ВЛИЯНИЕ ПЛАЗМОН-ФОНОННЫХ ВОЗБУЖДЕНИЙ НА КОЭФФИЦИЕНТ ОТРАЖЕНИЯ ОТ ПОВЕРХНОСТИ ГЕКСАГОНАЛЬНОГО КАРБИДА КРЕМНИЯ

А. В. Мельничук

Институт физики полупроводников Национальной академии наук Украины 252650, Киев, Украина

Поступила в редакцию 22 декабря 1998 г.

Проведено исследование коэффициента отражения $R(\nu)$ от поверхности монокристаллов SiC-6H при наличии связи длинноволновых оптических колебаний решетки с электронной плазмой. Впервые показано, что анизотропия свойств электронов и фононов в SiC-6H приводит к ряду особенностей спектра связанных колебаний и областей прозрачности. В частности, если ось кристалла лежит в плоскости поляризации падающего излучения ($0 < \theta < 90^\circ$), то при $30 \text{ cm}^{-1} \le \nu_{p\perp} < 320 \text{ cm}^{-1}$ в $R(\nu)$ появляются три, а при $\nu_{p\perp} \ge 320 \text{ cm}^{-1}$ — четыре области непрозрачности и прозрачности, отсутствующие в изотропной среде. Ширина этих областей зависит от концентрации электронов в зоне проводимости и от угла θ .

PACS: 63.20.-e

Отражение электромагнитных волн от поверхности полупроводников широко используется в науке и технике как для изготовления различных оптических приборов, так и для изучения особенностей энергетической и кристаллической структур вещества [1]. В работе [2] показано, что в одноосном полупроводнике спектр отражения имеет области пропускания и непропускания, число которых зависит от концентрации электронов и ориентации оптической оси кристалла С относительно его поверхности. Исследование изотропных структур при возникновении•связанных плазмон-фононных возбуждений методом спектроскопии ИК-отражения достаточно полно провели авторы [3].

Монокристаллы SiC-6H относятся к пространственной группе C_{6V}^4 ($P6_3mc$) и в отличие от ZnO характеризуются сильной анизотропией свойств плазменной подсистемы [4]. Экспериментальные спектры отражения от поверхности SiC-6H с большой концентрацией электронов впервые получены в работе [5]. В [6] методом модифицированного нарушенного полного внутреннего отражения в области возбуждения поверхностных плазмон-фононных поляритонов была получена поверхность отражения сильнолегированного SiC-6H. Авторами [7, 8] был изучен вопрос о влиянии анизотропии кристаллической решетки и эффективных масс электронов, коэффициентов затухания фононов γ_f и плазмонов γ_p на коэффициент отражения от поверхности монокристаллов SiC-6H в ИК-области спектра. Однако до настоящего времени в литературе отсутствовали данные о влиянии анизотропии плазмон-фононной подсистемы в SiC-6H на характер коэффициента отражения обыкновенной и необыкновенной волн.

В настоящей работе исследовалась частотная зависимость коэффициента отражения $R(\nu)$ от поверхности сильнолегированных монокристаллов карбида кремния (политип 6H) при наличии связи длинноволновых оптических колебаний решетки с плазменными колебаниями ν_p свободных носителей для различных ориентаций оптической оси кристалла ${\bf C}$ относительно его поверхности xy.

Экспериментальные спектры ИК-отражения в области частот 200–1400 см $^{-1}$ измерены при помощи спектрометра SPECORD M-80 и приставки для отражения с использованием эталонного зеркала. Спектры отражения записаны с поляризатором со степенью поляризации 0.98. Все измерения проводились при комнатной температуре. В работе использовались гексагональные монокристаллы SiC-6H размерами $5 \times 5 \times 0.5$ мм 3 с естественной поверхностью, протравленной в плавиковой кислоте в течение 15 мин. Концентрация электронов в c-зоне определялась путем измерения пропускания образцов при $E \perp C$ на длине волны $\lambda = 0.628$ мкм. Полученные данные хорошо согласуются с результатами измерений эффекта Холла для этих образцов.

