ЖУРНАЛ ЭКСПЕРИМЕНТАЛЬНОЙ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

ОСНОВАН В МАРТЕ 1873 ГОДА ВЫХОДИТ 12 РАЗ В ГОД М О С К В А ТОМ 116, ВЫПУСК 4(10) ОКТЯБРЬ, 1999 «Н А У К А»

ОТОЖДЕСТВЛЕНИЕ ВНЕГАЛАКТИЧЕСКИХ ИСТОЧНИКОВ КОСМИЧЕСКИХ ЛУЧЕЙ ПО ДАННЫМ РАЗНЫХ УСТАНОВОК

© 1999

А. В. Урысон*

Физический институт им. П. Н. Лебедева Российской академии наук 117924, Москва, Россия

Поступила в редакцию 6 апреля 1999 г.

Рассматриваются ливни с энергией $E>3.2\cdot 10^{19}$ и $E\ge 10^{20}$ эВ, зарегистрированные на установках Акено и AGASA, Хавера Парк и в Якутске. Проанализировано, как зависит отождествление источников от величины ошибки, с которой определяют направления прихода ливней. Подтвержден вывод наших предыдущих работ — основными источниками частиц, инициировавших ливни, являются сейфертовские галактики с красными смещениями $z\le 0.0092$, слабо излучающие в рентгеновском и радиодиапазонах.

PACS: 98.70.Sa, 96.40.pq, 14.20.Dh

1. ВВЕДЕНИЕ

Происхождение космических лучей с энергией $E>4\cdot 10^{19}$ эВ является предметом интенсивных исследований. Из анализа широких атмосферных ливней, инициируемых космическими лучами, следует, что частицы таких энергий имеют, по-видимому, внегалактическое происхождение [1–4] и приходят к нам с расстояний, не превышающих ~ 50 Мпк [4,5]. (Частицы — фрагменты ядер с $E\approx (2-3)\cdot 10^{20}$ эВ — могут приходить с расстояний ~ 100 Мпк [6].) Если это так, то спектр космических лучей в области $E\geq 10^{20}$ эВ не имеет чернотельного обрезания, предсказанного в работах [7,8]. Действительно, частицы с энергией $E\geq 10^{20}$ эВ были зарегистрированы на разных

^{*}E-mail: uryson@sci.lebedev.ru

[©] Российская академия наук, Отделение общей физики и астрономии, Институт физических проблем им. П. Л. Капицы, 1999 г.

наземных установках — Сиднейской [9], Якутской [10], Хавера Парк [11], Мушиный глаз [12], Акено и AGASA [13]. Обсуждение спектров, полученных на этих установках, приведено в работах [12–15]. В наших предыдущих статьях [16, 17] мы анализировали данные измерений и привели аргументы в пользу того, что спектр не имеет чернотельного обрезания.

Задавшись координатами направлений прихода частиц и диапазоном расстояний до ~ 100 Мпк, можно попытаться отождествить источники космических лучей.

Источники, которые рассматриваются в литературе, подразделяются на три группы. Во-первых, это различные астрофизические объекты — пульсары, ядра активных галактик [1], горячие пятна мощных радиогалактик и квазаров [5], лацертиды [18], взаимодействующие галактики [19]; во-вторых, частицы сверхвысоких энергий могут генерироваться космическими струнами [20]; в-третьих, они могут рождаться при распадах метастабильных сверхтяжелых частиц холодной темной материи, которые накапливаются в гало галактик [21]. (Обсуждается также возможность ускорения частиц в гаммавсплесках [22].) Непосредственно отождествить источники можно только в том случае, если они принадлежат первой группе. Во втором случае любые объекты, попадающие в область вокруг направлений прихода частиц, будут случайными. В третьем случае основной поток частиц будет из гало Галактики и возможен слабый поток из скопления галактик в Деве [21].

