—-——(”:")2 }Kz. (5.14)

Because both large-scale fields increase, this case is of interest for subsequent nonlinear analysis
and numerical simulation, which will be the subject of future research.

A> Apin = (5.13)

6. RESULTS

In this paper, in the framework of 2D magnetohydrodynamics, we have studied the possible
occurrence of large-scale mean velocity and magnetic fields generated by small-scale random
fields. The latter are assumed jointly stationary, homogeneous, and maintained by an external
source.

The random fields lead to negative dissipative factors in the equations for the mean fields,
which is why the term «negative viscosity» is used. Viscous damping of large-scale fields is thus
replaced by growth, which is limited due to nonlinear effects in the amplitudes of the large-scale
fields. This picture, being simplified, though, is fruitful for studying the effects of smaller-scale
fields on large-scale ones.

Our results are as follows.

1. Using a two-scale expansion, we obtain equations, that describe the evolution of
the mean stream function and the mean magnetic potential in the presence of small-scale
MHD fluctuations. These expressions enable us to study the evolution of large-scale MHD
perturbations with the assumption that the statistical properties of the small-scale fields are
known.
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2. With our approach we easily demonstrate how a negative magnetic viscosity term can
appear in the equation for the mean magnetic potential.-

3. The general expressions also enable us to recover previous results on the eddy (turbulent)
viscosity of the ordinary fluid and on turbulent viscosities in the presence of small-scale MHD
fluctuations.

4. For isotropic small-scale fluctuations, we estimate turbulent viscosities and find criteria
for the onset of negative magnetic viscosity, as well as for the growth of large-scale MHD fields,
in three cases:

(i) fluctuations are generated by white noise source;

(ii) fluctuations possess long correlation times;

(iii) fluctuations possess short correlation times (in comparison with characteristic
dissipation times associated with molecular kinematic and magnetic viscosities).

In particular, it is shown when the cross-correlations among small-scale fields vanish, the
turbulent viscosity is always positive, whereas the turbulent magnetic viscosity can be negative,
thus giving rise to the growth of large-scale magnetic perturbations. When cross-correlations
are nonvanishing, both large-scale fields can be amplified.

5. We also consider how large-scale fields are influenced by anisotropic small-scale random
fields, which can be regarded as stochastic analogs of Kolmogorov flow. We find that

(i) if there is only a small-scale velocity field, the growth rate of the large-scale velocity
field corresponds to that of a Kolmogorov flow, whereas no magnetic field is generated;

(ii) if there is a small-scale magnetic field only, then the large-scale fields increases fastest
for perturbations transverse to the small-scale anisotropic ones;

(iii) finally, if the random anisotropic fields are of equal amplitude, then both large-scale
fields grow; again, the growth rate is greatest for large-scale perturbations transverse to the
small-scale ones.

This paper was supported by the «Chaos-2» Project of the National Academy of Sciences
of Ukraine, and by Project INTAS 93-1194. Information support provided by Project INTAS
LA-96-09 is also acknowledged.

APPENDIX

Derivation of Q1, @1, Qs

In this Appendix, the terms Q1, @2, @3 (see Egs. (2.7)~(2.9)) are expressed in terms of the
mean components 1, @ and space-time spectral functions of the fluctuating components YT,
a” obtained from Egs. (2.10) and (2.11). Taking the approach outlined in Sec. 2, we introduce
slow and fast spatial variables X and x. The spatial operators are then written in the form

g, 0
+
V= ax X’
o? ‘

+2—+

A—A 2az,,aX,, As, , (A1)
2 2 4

A% — A2 +2AA, +4 S A+4 9

A, +4 .
\ "02,0X, " 0x,0X, 02,0X,02,0X,
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We start by deriving Q3 since it has a simpler form than Q; and @,. According to Egs. (2.9)
and (A.1), this term can be written

@ =—([VyT x VaT],) = QP +Q" + @iV +QiV + Q5P + Q0 +O(K*  K* ), (A2)

where

89 5a©
o) _ _
@ Emn < oz, Oz, >

due to homogeneity of the turbulence, .

O F)
on — _ + ).
3 Emn < 0%y, (axn oxX, ) @ > !

-9 1o} 9a®
- 0=_. . + D a ’
axm aX m az‘n
and the remaining terms in Eq. (A.2) have a similar structure, which is now obvious. We retain
only those terms in Eq. (A.2), that are of order K, K?. As will be seen below, it is just these
terms that give rise to negative magnetic viscosity.