Зависимость диэлектрической проницаемости от частоты $\varepsilon(\nu)$ в области плазмонфононного взаимодействия при учете затухания может быть представлена таким образом [4]:

$$\varepsilon_{\perp,\parallel}(\nu) = \varepsilon_{\infty\perp,\parallel} + \frac{\varepsilon_{\infty\perp,\parallel}(\nu_{L\perp,\parallel}^2 - \nu_{T\perp,\parallel}^2)}{\nu_{T\perp,\parallel}^2 - \nu^2 + i\nu\gamma_{f\perp,\parallel}} - \frac{\varepsilon_{\infty\perp,\parallel}\nu_{p\perp,\parallel}^2}{\nu(\nu + i\nu\gamma_{p\perp,\parallel})},\tag{1}$$

где $\varepsilon_{\infty\perp,\parallel}$ — компоненты тензора диэлектрической проницаемости поперек и вдоль оси кристалла C в пределе $\nu\to\infty$, $\nu_{T\perp,\parallel}$, $\nu_{L\perp,\parallel}$ — частоты поперечных и продольных оптических колебаний решетки, поляризованных поперек и вдоль оси кристалла. Расчеты коэффициента отражения от плоской поверхности «полубесконечного» одноосного полярного полупроводника в ИК-области спектра при неучете показателя поглощения (затухания) проведены с помощью приведенных в [1] формул:

$$R(\nu) = \left| \frac{1 - n(\nu)}{1 + n(\nu)} \right|^2,\tag{2}$$

где n — показатель преломления, который, как известно, связан с диэлектрической проницаемостью соотношением $n(\nu)=\sqrt{\varepsilon(\nu)}$. Показатель преломления SiC-6H имеет частотные интервалы, в которых $n(\nu)$ принимает чисто мнимые значения. В этих областях для рассматриваемой волны кристалл непрозрачен (полное отражение $R(\nu)=1$). Частоты, соответствующие особенностям данного уравнения, могут быть найдены из условия $\varepsilon(\nu)=0$.

Когда вектор напряженности электрического поля ${\bf E}$ перпендикулярен или параллелен плоскости, содержащей волновой вектор ${\bf K}$ и оптическую ось кристалла ${\bf C}$, в монокристаллах SiC–6H существуют поперечная и продольно-поперечная волны с показателями преломления n_\perp и n_\parallel соответственно.

При $\mathbf{E} \perp \mathbf{C}$, $\theta = 0,90^\circ$ (случай 1) обыкновенная волна является поперечной, θ — угол между осью кристалла и направлением распространения электромагнитной волны, оси x,y лежат на поверхности образца. Для поперечной волны показатель преломления равен

$$n_{\perp}(\nu) = \sqrt{\varepsilon_{\perp}(\nu)}.\tag{3}$$

Следует отметить, что показатель преломления поперечной волны не зависит от направления распространения. Вектор **E** в поперечной волне направлен вдоль оси y. Частоты нулей коэффициента отражения поперечной волны и так называемые частоты отсечек (частоты продольных плазмон-фононных возбуждений) $\Omega_{L\pm}$ ($\theta=0$) или $\nu_{L\pm}$ ($\theta=90^\circ$) в пренебрежении процессами затухания плазмонных и фононных колебаний

определим из формул (1)–(3) при $R(\nu)=0$ и $n_{\perp}^2=0$ соответственно:

$$\nu_{01,2} = \frac{1}{\sqrt{2\alpha_{\infty\perp}}} \left\{ \alpha_{0\perp} \nu_{L\perp}^2 \pm \left[\left(\alpha_{0\perp} \nu_{L\perp}^2 + \nu_{p\perp}^2 \right)^2 - 4\alpha_{\infty\perp} \nu_{T\perp}^2 \nu_{p\perp}^2 \right]^{1/2} \right\}^{1/2}, \tag{4}$$

где $\alpha_{0\perp} = 1 - 1/\varepsilon_{0\perp}$, $\alpha_{\infty\perp} = 1 - 1/\varepsilon_{\infty\perp}$; $\varepsilon_{0\perp}$ — значение статического тензора диэлектрической проницаемости решетки;

$$\Omega_{L\pm} = \frac{1}{\sqrt{2}} \left\{ \nu_{L\perp}^2 + \nu_{p\perp}^2 \pm \left[\left(\nu_{L\perp}^2 + \nu_{p\perp}^2 \right)^2 - 4 \nu_{T\perp}^2 \nu_{p\perp}^2 \right]^{1/2} \right\}^{1/2} \quad \text{при} \quad \theta = 0.$$
 (5)