Мы отождествляли источники космических лучей в наших предыдущих работах [23–25] из анализа 17 ливней Акено и AGASA с энергией $3.2 \cdot 10^{19} < E \le 2 \cdot 10^{20}$ эВ, у которых координаты направлений прихода определены со среднеквадратичной ошибкой $\sigma_{sh} < 3^{\circ}$ [4, 26]¹⁾. Была принята первая модель (источники — астрофизические объекты), и в качестве возможных источников рассматривались рентгеновские пульсары (как наиболее мощные), сейфертовские галактики, лацертиды и радиогалактики. Область поиска источников определялась только ошибкой в направлении прихода ливней в экваториальных координатах ($\Delta \alpha$, $\Delta \sigma$) и составила $3\sigma_{sh}=3(\Delta \alpha, \Delta \delta)$. Такая величина поля поиска обусловлена двумя причинами. Во-первых, из статистики [27] известно, что протон находится внутри поля среднеквадратичной ошибки с вероятностью только 66%, внутри поля тройной ошибки он находится с вероятностью 99.8%. Во-вторых, ошибкой в определении оптических координат астрофизических объектов можно пренебречь, так как она составляет секунды, а ошибка в координатах ливней градусы. (Предполагалось, что межгалактические магнитные поля достаточно слабые, $B \le 8.7 \cdot 10^{-10} \; \Gamma c$ [25], и протон, отклоняясь ими, остается в области $3(\Delta \alpha, \Delta \delta) \le 9^{\circ}$.) Вычислив вероятности случайного попадания возможных источников в поле $3\sigma_{sh}$ вокруг оси ливня, мы получили, что эта вероятность достаточно мала, $P > 3\sigma$, только для сейфертовских галактик с красными смещениями $z \le 0.0092$, т. е. удаленных от нас на расстояния не более 40 Мпк, если постоянная Хаббла H = 75 км/с·Мпк. Радио- и рентгеновское излучения у этих галактик слабое. (Здесь σ — параметр распределения Гаусса в теории ошибок.)

В данной работе кроме этих 17 ливней рассматриваются ливни с $E > 4 \cdot 10^{19}$ эВ, зарегистрированные на Якутской установке (их ошибки вычислены в настоящей работе), и ливни с $E \ge 10^{20}$ эВ — два ливня, зарегистрированные на установке Хавера Парк [11] и один — на установке Мушиный глаз [12].

¹⁾ В нашей работе [23] неверно указаны координаты ливней 7, 8. Ближайшая сейфертовская галактика в поле их поиска NGC660, z = 0.003 [31]. На выводы [23] это не повлияло.

2. ЛИВНИ С ЭНЕРГИЕЙ $3.2 \cdot 10^{19} < E < 10^{20}$ эВ

2.1. Якутские ливни

На Якутской установке было зарегистрировано 12 ливней с энергией $E>4\times \times 10^{19}$ эВ [10]. Ошибки в направлениях их прихода $\Delta\alpha$, $\Delta\delta$ были вычислены следующим образом. В измерениях [10, 28] были определены горизонтальные координаты оси ливня θ , φ и ошибки $\Delta\theta$ и телесного угла $\Delta\Omega$. Ошибка φ равна $\Delta\varphi=d\Omega/(\sin\theta\cdot\Delta\theta)$. Из соотношений, связывающих горизонтальные и экваториальные координаты (см., например, [2]),

 $\sin \delta = \sin \varphi_0 \cos \theta - \cos \varphi_0 \sin \theta \cos \varphi, \quad \alpha = t_l - t, \quad \sin t = \sin \theta \sin \varphi / \cos \delta,$

$$\cos t = (\cos \varphi_0 \cos \theta + \sin \varphi_0 \sin \theta \cos \varphi)/\cos \delta$$

(здесь $\varphi_0=61.7^\circ N$ — географическая широта Якутской установки, t_l — местное звездное время, t — всемирное время, долгота Якутской установки 129.4°E), были вычислены значения α , δ при (θ,φ) , $(\theta+\Delta\theta,\varphi)$, $(\theta-\Delta\theta,\varphi)$, $(\theta,\varphi+\Delta\varphi)$, $(\theta,\varphi-\Delta\varphi)$. Затем были найдены разности

$$\Delta\delta(\theta_{+}) = \delta(\theta, \varphi) - \delta(\theta + \Delta\theta, \varphi), \quad \Delta\delta(\theta_{-}) = \delta(\theta, \varphi) - \delta(\theta - \Delta\theta, \varphi),$$

$$\Delta\delta(\varphi_+) = \delta(\theta,\varphi) - \delta(\theta,\varphi + \Delta\varphi), \quad \Delta\delta(\varphi_-) = \delta(\theta,\varphi) - \delta(\theta,\varphi - \Delta\varphi)$$

и такие же разности $\Delta \alpha$. Разности $\Delta \alpha$, $\Delta \delta$ и есть ошибки величин α , δ , обусловленные ошибками измерений θ , φ . (Вычисление ошибок по разностям аналогично формальному подходу с вычислением соответствующих частных производных [27].)

