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Poisson-Lie T-duality in quantum N = 2 superconfonnal Wess--Zumino-Novikov­
Witten models is considered. The Poisson-Lie Т -duality transfonnation rules of те super­
Кac-Moody algebra currents are found from те conjecture that, as in те classical case, те 
quantum Poisson-Lie Т -duality transfonnatiori is given Ьу an automorphism which interchanges 
те isotropic subalgebras ofthe underlying Мanin triple in one ofthe chiralitysectors ofthe model. 
It is shown that quantum Poisson-Lie Т -duality аси оп the N = 2 super-Virasoro algebra 
generators of the quantum modeIs as а mirror symmetry аси: in one of те chirality sectors it is а 
trivial transfonnation while in another chirality sector it changes те sign оС те и (I) current and 
interchanges те spin-3j2 currents. А generalization оС Poisson-Lie Т -duality Cor те quantum 
Кazama-Suzuki models is proposed. It is shown that quantum Poisson-Lie Т -duality аси in 
these models as а mirror symmetry also. 

PACS: 11.25 Hf, 11.25 Рт 

1. INТRODUCI10N 

Target-space (Т) dua1ities in superstring theory relate backgrounds with different geometries 
and are symmetries of the underlying conformal field theory [1,2]. 

The mirror symmetry [3] discovered in superstring theory is а specia1 type of Т -duality. 
At the level of conformal field theory it can Ье formulated as an isomorphism between two 
theories, amounting to а change ofsign ofthe U(1) generator and an interchange ofth.e-spin-3/2 
generators of the leftmoving (or rightmoving) N = 2 superconformal a1gebra. 

Mirror SY11Щ1еtry has mostly been studied in the context of Calabi-Уаu superstring 
compactification. Important progress has been achieved in this direction in the last few years, 
based оп the ideas of toric geometry [4]. In particиlar, in Ref. [5] toric geometry mirror рап 
constrиction was proposed. Though it seems quite certain that pairs of Са1аЫ-Уаu manifolds 
constrиcted Ьу these methods are mirror, one needs to show that the proposed pairs correspond 
to isomorphic conformal field theories,to prove that they are indeed mirror. Progress in this 
direction was made in [6], but а complete argumentS' has yet to Ье carried out. In fact, the 
on1y rigorously established example ofmirror symmetry, the Greene-Plesser constrиction [7], 
is based оп the tensor products of the N = 2 minimal models [8]. Por а review of mirror 
symmetry and toric geometry methods in Са1аЫ-Уаu superstring compactifications see the 
lectures of Greene [9]. 

Recently, Strominger, Уаu, Zaslow [10] related mirror symmetry in superstring theory to 
the quantum Abelian Т -dua1ity in fibers of torica1y fibrated Calabi-Уаu manifolds. 
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ТЬе Poisson-Lie (PL) Т -duality, recently discovered Ьу Кlimcik and Severa in their 
excellent work [11], is а generalization of АЬеНаn and non-АЬеНаn T-dualities [12-14]. This 
generalized duality is associated with two groups forming а Drinfeld double [15], and the duality 
transformation exchanges their roles. Маnу aspects of these ideas Ьауе Ьееn developed in 
Refs. [16-26]. In particular, in [26] it was shown that PL T-duality in the classical N = 2 
superconformal WZNW (SWZNW) and Kazama-Suzuki models is а mirror duality. It is 
reasonable to expect that PL Т -duality in the quantum versions of these models will Ье а rnirror 
dualityalso. Moreover, it is tempting to conjecture that PL Т -duality is аn adequate geometric 
structure underlying rnirror symmetry in superstring theory. Motivated Ьу this we propose а 
quantization of PL Т -duality transformations in the N = 2 SWZNW and Kazama-Suzuki 
models. 

Quantum equivalence among PL Т -duality related O'-modelswas studied perturbatively 
in [27] and [22], and it was shown that PL dualizability is compatible with renormalization at 
1 loop. In particular it was shown in [22] that 1-100p beta functions for the coupling and the 
parameters in the two simplest examples of PL Т -duality related mode1s are equivalent. This 
allows us to suggest that their equivalence extends beyond the classical level with appropriate 
quantum modifkation of PL Т -duality transformations rules. 