Выражение для $\nu_{L\pm}$ получим, если в уравнениях (3) и, соответственно, (5) везде заменить знак \bot на \parallel . При $n_{\bot}=\infty$ имеет место резонанс $\nu_{R}=\nu_{T\bot}$. Падающая волна испытывает полное отражение в двух областях частот:

$$\nu < \Omega_{L-}, \quad \nu_{T\perp} < \nu < \Omega_{L+} \quad \text{при} \quad \theta = 0,$$

$$\nu < \nu_{L-}, \quad \nu_{T\parallel} < \nu < \nu_{L+} \quad \text{при} \quad \theta = 90^{\circ},$$
(6)

а между ними для рассматриваемой волны кристалл прозрачен. Коэффициент $R(\nu)$ быстро убывает от единицы до нуля и затем опять возрастает с увеличением частоты.

Наличие анизотропии в SiC-6H (согласно [9] для SiC-6H $\nu_{p\perp}=2.682\nu_{p\parallel}$) приводит к появлению новых нетривиальных особенностей в спектрах отражения. Так, при E \parallel C, $0<\theta<90^\circ$ (случай 2) в SiC-6H существует необыкновенная волна. Необыкновенная волна смешанная — не поперечная и не продольная, групповая и фазовая скорости не параллельны и существенно зависят от направления распространения волны. Коэффициент отражения определяется, как и в первом случае, из уравнения (2). Однако, как показано в [2], показатель преломления продольно-поперечной волны зависит от связи электромагнитной волны с фононной и плазмонной подсистемами одноосного полупроводника и с углом θ :

$$n_{\parallel}^{2} = \frac{a}{\nu^{2}(b+c)},$$

$$a = (\nu^{2} - \Omega_{L+}^{2})(\nu^{2} - \Omega_{L-}^{2})(\nu^{2} - \nu_{L+}^{2})(\nu^{2} - \nu_{L-}^{2}),$$

$$b = (\nu^{2} - \Omega_{L+}^{2})(\nu^{2} - \Omega_{L-}^{2})(\nu^{2} - \nu_{T\parallel}^{2})\frac{\sin^{2}\theta}{\varepsilon_{\infty\parallel}},$$

$$c = (\nu^{2} - \nu_{L+}^{2})(\nu^{2} - \nu_{L-}^{2})(\nu^{2} - \nu_{T\perp}^{2})\frac{\cos^{2}\theta}{\varepsilon_{\infty\perp}}.$$

$$(7)$$

В случае распространения вдоль ($\theta=0$, $n_{\parallel}^2=\varepsilon_{\perp}$) или поперек ($\theta=90^{\circ}$, $n_{\parallel}^2=\varepsilon_{\parallel}$) оси кристалла необыкновенная волна расщепляется на продольную и поперечную волны. Показатель преломления совпадает с (3) для поперечной волны с волновым вектором, направленным вдоль оси, и отличается лишь заменой знака \perp на \parallel в случае $\theta=90^{\circ}$. При остальных направлениях $0<\theta<90^{\circ}$ в кристалле существует продольно-поперечная волна, которая в отличие от таковой в изотропном случае имеет новые области прозрачности и непрозрачности. Это обстоятельство связано с тем, что при $0<\theta<90^{\circ}$ связь электромагнитных, плазменных и оптических колебаний приводит к появлению

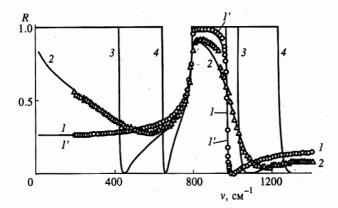
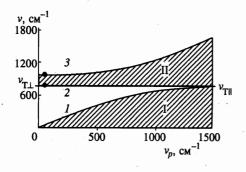



Рис. 1. Зависимости коэффициента отражения $R(\nu)$ ИК-излучения монокристаллов SiC-6H от частоты при Е \perp C, $\theta=0$. Эксперимент: о — образец SN-1, Δ — SL-4. Расчет: $1'-\nu_p=15$ см $^{-1}$, $\gamma_p=18$ см $^{-1}$, $\gamma_f=3$ см $^{-1}$; $2-\nu_p=740$ см $^{-1}$, $\gamma_p=830$ см $^{-1}$, $\gamma_f=12$ см $^{-1}$

связанных плазмон-фононных возбуждений, отсутствующих в указанных выше случаях. Число и области существования последних зависят как от концентрации электронов в зоне проводимости, так и от относительного размещения частот $\nu_{T\perp,\parallel}$; $\nu_{L\perp,\parallel}$; $\nu_{L\pm}$; $\Omega_{L\pm}$ [10].