Далее мы нашли разброс ошибок склонения и прямого восхождения, объединив ошибки следующим образом: из каждой пары вычисленных ошибок $\Delta\delta(\theta_+)$, $\Delta\delta(\varphi_-)$, $\Delta\delta(\varphi_+)$, $\Delta\delta(\varphi_-)$ были взяты максимальные значения $\Delta\delta(\theta)_{max}$, $\Delta\delta(\varphi)_{max}$ и найдена максимальная ошибка склонения

$$\Delta \delta_{max} = \left[\Delta \delta^2(\theta)_{max} + \Delta \delta^2(\varphi)_{max} \right]^{1/2},$$

из минимальных значений $\Delta \delta(\theta)_{min}$, $\Delta \delta(\varphi)_{min}$ была найдена минимальная ошибка склонения

$$\Delta \delta_{min} = \left[\Delta \delta^2(\theta)_{min} + \Delta \delta^2(\varphi)_{min} \right]^{1/2}$$

и точно так же

$$\Delta\alpha_{max} = \left[\Delta\alpha^2(\theta)_{max} + \Delta\alpha^2(\varphi)_{max}\right]^{1/2}, \quad \Delta\alpha_{min} = \left[\Delta\alpha^2(\theta)_{min} + \Delta\alpha^2(\varphi)_{min}\right]^{1/2}.$$

Направления прихода ливней с вычисленными ошибками и сейфертовские галактики с $z \le 0.0153$ в поле их поиска перечислены в табл. 1. (Галактики излучают слабые потоки в радио- и рентгеновском диапазонах.) Ошибки $\Delta\alpha$, $\Delta\delta$ в направлениях прихода якутских ливней, как правило, превышают 3°, и отличаются от ливня к ливню в несколько раз. Выясним, как отождествление источников зависит от величины ошибки.

2.2. Влияние ошибки в направлении прихода ливней на отождествление источников

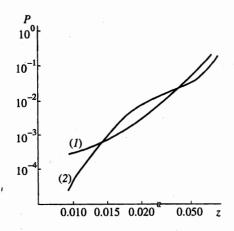
Для анализа мы взяли ливни Акено и AGASA [4,26] с $E < 10^{20}$ эВ, у которых ошибка в координатах прихода $\sigma_{sh} \leq 3^{\circ}$. Их координаты и сейфертовские галактики с z < 0.0092 в поле поиска (3 $\Delta \alpha$, 3 $\Delta \delta$) перечислены в табл. 2. Три ливня из табл. 2 — № 2-4, у которых в поле поиска не нашлось ни одной такой галактики, пришли из участков неба с галактической широтой $|b| \le 10^{\circ}$, т.е. заведомо попали в «зоны избегания» галактик. Поэтому мы рассмотрели две группы ливней: (1) — все ливни, (2) ливни, пришедшие из участков неба с $|b| > 10^\circ$. Число ливней K в (1) и (2) и число ливней N, у которых в поле поиска попала хотя бы одна галактика с z < 0.0092, приведено в табл. 3. Мы рассмотрели группы из K искусственных ливней, у которых координаты прихода определялись случайным образом, а ошибка в направлении прихода составляла $(\Delta\alpha, \Delta\delta) = 3, 4, 5, 6, 7^{\circ}$, и определили вероятности случайного попадания галактик с z < 0.0092 в поле поиска $3(\Delta \alpha, \Delta \delta)$ заданного числа ливней N так же, как в нашей работе [23]. Значения вероятностей приведены в табл. 3. Из нее следует, что величина ошибки в направлении прихода ливней влияет на отождествление источников. Вероятность случайного попадания галактик в поле поиска заданного числа ливней оказалась разной для разных каталогов галактик. Для каталогов [29, 30], которыми мы пользовались, эта вероятность мала, $P > 3\sigma$, у ливней (1), если ($\Delta\alpha, \Delta\delta$) $< 4^{\circ}$, у ливней (2) при $(\Delta \alpha, \Delta \delta) < 6^{\circ}$. Поэтому для отождествления источников предлагаемым методом необходимо отбирать ливни, у которых ошибка в направлении прихода ($\Delta lpha, \Delta \delta$) не превосходит 4°, а если ливни имеют $|b| > 10^{\circ}$, то 6°.