In the present note the PL Т -duality transformation rules of the fields in quantum N = 2 
SWZNW mode1s will Ье found starting from the conjecture that as in the classical case, quantum 
N = 2 SWZNW models are PL self-dual and the PL Т -duality transformation is given Ьу аn 
automorphism ofthe super-Kac-Moody algebra in the rightmoving sector. ТЬеn we obtain PL 
т -duality transformation rules using the Кnizhnik-Zamolodchikov equation, Ward identities 
and а quantum version of the classical formula which relates the generators of rightmoving 
super-Кас-Moody algebra to its PL Т -duality transformed. We show that the generators of 
the N = 2 super-Virasoro algebras transform under PL Т -duality like а rnirror duality: the и (1) 
current changes sign and the sрin-З/2 currents permute. Thus, the results are in agreement 
with the conjecture proposed in [28] that rnirror symriletry сап Ье related to а gauge symmetry 
(automorphism) of the self-dual points of the moduli space of the N = 2 superconformal 
field theories (SCFТs) (for the N = О version of this conjecture see [29]). ТЬеn we consider 
quantum PL Т -duality in the Kazama-Suzuki models and propose а natural generalization of 

. the quantum PL Т -duality transformation. We show that as in the SWZNW models quantum 
PL т -duality in the Kazama-Suzuki models is а mirror duality also. 

ТЬе structure of the paper is as follows: In section 2 we briefly review PL Т -duality 
in the classical N = 2 SWZNW model following [26]. In section 3 we describe Manin 
triple construction of the quantum N = 2 SWZNW models оп the compact groups and 
obtain the PL Т -duality transformation rules of the quantum fields. We show that PL 
т -duality transformation is given Ьу аn automorphism of the underlying Manin triple which 
permutes isotropic subalgebras of the triple. ТЬеn we obtain transformation rules of the 
rightmoving N = 2 super-Virasoro algebra generators. In section 4 we present (Ье Manin 
triple construction of the Кazama-Suzuki models. We show that they сап Ье described as 
(М anin triple)j(M anin subtriple)-cosets. We define quantum PL T-duality transformation 
in the Kazama-Suzuki models as the subset of the transformations of the numerator triple 
which stabilizes the denominator subtriple. ТЬеn we easily find transformation rules of the 
rightmoving N = 2 super-Virasoro algebra generators of the coset. At the end of the section 
PL т -duality in the N = 2 rninimal models considered briefly as ал example. 
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2. POISSON-LIE T-DUALIТY AND MIRROR SYMMETRY IN ТНЕ CLASSICAL N - 2 
SUPERCONFORМAL WZNW MODELS 

In this section we briefly review PL Т -duality in the classical N = 2 SWZNW models, 
following [25,26]. 

We pammeterize the super world-sheet Ьу introducing the light сопе coordinates z± and 
Grassman coordinates 0± (we use the N = 1 superfield formalism). The genemtors of the 
supersymmetry and covariant derivatives satisfying the standard relations are given Ьу 

(1) 

Тhe superfield of the N = 2 SWZNW model 

(2) 

takes values in а compact Lie group G so that i18 Lie algebm g 18 endowed with ап ad-invariant 
nondegenerate inner product (,). The action of the model is given Ьу 

and possesses manifest N = 1 superconformal and super-Кac-Moody symmetries [30]: 

8a.G(z+, х_, 0+, 0_) = a+(z_, 0+)G(z+, z_, 0+, 0_), 

8а _ G(z+, z_, 0+, 0_) = -G(z+, z_, 0+, 0_)a_(z+, 0_), 

G-18,.G = (G-l€+(Z_)Q+G), 

8,_аа- 1 = c(z+)Q_GG- 1, 

where а± are g-valued superfields. 

(3) 

(4) 

(5) 

An additional ingredient demanded Ьу the N = 2 superconformal symmetry is а complex 
structure J оп the finite-dimensional Lie algebra of the model which is skew-symmetric 'with 
respect to the inner product (, ) [31-33]. That is, we should demand that the following equations 
ье satisfied оп g: 

J2 = -1, 

(Jx, у) + (х, Jy) = О, (6) 

[Jx, Jy] - J[Jx! у] - J[x, Jy] = [х, у] 

for апу elements х, у in g. It is clear that the corresponding Lie group is а complex manifold 
with left (or right) invariant complex structure. In the following we shall denote the real Lie 
group and the real Lie algebra with the complex structure satisfying (6) Ьу the раш (G, J) and 
(g, J) respectively. 

The complex structure J оп the Lie algebm defmes the second supersymmetry 
transformation [31] 
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(G-1Оry+G)а "" 1}+(z_)(J1 )'t(G- 1D+G)Ь, 

(Ory_GG-1)а = 1}_(Z+)(Jr)'t(D_GG- 1 )Ь, 
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(7) 

where J1, Jr are the left invariant and right invariant complex structures оп G which couespond 
to.the complex structure J. 

The notion of Manin triple is closely related to а complex structure оп а Lie algebra. Ву 
definition [15], а Manin triple (g, g+, g_) consists of а Lie algebra g with nondegenerate invariant 
inner product (,) and isotropic Lie subalgebras g± such that the vector space g = g+ ЕВ g_. 