На рис. 1 представлены зависимости экспериментальных и расчетных коэффициентов отражения от поверхности SiC-6H при $\mathbf{E} \perp \mathbf{C}$ и $\theta = 0$. Кружками (o) и треугольниками (Δ) показаны экспериментальные спектры отражения для нелегированного $(n_0 = 5 \cdot 10^{15} \text{ см}^{-3})$, образец SN-1) и сильнолегированного $(n_0 = 1 \cdot 10^{19} \text{ см}^{-3})$, образец SL-4) карбида кремния (политип 6H). Расчетные спектры ИК-отражения $R(\nu)$ (линии I, 3, 4) получены с помощью уравнений (1)–(3) в диапазоне от нуля до 1400 см $^{-1}$ для $\nu_{p\perp}=15,~550,~1000~{\rm cm}^{-1}$ при отсутствии затухания фононной и плазмонной подсистем. Нули коэффициента отражения для поперечной волны определены по формуле (4) и соответственно равны $\nu_{01} = 0.86$ (кривая 1); 442 (кривая 2); 655 см⁻¹ (кривая 3) для низкочастотного и $\nu_{02}=998;~1076;~1322~{\rm cm}^{-1}$ для высокочастотного минимумов. Положение высокочастотного минимума определяется более точно по сравнению с положением низкочастотного, так как пренебрежение затуханием начинает раньше сказываться при более низких частотах ИК-излучения. Кривые 1' и 2 рассчитаны с помощью уравнений, учитывающих вклад в затухание фононной и плазмонной подсистем монокристаллов SiC-6H [4, 7]. Сравнение расчетных спектров с экспериментальными при $\mathbf{E} \perp \mathbf{C}$, $\theta = 0$ позволило определить ν_p , γ_p , γ_f (см. подписи к рис. 1). На рисунке видно, что малые значения плазмонного γ_p и фононного γ_f затуханий в областях 0-800 и 990-1400 см⁻¹ практически не изменяют характер спектра $R(\nu)$ (кривые 1' и 1). Расчет не согласуется с экспериментальными точками в диапазоне 800-940 см⁻¹. Рассогласование расчетных спектров ИК-отражения с экспериментальными $R(\nu)$ в области 800-940 см⁻¹, как показал анализ, вызвано проявлением тонкого нарушенного слоя толщиной < 0.05 мкм. В этой области, как было показано нами в работе [11], ИК-излучение наиболее активно взаимодействует с приповерхностным слоем и глубина взаимодействия не превышает 1 мкм. Слабое рассогласование $R(\nu)$ для образца SN-1 в диапазоне 900-1000 см⁻¹ связано с влиянием на коэффициент отражения

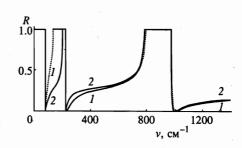


Рис. 2

Рис. 3

Рис. 2. Области прозрачности и непрозрачности в SiC_6H при $\mathbf{E} \perp \mathbf{C}$: $\theta = 0$: Ω_{L-} — кривая 1, $\nu_{T\perp} = 797$ см $^{-1}$ — линия 2, Ω_{L+} — кривая 3; $\theta = 90^{\circ}$: ν_{L-} — кривая 1, $\nu_{T\parallel} = 788$ см $^{-1}$ — линия 2, ν_{L+} — кривая 3. Точки — эксперимент (образец SN-1), $\theta = 0$

Рис. 3. Спектры $R(\nu)$ SiC-6H (образец SL-2) при **E** \parallel **C** для $\nu_{p\perp}=280$ см⁻¹. Кривая $1-\theta=30^\circ$, кривая $2-\theta=60^\circ$