2.3. Отождествление источников по ливням с энергией $3.2 \cdot 10^{19} < E < 10^{20}$ эВ

Исходя из результатов разд. 2.2, мы включили в статистику (1) якутские ливни № 1, 3, 5, 12, в статистику (2) — якутские ливни № 1, 5, 7, 12. Новое число ливней K в (1) и (2) и вероятности случайного попадания галактик с $z \le 0.0092$ в поле поиска у N из них приведены в табл. 4. Эти вероятности малы, $P = 3\sigma - 3.70\sigma$, следовательно, данные якутской установки подтверждают отождествление источников, проведенное ранее по данным [26, 27].

3. ЛИВНИ С ЭНЕРГИЕЙ $3.2 \cdot 10^{19} < E \le 3 \cdot 10^{20}$ эВ

Данные о ливнях с $E \ge 10^{20}$ 9В приведены в табл. 5. В ней же перечислены сейфертовские галактики с красными смещениями $z \le 0.0174$, попавшие в поле поиска $(3\Delta\alpha,3\Delta\delta)$ вокруг оси ливня. Ливни № 1, 4, 5 табл. 5 могут быть включены в статистику (1) и (2). Число ливней K в получившихся группах и вероятности P случайного попадания галактик с $z \le 0.0092$ в поле поиска у N из них приведены в табл. 4. Величина вероятности зависит от каталога галактик, по которому проводилось отождествление, но в любом случае она мала: для ливней без отбора по галактической широте b имеем $P = (2.5-7.2) \cdot 10^{-4}$, для ливней с $|b| > 10^\circ$ имеем $P = 3.0 \cdot 10^{-5}-5.9 \cdot 10^{-4}$. Вероятности случайного попадания в поле поиска N из K ливней сейфертовских галактик с разными z показаны на рисунке. Из него следует, что выбирая в поле поиска галактики с $z \le 0.0174$, мы действительно выбираем те, у которых случайное совпадение координат с направлением частиц маловероятно.


Таблица 1 Направления прихода якутских ливней в экваториальных координатах [10], вычисленные ошибки в направлениях их прихода $\Delta \alpha$, $\Delta \delta$ и сейфертовские галактики с $z \leq 0.0153$ из [29, 30] в поле поиска ливней. У ливней № 3, 4, 6, 11 оси имеют $|b| \leq 10^\circ$, и они заведомо попадают в «зоны избегания» галактик

) i	Коорди	Координаты		бки	Сейфертовские галактики			
№ ливня	α°	δ°	Δα°	Δδ°	α δ	z	Каталог	
1	163.7	52.9	3.0-3.2	1.9	11 ^h 19 ^m 59.3°	0.0058	[29]	
					1129 + 533	.0.0036	[29, 30]	
2	270.5	67.6	8.4-8.8	1.4-1.6	1822 + 665	0.0153	[29]	
3	297.8	33.5	2.0-2.1	2.1	_ '		1	
4 5	342.9	65.8	7.7–8.1	1.4-1.6	_		}	
5	184.0	47.0	3.4–3.6	2.6-2.7	1129 + 533	0.0036	[29, 30]	
7					1153 + 554	0.0036	[29]	
-	į.				1155 + 536	0.0038	[29, 30]	
					1155 + 557	0.0041	[29]	
					1200 + 448	0.0023	[29, 30]	
			1		1203 + 477	0.0019	[29]	
					1203 + 529	0.003	[30]	
					1204 + 433	0.0028	[29]	
					1205 + 434	0.0034	[29, 30]	
~					1216 + 475	0.0020	[29, 30]	
[-	1		. 1248 + 413	0.0011	[29]	
6	335.2	51.0	3.9-4.3	2.4–2.6	,	-		
7	118.1	57.0	5.1–5.6	2.0-2.2	0645 + 609	0.0069	[29, 30]	
					0840 + 503	0.0112	[29, 30]	
			/	:	0849 + 515	0.0025	[29, 30]	
			[0851 + 589	0.0032	[29]	
8	235.4	79.8	10.7–16.9	2.6-3.1	1634 + 783	0.0046	[29, 30]	
9	69.0	74.9	7.5–8.9	1.6-1.9	0609 + 710	0.0141	[29, 30]	
10	92.5	374.0	5.7–6.8	2.1–2.2	0609 + 710	0.0141	[29, 30]	
11	314.8	57.8	5.4-5.9	2.1-2.3		<u>-</u>		
12	21.3	45.7	2.1	3.4	0106 + 354	0.0006	[29]	

В поле поиска ливней попадают, кроме сейфертовских галактик, лацертиды и радиогалактики. Вероятности случайного попадания этих объектов в поле поиска N из K ливней приведены в табл. 4. Значения P велики и по теории вероятностей попадания могут быть случайными.