To calculate the terms in Eq. (A.2), it is necessary to derive expressions for 1 and a®,
1=0,1,2. In the zeroth approximation, Egs. (2.10) and (2.11) yield

A3)

9 _ © — '
( T VA) A Fy(x,1),

5 A4
(— - na) a® = F,(x,1). .

Before solving the equations in various orders of approximation, we introduce correlation -
functions and Fourier spectra of the zero-order fields. Since we assume joint homogeneity and
stationarity of the small-scale fields, we have

Cyupx—x,t —t) = (¥Ox, 0, 1)),
Caax — X', t — ') = (aO(x,)aO, ')}, (A.5)
Cyax — X, t — t') = (pO(x,8)aO K, t')) .

Using the Fourier transform over the fast variables x, t,

dkdw »g
© = [ R 0 it 4 i :
PV (x,t) / Gy POk, w) exp(—iwt + 1kx), (A.6)
the corresponding space-time spectral functions are defined as
dk
Cyalk,7) = (zd;‘j Con (k, w) exp(—iwr + ikK). (A7)

Since the small-scale fluctuations are stationary and homogeneous,
(«ﬁ“’)(k, W)EOK, w')> = 218w + W)oKk + K)Cya k, w). (A8)

6 XOTD, Ne4 (10) . 1281
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The properties of the spectral functions are

@) Cpyl,w) = Cyy(k,w) = Cyy(—k, —w), “9)
(i) Calk,w) = Cyal—k, —w) = Cay(k,w), '

where the asterisk denotes the complex conjugate. The properties (ii) stem from the reality of
Cya(k, ) and the condition

Cya(k,7) = Coy(—K,—T).

It is also useful to introduce the spectra of the fields v©(z, t) and BO(z, t) for the Fourier
components

Bk, w) = —iesjkp(k,w),

A (A.10)
Bi(k,w) = —ie;jk;ak, w),
where €;; is the unit antisymmetric tensor of the second rank. Since
<1‘;§°’(k, WO, w’)> = (2m)°8(w + ok + K ) (o) o, (AL

where (v; o (0)) kw is the space-time spectral tensor of the zero-order velocity field, we obtain
with the help of Egs. (A.10) and (A.11)

<(‘v<°>)2>k = K20y k,w),

W

y

((BY))  =kCukw), (A.12)
(WWBO)), . = BCyalkw).

Now we return to Egs. (2.10) and (2.11). In the first approximation we have

3 ’ o 8 . %@ 8
9 _ua) a0 +e,, O WO
(8t g )A’/’ mn 3K, Oy Y ax,, oz, "
. 5 o0 o a¢ 940 (A.13)
— 1) + __l + —_— a =
(at ”A) O e S em X, | ™" 8X,, Ozn
Taking the Fourier transform, we obtain
(1) - ikn, 9a_ .o W
P00 = e 2 (53 80 0) = 2 O 0)
(A.14)

A = tkn 740 E a®
iV (k,w) emn_iwnkz( POk w) ~ 53— a0k, w)

In the second approximation we have from Egs. (2.10) and (2.11)
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at 9t dz,0X, = 0z,0X, X, 9z,
e aXm o, A15
8 »a® oV da 9% dah A1
T’A 27] + Emn + Emn =
ot 0zp,0X, oz, 00X, 0X,, Oz,
Taking the Fourier transform, wé obtain
. k 1 80 4ivk, OpW
@ =2%% + P -
VW) =255 SR OX, | Tiw+ vk 0%,
ikn 6E “(1) aﬁ “(l)
e i + vk (axm’l’ X" )
2ink, 9a® ik 5% oa @19
2(2) =2k oo, . _ _m A _ Y
k) = R BX, ™ T+ k2 (ax " ox,” ) '

We do not calculate terms of third and fourth order, since they do not contribute to Q2 3,
as will be seen below. Furthermore, since we are interested in negative viscosity effects (linear
in the mean quantities ¥, @), we neglect terms nonlinear in ¥, @ in ¥®, &®, namely, the
last terms on the right-hand side of Egs. (A.16). These can be taken into account in the same
manner as the linear terms, and this was done for the more straightforward case in Ref. [20].
However, in this paper we do not consider nonlinear effects in the mean quantities.