колебаний плазмонной подсистемы. Значительно сложнее анализировать спектр отражения сильнолегированного SiC-6H при учете коэффициентов затухания плазмонов и фононов. Величина γ_p в SiC-6H соизмерима с плазменной частотой и даже больше ее. Сравнение спектров проведено методом наименьших квадратов при регистрации среднего по всем точкам квадратичного отклонения расчетного коэффициента отражения от экспериментального. Для образца SL-4 коэффициент затухания плазмонов получен методом дисперсионного анализа спектров отражения и равен $830 \, {
m cm}^{-1}$. Как видно (Δ и кривая 2), спектр отражения существенно изменяется практически во всей ИК-области, доступной для измерений. Проведенный нами математический эксперимент показал, что с возрастанием коэффициента затухания плазмонной подсистемы широкая полоса коэффициента отражения сужается так, что высокочастотный край полосы сглаживается и сдвигается в низкочастотную область. В спектрах $R(\nu)$ при $\gamma_{p\perp} \geq \nu_{p\perp} \approx \nu_{T\perp}$ полоса отражения отделена от области металлического отражения при $\gamma_p = 0$. Спектр $R(\nu)$ превращается в узкую полосу с резким максимумом в области «остаточных лучей» на частоте $\nu_{T\perp}$, коэффициент отражения в которой для SiC-6H равен 0.98. Наличие затухания фононной подсистемы приводит к уменьшению коэффициента отражения в области максимума «остаточных лучей». Учет коэффициента затухания оптического фонона для образца SL-4 проведено по методике, описанной в [7]. При $\gamma_f = 12~{\rm cm}^{-1}$ получено удовлетворительное согласование расчетного спектра (кривая 2) с экспериментальным (Δ) при $R_{max}(\nu) = 0.82$. С точностью до значения величины эффективной массы [7, 12] по методике, использованной ранее нами для ZnO [4], были определены подвижность и удельная электропроводность образцов SiC-6H типа SL-4, которые соответственно равны $\mu = 27 \text{ cm}^2/(\text{B·c}), \ \sigma = 250 \text{ Om}^{-1} \cdot \text{сm}^{-1}$. Представленные данные для μ и σ согласуются с подобными значениями, полученными для SiC-6H другими исследователями [12, 13].

На рис. 2 показаны области прозрачности и непрозрачности (заштрихованные I, II) при $\theta = 0$, 90° для монокристаллов SiC-6H с различной степенью легирования. Кон-

центрация электронов в карбиде кремния изменялась от 10^{15} до 10^{20} см $^{-3}$. Увеличение концентрации свободных носителей зарядов в этом диапазоне для SiC_6H приводит к увеличению низкочастотной и высокочастотной областей непрозрачности соответственно от нуля до $\Omega_{L-} \to \nu_{T\perp}$ (I) и от $\nu_{T\perp}$ до Ω_{L+} (II). При этом происходит смещение частоты ν_0 на 680 см $^{-1}$ для низкочастотной и на 490 см $^{-1}$ для высокочастотной областей. При концентрациях электронов $n_0 > 5 \cdot 10^{19}$ см $^{-3}$ монокристаллы SiC_6H, как видно на рисунке, непрозрачны практически во всей ИК-области. Точками показаны экспериментальные значения ширины области непрозрачности для образца SN-1 ($\Omega_{L+} - \nu_{T\perp} = 173.1$ см $^{-1}$). Расчетные данные хорошо согласуются с экспериментальными.

Вид спектра отражения $R(\nu)$ зависит от $n_0(\nu_p)$. Анизотропия эффективных масс электронов и кристаллической решетки в SiC-6H при $\mathbf{E} \parallel \mathbf{C},\ 0<\theta<90^\circ$ приводит к увеличению в спектрах ИК-отражения количества областей прозрачности и непрозрачности и к зависимости их количества от концентрации электронов в зоне проводимости. При $\nu_{p\perp}<30~\mathrm{cm}^{-1}$ имеются две области прозрачности и две области непрозрачности. С увеличением концентрации (30 $\mathrm{cm}^{-1}\leq\nu_{p\perp}<320~\mathrm{cm}^{-1}$) начинает проявляться еще одна пара областей непрозрачности и прозрачности за счет возникновения частоты резонанса и отсечки в первой области прозрачности (со стороны низких частот).