4. ОБСУЖДЕНИЕ

Проведенное нами отождествление источников не согласуется с выводами работ [32, 33]. В [32] рассматривались те же ливни с $E \ge 10^{20}$ эВ, которые мы рассматривали в [25] и здесь. Однако в [32] было получено, что источниками частиц, инициировавших ливни, являются квазары с красными смещениями 0.3 < z < 2.2. Отождествляя

Вероятность случайного попадания сейфертовских галактик [29] с разными z в поле поиска N из K ливней в группах (1) и (2): K=22, N=17 при $z\leq 0.01$, N=19 при z>0.01, поле поиска $(3\Delta\alpha,\ 3\Delta\delta)<12^\circ;\ (2)-K=N=19$, галактическая широта оси ливней $|b|>10^\circ$, поле поиска $(3\Delta\alpha,\ 3\Delta\delta)<18^\circ$

Таблица 2 Направления прихода ливней Акено и AGASA с $3.2\cdot10^{19} < E < 10^{20}$ эВ [4, 26], принадлежность к группе и сейфертовские галактики с $z \le 0.0174$ в поле их поиска. Ливни пронумерованы нами. При поиске галактик предполагалось, что $(\Delta\alpha, \Delta\delta) \le 3^\circ$

N 6	Координатыα δ		Covers	Группа	Галакт	Carrena	
№ ЛИВНЯ			Ссылка	i pyiiia	αδ	z	Ссылка
1	01 ^h 09 ^m	20°	[4]	(1,2)	$01^{h}40^{m}$ 13.3°	0.003	[30]
		,			0124 + 133	0.0174	[29, 30]
2	01 42	71	[26]	(1)	_	_	_
3	03 30	70	[26]	(1)	-		_
4	05 20	20	[26]	(1)	-	_	<u> </u>
5	11 10	24	[26]	(1,2)	1137 + 321	0.0092	[29, 30]
	'				1137 + 172	0.0101	[29, 30]
6	11 12	57.8	[4]	(1, 2)	1122 + 546	0.0036	[29, 30]
7	11 27	57.3	[4]	(1,2)	1119 + 593	0.0058	[29]
8	13 25	- 16	[26]	(1,2)	1254 + 219	0.0013	[29, 30]
					1304 + 133	0.0091	[29]
9	13 40	35	[26]	(1,2)	1308 + 373	0.0036	[29, 30]
		·			1311 + 368	0.0032	[29, 30]
		,		,	1313 + 422	0.0020	[29]
		ļ			1351 + 337	0.0079	[29, 30]
,					1353 + 407	0.0089	[29]
10	14 00	50	[26]	(1,2)	1327 + 474	0.0018	[29, 30]
			1		1327 + 474	0.0022	[29]
	·		1.4		1403 + 539	0.0014	[29]
11	15 30	41	[26]	(1,2)	1524 + 418	0.0083	[29, 30]
12	18 44	47.4	[26]	(1,2)	1907 + 508	0.0080	[29, 30]
13	20 00	60	[26]	(1,2)	2036 + 659	0.006	[30]
14	21 50	28	[26]	(1,2)	2205 + 311	0.0041	[29, 30]
15	23 20	3	[26]	(1,2)	2302 + 120	0.0087	[29, 30]
					2331 + 096	0.0067	[29, 30]

Таблица 3 Вероятности P случайного попадания сейфертовских галактик с $z \le 0.0092$ в область поиска (3Δ α , 3Δ δ) у N из K ливней с 3.2 · $10^{19} < E < 10^{20}$ эВ [4, 26] в группах (1), (2) (в (1) K = 15, в (2) K = 12)

Группа	Вероятность Р										
	$(\Delta \alpha, \Delta \delta) = 3^{\circ}$	$(\Delta\alpha, \Delta\delta) = 4^{\circ}$	$(\Delta\alpha,\Delta\delta)=5^{\circ}$	$(\Delta\alpha, \Delta\delta) = 6^{\circ}$	$(\Delta \alpha, \Delta \delta) = 7^{\circ}$	$(\Delta\alpha, \Delta\delta) = 8^{\circ}$					
(1)* (2)* (1)** (2)**	$2.6 \cdot 10^{-4} < 4 \cdot 10^{-5} < 1.75 \cdot 10^{-3} < 7.0 \cdot 10^{-5}$	$6.7 \cdot 10^{-3}$ $8.0 \cdot 10^{-5}$ 0.02 $1.8 \cdot 10^{-3}$	$0.043 \\ 1.2 \cdot 10^{-3} \\ 0.012 \\ 2 \cdot 10^{-4}$	0.13 7.8 · 10 ⁻³ 0.048 1.3 · 10 ⁻³	0.23 0.036 0.12 6.7 · 10 ⁻³	0.23 0.11 0.20 0.023					