Now we are ready to calculate all terms in Eq. (A.2). Note that the term lel) neé¢d not be
taken into account because it is nonlinear in ¢ and @. Then, it can easily be seen by explicitly
writing the terms Q¥ and Q{ that they yield zero to the second order inclusive. Therefore,
only the sum ng) + ng) has to be evaluated; see Egs. (A.3). Using Egs. (A.14) and the
properties (A.5)-(A.9) of the zero-order spectral functions, we obtain to order K

dkdo _kikm [ 0T A Y
Qn) —iw + k2 | ¥YoX0X, “Y9X.0X.

dkdw kik - o A o
) _ _ L i O —_ TR T
Q3 Sklsmn/ (27[')3 —3w +-Uk‘2 .{Caa anaXm C¢aanaXm } ’

01) _
Q(3 ) = —Ekl€Emn

and then obtain Eq.(2.13) with the right hand side being the sum Q" + Q{"*.
Now we calculate

Q= - <[V¢T % VA'/’T]z) = QY + Q(lm) + Q(lm) + Q(loz) + Q(lzo) + Q(los) + Q?O) +
+QI+ QY+ Q1Y+ QP + QY + Q1Y + @V + 0K, KE,. ), A1)

where
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due to homogeneity of the turbulence, and

WO o >
©on _ _ + + + (1)
@ E"‘"<amm <6zn X, ) (A 261:,,6Xp As)‘/’ >

| )
a0 — _ W_9 O
@ 5"'"<(axn X )¢ EF o >

The remaining terms in Eq. (A.17) have similar structure. We retain only terms of order -
K!,...,K* We naturally expect that among these are terms that give rise to the effective
viscosity term in the equation for the mean flow.

As in case of ()3, we omit all nonlinear terms in E, @, which can be taken into account on
the same basis as the linear terms. Then, starting with expressions similar to those in Eq. (A.18),
it can be easily verified that Q{¥+Q®” = 0 to order K*; the same conclusion holds Q{*+Q{*.
Thus, we only need to calculate

(A.18)

01) 4. 10 02 20,
Q™+ + Q™ + .

It is convenient to divide this sum into two terms, Q(lol) + Qﬁlo) and Q(IOZ) + Q(lzo)’ and evaluate
them separately. Using Egs. (A.14) and the properties (A.5)—(A.9), we have for the first sum

QO + QU9 = ce,n L 60 Py, o oz
1 1 Fmr  Unr 9X,0X,,0X, ' "POXi0XmoX,
+ @ ¥ — A Y+ P ——62— @ (A.19)
Un X, 0Xm UngX10Xm ’ -
where p
s __ [ dkdw 2ikiknk,
tnp Q@ry —iw+ vk Y
@ _ [dkdw 2ikika.kp, -
linp 27)? —iw +vk2 ¥ )
o __ [dkdo kb, s
tin Q) —iw+ k2 ¥V
o _ [dkdw  kikn 4,
lin Qr) —zw+1/k2

Using Egs. (A.16) and the proberties of Egs. (A.5)-(A.9), we also obtain"

841/) 64— v
(02) + (200 — (1) +v () .
QU+ QYT = enemn {"“"Waxkax 0X,0X, UnPr 35X, 0XmdX,0X, } (420

where
o _ [ dkdw dkikakpk, . &
tinpr = [ @Qny — &2 —iw+vk?  (—iw+ kR [ VY
V(z) - _ dkdb) 4klknkpkr \ 1 + I/’Cz é
tinpr Qry} K2 —iw+vk?  (—iw+vkd)E [ Y
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Q, is evaluated in exactly the same way as Q,. As a result, terms with 6 6§2,)n " u§l,’n,

(2)
Nin

2lnp?
appear in the sum Qg’” + ng), which differ from their counterparts in Eq. (A.19) by the

interchange of v and 5, Cyy and —Cl,, and Cuy and —Cy,. Then, for the sum Q{? + Q%®
we obtain

where

a*Y o‘a

© 4 O = ) )

R E"“':'""{”“"P'axkax 0X,0X, | nP 5X,0X m0X,0X, } (A21)
S [ dkdw dkikakok, Tk &
2inpr @ B (Siw kR O

o /dkdw dkiknkok, Kk G
“ner T [ @ T R (—iw T k22 ve

Finally, summing the terms Q{"” + Q{'”, Q" + Q% Q{™ + Q, and Q" + Q{”, and

introducing

(l) — (1) (1) (2) (2) () (l) . (1) (1) :
6, —61,np+62,n s =6i1n 62“”,, Vi)n T V30 n, €tC., we obtain

the final expressmn for the right-hand side of Eq. (2.12).