На рис. З изображены спектры отражения для легированного азотом карбида кремния (политип 6H) при Е \parallel С для $\theta = 30^{\circ}$ (кривая 1) и $\theta = 60^{\circ}$ (кривая 2). Расчет зависимости коэффициента отражения от частоты проведен по формуле (2) с учетом (7) при использовании данных для образца SL-2 с $n_0 = 1.4 \cdot 10^{18}$ см⁻³. Частоты отсечек и резонансные частоты для SL-2 представлены в табл. 1 и 2. При увеличении θ резонансная частота продольно-поперечной волны ν_{R1} возрастает от 134.9 см $^{-1}$ при $\theta=30^\circ$ до 200.6 см $^{-1}$ при $\theta = 60^{\circ}$. Нули коэффициента отражения определены с помощью ЭВМ при решении уравнения (4). При $\theta = 30^{\circ}$ имеем $R_{min}(\nu = 0)$ на частотах $\nu_{01} = 86$ см⁻¹, $\nu_{02} = 236 \text{ см}^{-1}, \ \nu_{03} = 1012 \text{ см}^{-1}$ (кривая 1), которые изменяют свои значения при увеличении угла θ до 60°: $\nu_{01} = 89$ см⁻¹, $\nu_{02} = 230$ см⁻¹, $\nu_{03} = 1003$ см⁻¹ (кривая 2). Три области непрозрачности в спектрах ИК-отражения проявляются соответственно в диапазонах $0-\nu_{L-}$, $\nu_{R1}-\Omega_{L-}$, $\nu_{R2}-\nu_{L+}$. Ширина областей прозрачности зависит от направления распространения электромагнитной волны, т.е. от угла θ , что связано с угловой зависимостью резонансных частот при постоянных частотах отсечки. Для SiC-6Н $\varepsilon_{\infty\perp}/\varepsilon_{\infty\parallel} < m_{\parallel}^*/m_{\perp}^*$ ($m_{\perp\parallel}^*$ — компоненты тензора эффективной массы электронов поперек и вдоль оси кристалла), поэтому ширина областей прозрачности при увеличении угла θ между осью кристалла и волновым вектором увеличивается. Область 3 для образца SN-2 начинается на частоте $\nu_{R1} = 134.9~{\rm cm}^{-1}$ при $\theta = 30^{\circ}$ и 200.6 см $^{-1}$ при $\theta = 60^{\circ}$ и заканчивается на частоте $\Omega_{L-} = 226.8 \text{ см}^{-1}$.

На рис. 4 представлены расчетные спектры ИК-отражения сильнолегированного SiC-6H при использовании параметров образца SL-4 с $\nu_{p\perp}=740~{\rm cm}^{-1}$ при $\theta=30^\circ$ (a) и 60° (б). При концентрации электронов $\nu_{p\perp}\geq 320~{\rm cm}^{-1}$ в спектрах отражения SiC-6H проявляется еще одна область непрозрачности и прозрачности во второй области прозрачности (со стороны высоких частот). Таким образом, максимальное количество областей непрозрачности в спектрах ИК-отражения для SiC-6H равно четырем (i=1-4); эти области отделены друг от друга областями прозрачности. Высокочастотные границы первых трех со стороны низких частот областей прозрачности ($n_{\parallel} \rightarrow \infty$, $R(\nu)=1$) совпадают с резонансными частотами продольно-поперечной волны (7) ($\nu=\nu_{R1,2,3}$),

						Таблица 1
Зависимост	и часто	т отсечки	продольно-	поперечной	волны от ν_p в	SiC-6H

Частота	SN-1		SL-2	SL-4		SL-8
$ \nu_{p\perp},\mathrm{cm}^{-1} $	15	100	280	740	1000	1950
$ \nu_{L-}, \text{cm}^{-1} $	3.0	.30.5	85.2	222.3	296.7	527.4
Ω_{L-} , cm ⁻¹	8.2	82	226.8	538.7	645.5	761.7
$\nu_{L^+}, { m cm}^{-1}$		964.4	966.0	977.9	990.2	1086.3
Ω_{L^+} , cm ⁻¹		971.8	983.9	1094.8	1234.7	2040.5

Таблица 2 Зависимость резонансной частоты продольно-поперечной волны от ν_p и θ в SiC-6H