^{*} Поиск галактик проводился по каталогам [29, 30]; в (1) N = 15, в (2) N = 12.

Таблица 4

Вероятности P случайного попадания возможных источников в область поиска N из K ливней в группах (1), (2); (I) — ливни с $3.2 \cdot 10^{19} < E < 10^{20}$ эВ (якутские [10], Акено и AGASA [4, 26]), источники — сейфертовские галактики с $z \le 0.0092$; (II) — ливни с $3.2 \cdot 10^{19} < E \le (2-3) \cdot 10^{20}$ эВ (якутские [10], Акено и AGASA [4, 26], Хавера Парк [11]), источники — сейфертовские галактики с $z \le 0.0092$; (III) — те же ливни, что в (II), источники — радиогалактики из [31]

	(I)		(II)		(III)			(IV)				
Ливни	N	K	P	N	K	P	N	K	P	·N	K	P
(1)*	15		$2.4 \cdot 10^{-3}$			$7.2 \cdot 10^{-4}$		22	0.12	19	22	0.18
(2)*	16		$1.8 \cdot 10^{-3}$		19	5.9 · 10-4	18	19	0.086	19	19	0.65
(1)**	15		3.6 · 10-4			2.5 · 10-4		-	-			
(2)**	16	16	$2.5 \cdot 10^{-4}$	19	19	$3.0 \cdot 10^{-5}$	_		₁ 1	_	-	_

^{*} Поиск сейфертовских галактик проводился по [29, 30].

Из результатов табл. 4. следует, что основными источниками частиц с $3.2 \cdot 10^{19} < E \le (2-3) \cdot 10^{20}$ эВ являются сейфертовские галактики с $z \le 0.0092$, слабо излучающие в рентгеновском и радиодиапазонах.

возможные источники, авторы [32] рассматривали объекты в области среднеквадратичной ошибки вокруг оси ливня и оценивали вероятности случайного попадания объектов в эту область. Однако, как уже упоминалось, координаты частицы находятся в области среднеквадратичной ошибки с вероятностью только 66%. Возможные источники следует искать в области тройной ошибки вокруг оси ливня, где координаты частицы

^{**} Поиск галактик проводился только по [29]; в обеих группах N=10 для $\sigma_{sh} \leq 4^{\circ}, \ N=12$ для $\sigma_{sh} \geq 5^{\circ}.$

^{**} Поиск сейфертовских галактик проводился только по [29].

 $Tаблица \ 5$ Ливни с $E>10^{20}$ эВ и ближайшие сейфертовские галактики в поле их поиска. Ливни пронумерованы нами

П	Quantus of	Коорди	инаты	Сейфертовские галактики			
Ливень	Энергия, эВ	α	δ	α δ	z	Каталог	
.1 [11]*	$(1.20 \pm 0.10) \cdot 10^{20}$	$11^h 56^m \pm 12^m$	27 ± 2.8°	$11^h 37^m + 32.1^o$	0.0092	[29, 30]	
1		,		1217 + 295	0.0022	[29, 30]	
	, , ,			1223 + 338	0.001	[30]	
			-	1233 + 262	0.0037	[29]	
2 [11]*	$(1.05 \pm 0.08) \cdot 10^{20}$	$13^h 24^m \pm 34.8^m$	$71 \pm 2.5^{\circ}$	1205 + 654	0.0049	[29]	
				1235 + 744	0.0067	[29]	
				1339 + 679	0.0090	[29, 30]	
3 [12]	$3 \cdot 10^{20}$	$06^h 20^m \pm 24^m$	48(+5.2, -6.3)°	0645 + 609	0.0068	[29, 30]	
4 [4]**	$1.1\cdot 10^{20}$	18 ^h 42 ^m	48°	1907 + 508	0.0080	- , -	
5 [4]**	$2.1 \cdot 10^{20}$	01 ^h 15 ^m	21.1°	0140 + 133***	0.003	[30]	
				0124 + 189	0.0174	[29, 30]	

^{*} Ошибки $\Delta \alpha$, $\Delta \delta$ взяты из [32].