17.
18.
19.
20.
21.
22.

.

JIuteparypa

. E.N. Lorenz, The Nature and Theory of the General Circulation of the Atmospere, World Meteorological

Organization, Geneva (1967) [Russian transl.: Gidrometeoizdat, Leningrad (1970)].

. V. P. Starr, Physics of Negative Viscosity Phenomena, McGraw Hill, New York (1968) [Russian transl.:

Mir, Moskva (1971)].

. Yu. L. Klimontovich, Statistical Physics, Nauka, Moscow (1982) [Engl. transl.: Harwood Academic

Publishers, New York (1986)].

. L. D. Landau and E. M. Lifshitz, Hydrodynamics, Nauka, Moscow (1986).
. S. Corrsin, in Turbulent Diffusion in Environmental Pollution, Pergamon Press, New York (1974),

vol. 18A, p. 25.

. S. Eskinazi and F. F. Erian, Phys. Fluids 12, 1988 (1969).

.A.F. Kurbatsku Modelling of Nonlocal Momentum and Heat Transport, Nauka, Novosnbusk (1988).
. R. H. Kraichnan, J. Atmos. Sci. 33, 1521 (1976).

. A. Pouquet, J. Fluids Mech. 88, 1 (1978).

. V. 1. Amold and L. D. Meshalkin, Usp. Mat. Nauk 15, 247 (1960).

. L. D. Meshalkin and Ya. G. Sinai, Prikl. Mat, Mech. 25, 1140 (1961).

. A. Nepomnyaschii, Ibid. 40, 886 (1976).

. G. L. Sivashinsky, Physica D 17, 243 (1985).

. B. Dubrulle and U. Frisch, Phys. Rev. A 43, 5355 (1991).

. E. Weimann and C.-W. Shu, Phys. Fluids A 5, 998 (1993).

. N. F. Bondarenko, M. Z. Gak, and F. V. Dolzhaskii, Atmospheric and Oceanic Physics 15, 711

(1979).

J. C. Williams, J. Fluids Mech. 146, 21 (1984).

A. V. Chechkin, A. V. Tur, and V. V. Yanovsky, Phys. Fluids B 4, 3513 (1992).

D. Montgomery and T. Hatory, Plasma Phys. Contr. Fusion 26, 717 (1984).

A. V. Chechkin, M. I. Kopp, A. V. Tur, and V. V. Yanovsky, Zh. Eksp. Teor. Fiz. 113, 646 (1998).
M. 1. Shliomis and K. Morozov, Phys. Fluids 6, 2855 (1984).

J.-C. Bacri, R. Perzynski, M. 1. Shliomis, and G. I. Burde, Phys. Rev. Lett. 75, 21128 (1995).

1285



A. V. Chechkin _ X3TD, 1999, 116, evin. 4(10)

23.
24.
25.
26.
27.
28.
29.
30.

31.

32

D. Biskamp and H. Welter, Phys. Lett. A 96, 25 (1983).

D. Biskamp, Plasma Contr. Fusion 26, 311 (1984).

H. R. Strauss, Phys. Fluids 19, 134 (1976).

D. Biskamp, Phys. Rep. 237, 179 (1994).

D. Biskamp and H. Welter, Phys. Fluids B 1, 1964 (1989).

R. Kinney and J. C. McWilliams, Phys. Plasmas 2, 3623 (1995).

M. Steenbeck, F. Krause, and K.-H. Radler, Z. Naturforsch. A 21, 369 (1966).

H. K. Moffat, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Univ. Press,
Cambridge (1978).

W. Horton, in- Handbook of Plasma Physics, ed. by A. A. Galeev and R. N. Sudan, North-Holland,
Amsterdam (1984), Vol. II, p. 384 [Russian transl.: Osnovy fiziki plasmy, Nauka, Energoatomizdat
(1984), Vol. 11, p. 362].

A. V. Chechkin, Ukr. J. Phys. Ne5 (1999).

1286