θ, °	SL	2	SL-4			
	$\nu_{R1}, { m cm}^{-1}$	$\nu_{R2}, { m cm}^{-1}$	$ u_{R1},\mathrm{cm}^{-1}$	$ u_{R2},\mathrm{cm}^{-1}$	ν_{R3} , cm ⁻¹	
10	92.6	796.7	240.3	796.7	980.6	
30	134.9	794.8	345.0	794.8	1002.3	
60	200.6	790.3	489.5	790.3	1060.9	
85	226.0	788.1	537.4	788.1	1093.7	

определяемыми решениями бикубического уравнения

$$(\nu^2 - \Omega_{L+}^2)(\nu^2 - \Omega_{L-}^2)(\nu^2 - \nu_{T\parallel}^2)\frac{\sin^2\theta}{\varepsilon_{\infty\parallel}} + (\nu^2 - \nu_{L+}^2)(\nu^2 - \nu_{L-}^2)(\nu^2 - \nu_{T\perp}^2)\frac{\cos^2\theta}{\varepsilon_{\infty\perp}} = 0.$$
 (8)

Частоты ν_{R1} и ν_{R3} соответствуют низкочастотным и высокочастотным связанным продольно-поперечным плазмон-фононным возбуждениям и зависят от концентрации электронов в зоне проводимости и от угла θ . Частота ν_{R2} изменяется от $\nu_{T\perp}$ при $\theta \to 0$ до $\nu_{T\parallel}$ при $\theta \to 90^\circ$.

Полученные выше результаты свидетельствуют о том, что в SiC-6H происходит вырождение областей прозрачности и непрозрачности от двух при $\theta=0$, 90° к четырем при $0<\theta<90$ °. На рис. 4 видно, что спектр отражения для образца SL-4 имеет четыре отсечки на частотах продольных плазмон-фононных возбуждений и три резонанса на частотах продольно-поперечных плазмон-фононных возбуждений (табл. 1, 2). Нули коэффициента отражения определены с помощью ЭВМ и соответственно равны $\nu_{01}=225~{\rm cm}^{-1}, \, \nu_{02}=551~{\rm cm}^{-1}, \, \nu_{03}=984~{\rm cm}^{-1}, \, \nu_{04}=1143~{\rm cm}^{-1}$ при $\theta=30$ ° (рис. 4a) и $\nu_{01}=231~{\rm cm}^{-1}, \, \nu_{02}=543~{\rm cm}^{-1}, \, \nu_{03}=998~{\rm cm}^{-1}, \, \nu_{04}=1113~{\rm cm}^{-1}$ при $\theta=60$ ° (рис. 46).

На рис. 5 показаны области прозрачности и непрозрачности для сильнолегированного образца карбида кремния SL-4. Частоты отсечек $\Omega_{L\pm}$, $\nu_{L\pm}$ для определенного значения ν_p есть величины постоянные, которые не зависят от θ , т. е. области непрозрачности 1 и 2 остаются практически неизменными. Что же касается областей непрозрачности 3 и 4 (и областей прозрачности, которые находятся перед ними), то они при увеличении θ сужаются (расширяются), так как их начало совпадает с резонансной частотой, зависящей от θ . При возрастании θ происходит увеличение второй области

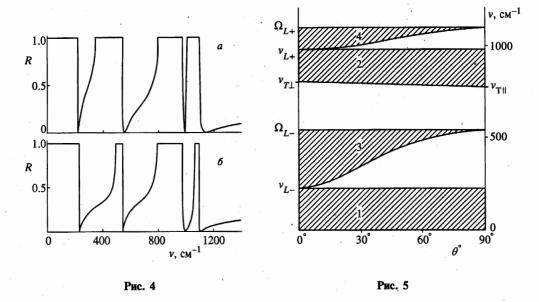


Рис. 4. Спектры $R(\nu)$ сильнолегированного SiC-6H (образец SL-4) при **E** || **C**: $a - \theta = 30^{\circ}$, $\theta - \theta = 60^{\circ}$

Рис. 5. Области прозрачности и непрозрачности в сильнолегированном SiC-6H (образец SL-4)

непрозрачности от $|\nu_{T\perp} - \nu_{L+}| = 180.9$ см $^{-1}$ при $\theta \to 0$ до $|\nu_{T\parallel} - \nu_{L+}| = 189.9$ см $^{-1}$ при $\theta \to 90^\circ$.