находятся с вероятностью 99.8%. Вероятность случайного попадания объектов в область среднеквадратичной ошибки на 2–3 порядка ниже, чем в область тройной среднеквадратичной ошибки. В работе [33] рассматривалось распределение по небу ливней с энергией $E \geq 4 \cdot 10^{19}$ эВ, зарегистрированных на установках Волкано Ренч, Хавера Парк, Сиднейской и Якутской. Авторам не удалось отождествить какие-либо внегалактические источники космических частиц. Анализируя распределение направлений прихода ливней по небу, авторы опирались на два предположения. Во-первых, для всех ливней область поиска источников составляла $\Delta \alpha \leq 3^\circ$, $\Delta \delta \leq 3^\circ$. Такое поле поиска по крайней мере в три раза меньше тройной ошибки координат для всех этих ливней. Во-вторых, предполагалось, что ядра активных галактик с z < 0.017, в частности сейфертовских, распределены по небу однородно. Однако распределение близких сейфертовских галактик, расположенных не далее 100 Мпк от нас (z < 0.025), неоднородно, как мы показали в [24,25].

Ни в одной из наших работ мы не рассматривали в качестве возможных источников взаимодействующие галактики, в которых по [19] могут существовать условия для эффективного ускорения частиц. Причина этого следующая. Отождествляя источники в [23, 25], мы вычисляли вероятности случайного попадания объектов — возможных источников в поле поиска ливней. Во всех рассмотренных выборках ливней эта вероятность оказалась мала только для сейфертовских галактик: $P > 3\sigma$. Взаимодействующими галактиками является большинство нормальных галактик [34], а их число в десятки раз больше числа активных ядер. Поэтому вероятность случайного попадания в поле поиска ливня нормальной галактики будет много больше, чем сейфертовской. В настоящее время затруднительно отбирать по наблюдательным данным нормальные галактики, в которых существуют условия [19] для достаточно эффективного ускорения

^{**} Ошибки ($\Delta \alpha$, $\Delta \delta$) = $\sqrt{2} \cdot 1.6^{\circ} \approx 2.3^{\circ}$.

^{***} Галактика попадает в поле поиска, если $\Delta \alpha = 2^{\circ}$, $\Delta \delta = 2.6^{\circ}$.

частиц.

5. ЗАКЛЮЧЕНИЕ

Основными источниками частиц, инициировавших ливни с энергиями $3.2 \cdot 10^{19} < < E \le 3 \cdot 10^{20}$ эВ, являются сейфертовские галактики с красными смещениями $z \le 0.0092$, слабо излучающие в рентгеновском и радиодиапазонах. Для галактических широт $|b| > 10^\circ$ вероятность случайного совпадения координат таких галактик с направлением прихода частиц составляет $P = 3 \cdot 10^{-5} - 5 \cdot 10^{-4}$ в зависимости от каталога галактик. (Для любых галактических широт до $b = 0^\circ$ эта вероятность также мала, $P = (2.5-7.2) \cdot 10^{-4}$.) Ошибка ($\Delta \alpha$, $\Delta \delta$) в направлении прихода ливней влияет на отождествление источников. Для отождествления необходимо отбирать ливни, у которых ошибка не превышает 4°. Если отбираются ливни с $|b| > 10^\circ$, то ошибка ($\Delta \alpha$, $\Delta \delta$) может достигать 6° .

Полученные здесь результаты могут быть проверены в исследованиях на наземных установках Акено и AGASA, Мушиный глаз, Хавера Парк, а также на новых (строящихся и обсуждающихся) гигантских установках, предназначенных для исследования ливней с энергией $E \ge 10^{20}$ эВ, которые будут иметь значительно лучшее угловое (до 0.2°) и энергетическое разрешение, таких как ШАЛ-1000, Telescope Array, HiRes, Pierre Auger Project, и на спутниках [35].

Я благодарна И. Е. Слепцову, любезно предоставившему горизонтальные координаты осей 12 якутских ливней.