Экспериментально вырождение областей прозрачности и непрозрачности в легированных монокристаллах SiC-6H наблюдать не удалось, что связано со значительными коэффициентами затухания плазмонов ($\gamma_p > \gamma_T$) в наших образцах. Однако проведенный математический эксперимент показывает, что при уменьшении затухания плазмонной подсистемы ($\gamma_p < 0.5\nu_T$) в сильнолегированных монокристаллах SiC-6H ($n_0 > 2 \cdot 10^{18}$ см $^{-3}$) возможно экспериментальное обнаружение вырождения областей прозрачности и непрозрачности. В работе [9] методом нарушенного полного внутреннего отражения впервые на примере SiC-6H был получен экспериментальных спектр поверхностных плазмон-фононных поляритонов нового типа, существующий в третьей области непрозрачности (рис. 5).

Таким образом, в настоящей работе проведено исследование коэффициентов отражения от поверхности монокристаллов SiC-6H с разной степенью легирования. При наличии связи длинноволновых оптических колебаний с электронной плазмой в сильнолегированном SiC-6H (E \parallel C, $0 < \theta < 90^{\circ}$) впервые обнаружено расщепление областей прозрачности. Когда $30~{\rm cm}^{-1} \le \nu_{p\perp} < 320~{\rm cm}^{-1}$, в спектрах отражения проявляются три минимума, а когда $\nu_{p\perp} \ge 320~{\rm cm}^{-1}$ — четыре минимума и такое же количество областей прозрачности и непрозрачности (рис. 3, 4), что связано с проявлением в анизотропном карбиде кремния (политип 6H) новых связанных плазмон-фононных возбуждений. На рис. 5 показаны две новые, ранее неисследованные, области непрозрачности (3 и 4) в SiC-6H с $n_0 = 10^{19}~{\rm cm}^{-3}$, первая из которых находится в области $\nu_{L-} < \nu < \Omega_{L-}$

и обусловлена наличием свободных электронов, а вторая $\nu_{L+} < \nu < \Omega_{L+}$ возникает в результате экранирования поля электромагнитных волн оптическими колебаниями кристаллической решетки и размещена выше области «остаточных лучей». Увеличение концентрации электронов в зоне проводимости в SiC-6H приводит к расширению областей непрозрачности и к сужению областей прозрачности. Когда $\theta = 0$ и 90° при $\mathbf{E} \parallel \mathbf{C}$ в спектрах отражения имеются только две области прозрачности и непрозрачности, что согласуется с изотропным случаем $\mathbf{E} \perp \mathbf{C}$.

Литература

- 1. Ю. И. Уханов, Оптические свойства полупроводников, Наука, Москва (1977).
- 2. Л. Э. Гуревич, Р. Г. Тарханян, ФТП 6, 1895 (1972).
- 3. В. А. Кизель, Отражение света, Наука, Москва (1973).
- E. F. Venger, A. V. Melnichuk, L. Yu. Melnichuk, and Yu. A. Pasechnik, Phys. Stat. Sol. (b) 188, 823 (1995).
- М. А. Ильин, А. А. Кухарский, Е. П. Рашевская, В. К. Субашиев, ФТТ 13, 2478 (1975).
- 6. А. В. Мельничук, Поверхность 7, 76 (1998).
- 7. А. В. Мельничук, Ю. А. Пасечник, ФТТ 34, 423 (1992).
- 8. F. Engelbrecht and R. Helbig, Phys. Rev. B 48, 15698 (1993).
- 9. А. В. Мельничук, Ю. А. Пасечник, ФТТ 40, 636 (1998).
- 10. А. В. Мельничук, Л. Ю. Мельничук, Ю. А. Пасечник, ЖТФ 68(1), 58 (1998).
- А. В. Гончаренко, А. В. Мельничук, Ю. А. Пасечник, А. А. Шилов, Деп. в УкрНИИНТИ 834, 18 (1991).
- 12. H. Harima, S. Nakachima, and T. Uemura, J. Appl. Phys. 78, 1996 (1995).
- 13. Карбид кремния, под ред. Г. Хениша и Р. Роя, Мир, Москва (1972).