Литература

- 1. В. С. Березинский, С. В. Буланов, В. Л. Гинзбург, В. А. Догель, В. С. Птускин, в сб. *Астрофизика космических лучей*, под ред. В. Л. Гинзбурга, Наука, Москва (1990).
- 2. М. Н. Дьяконов, Т. А. Егоров, Н. Н. Ефимов и др., Космическое излучение предельно высокой энереши, Наука, Сиб. отд., Новосибирск (1991).
- 3. T. Stanev, P. L. Biermann, J. Lloyd-Evans et al., Phys. Rev. Lett. 75, 3056 (1995).
- 4. N. Hayashida, K. Honda, M. Honda et al., Phys. Rev. Lett. 77, 1000 (1996).
- 5. J. Rachen, T. Stanev, and P. Biermann, Astron. and Astrophys. 273, 377 (1993).
- 6. F. W. Stecker, Phys. Rev. Lett. 80, 1816 (1998).
- Г. Т. Зацепин, В. А. Кузьмин, Письма в ЖЭТФ 4, 114 (1966).
- 8. K. Greisen, Phys. Rev. Lett. 16, 748 (1966).
- 9. M. M. Winn, J. Ulrichs, L. S. Peak et al., J. Phys. G: Nucl. Phys. 12, 653 (1986).
- B. N. Afanasiev, M. N. Dyakonov, V. P. Egorova et al., in Proc. of Intern. Symp. on Extremely High Energy Cosmic Rays: Astrophysics and Future Observations, ed. by M. Nagano, Tanashi, Tokyo, Japan (1996), p. 32.
- 11. A. Watson, in *Particle and Nuclear Astrophysics and Cosmology in the Next Millenium*, ed. by E. W. Kolb and R. D. Peccei, World Scientific, Singapore (1995), p. 126.
- 12. D. Bird, S. C. Corbato, H. Y. Dai et al., Astrophys. J. 441, 144 (1995).
- 13. M. Takeda, N. Hayashida, K. Honda et al., Phys. Rev. Lett. 81, 1163 (1998).
- 14. B. N. Afanasiev, M. N. Dyakonov, V. P. Egorova et al., in Proc. 24th ICRC, Rome (1995), v. 2, p. 756.
- 15. N. Hayashida, K. Honda, M. Honda et al., in *Proc. of Intern. Symp. on Extremely High Energy Cosmic Rays: Astrophysics and Future Observations*, ed. by M. Nagano, Tanashi, Tokyo, Japan (1996). p. 17.
- 16. А. В. Урысон, Письма в ЖЭТФ 65, 729 (1997).

- 17. А. В. Урысон, ЖЭТФ 113, 12 (1998).
- 18. Н. С. Кардашев, Б. В. Комберг, Частное сообщение (1998).
- 19. C. Cesarsky and V. Ptuskin, in *Proc.* 23rd ICRC, Calgary (1993), v. 2, p. 341.
- 20. V. Berezinsky and A. Vilenkin, Phys. Rev. Lett. 79, 5202 (1997).
- 21. V. Berezinsky, M. Kachelrieß, and A. Vilenkin, Phys. Rev. Lett. 79, 4302 (1997).
- 22. T. Totani, Astrophys. J. 502, L13 (1998).
- 23. А. В. Урысон, Письма в ЖЭТФ 64, 71 (1996).
- 24. А. В. Урысон, ЖЭТФ 113, 385 (1998).
- 25. А. В. Урысон, Изв. РАН. 63, 627 (1999).
- 26. N. Hayashida, K. Honda, M. Honda et al., in Proc. 22nd ICRC, Dublin (1991), v. 2, p. 117.
- 27. Дж. Сквайрс, Практическая физика, Мир, Москва (1971).
- 28. И. Е. Слепцов, Частное сообщение (1998).
- 29. В. А. Липовецкий, С. Н. Неизвестный, О. М. Неизвестная, Сообщения САО, вып. 55 (1987).
- 30. M. P. Veron-Cetty and P. Veron, ESO Scientific report, № 13 (1993).
- 31. H. Kühr, A. Witzel, and I. I. K. Pauliny-Toth, Astron. and Astrophys. Suppl. Ser. 45, 367 (1981).
- 32. G. R. Farrar and P. L. Biermann, Phys. Rev. Lett. 80, 1816 (1998).
- G. B. Khristiansen, G. V. Kulikov, G. G. C. Palumbo et al., in *Proc.* 25th ICRC, Durban (1997), v. 4, p. 201.
- 34. G. S. Wright, R. D. Joseph, N. A. Robertson et al., MNRAS. 233, 1 (1988).
- 35. in Proc. 25th ICRC, Durban (1997), v. 5.