With each pair (g, J) one сап associate the complex Manin triple (glC, g+, g_ ), where glC 
is the complexification of g and g± are ±i eigenspaces of J. Moreover, it сап Ье proved that 
there exists а one-to-one couespondence between а complex Manin triple endowed with an 
anti-linear involution which conjugates isotropic subalgebras r : g± -+ g'f and а real Lie algebra 
endowed with an ad-invariant nondegenerate inner product (,) and complex structure J which 
is skew-symmetric with respect to (,) [32]. The conjugation сап Ье used to extract а real [оun 
from а complex Manin triple. 

Now we have to consider some geometric properties ofthe N = 2 SWZNW models closely 
related to the existence of complex structures оп the groups. We shall follow [25]. 

Let us ТlX some compact Lie group with the left invariant complex structure (G, J) and 
consider its Lie algebrn with the complex structure (g, J). Тhe complexification glC of g has the 
Manin triple structure (glC, g+, g_ ). The Lie group version of this triple is the double Lie group 
(GIC, G+, G_) [34-36], where the exponential subgroups G± couespond to the Lie algebras g±. 
The real Lie group G is extracted from its complexification with the help of conjugation r (it 
wi1l Ье assumed in the following that r is the heunitian conjugation) 

(8) 

Each element 9 Е GIC from the vicinity G1 of the unit element from GIC admits two 
decompositions: 

(9) 

Taking into account (8) and (9) we conclude that the element 9 (9 Е G1) belongs to G iff 

(10) 

These equations mean that we сап parameterize the elements of 

(11) 

Ьу the elements ofthe complex group G+ (or G_), i.e., we сап introduce complex coordinates 
(they are just matrix elements of 9+ (or 9_» in the strat C1• 

То generalize (9), (10) one has to consider the set W (which we shall assume in the following 
to Ье discrete and finite) of classes G+ \ GIC /G_ and choose а representative w for each class 
[w] Е W. It gives us the stratification of GIC [35]: 

. (12) 

[w]EW [w]EW 

There is а second stratification: 
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(13) 
[wlEW [wlEW 

We shall assume, in the following, that the representatives w have Ьееn chosen to ье unitary: 

(14) 

It allows us to generalize (9) as follows: 

-1 - --1 9 = wg+g_ = wg_g+ , (15) . 

where 

g+ Е G~, 9_ Е G~ (16) 

and 

(17) 

In order for the element 9 to belong to the real group G the elements 9±,fH from (15) 
must satisfy (10). Thus, the formulas (10), (15) define the mapping 

(18) 

In а similar way оnе сап define the mapping 

ф~ : G~ -t Cw == Gw n G. (19) 

In [25,26] the following statements were proved. 
1) The mappings (18) are holomorphic and define the natural (holomorphic) action ofthe 

complex groupG+ оп G; the set W parameterizes the G+-orbits Cw . 

2) The (G, J)-SWZNW model admits PLsymmetry [11,37], with respect to G+-action, 
so that we mау associate with each extremal surface G+(z+, z_, 8+, 8_) С G+, of the model 
а mapping (<<Noether charge») V_(z+, z_, 8+, e_)from the super world-sheet into the group 
G_. The pair (G+(z+, z_, 8+, 8_), V_(z+, z_, е+, е_» сап Ье lifted into the the double GC: 

(20) 

Moreover, the surface (20) сап Ье rewritten in the form 

(21) 

Here G(z±,8±) С G is а solution or'the G-SWZNW model and the superfield Н_ is given 
Ьу the solution of the equation 

(22) 

where (1+)- is g_-projection ofthe conservation current I+ = G-1D+G ofthe model. 
3) With the appropriate modifications the аЬоуе statements are true also for the 

mappings (19) and G_-action оп G. Thus, оnе сап represent the surface (20) in the «dual» 
. parameterization [11] 
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where О(ч, е±) is the dual solution ofthe G-SWZNW model and the superfield Н+ is given 
Ьу the similar equation 

where <1+)+ is the g+-projection of the dual conserved current i+ == 0-1 D+O. 
4) Under PL T-duality 

t: G(ч,е±) -t О(ч,е±) = G(ч,е±)Н(z+,е_), 

where 

the conserved rightmoving current 1+ transforms as 

t: (1+)- -t <1+)+, (1+)+.-t <1+)-, 

while the conserved leftmoving current 1_ == D_GG-1 transforms identically: 

(24) 

(25) 

(26) 

(27) 

(28) 

Moreover, the classical rightmoving N = 2 super-Virasoro algebra maps under PL T-duality 
as follows [26]: 

t : ~± -t t'f, Т ± iaK -t Т 1= iaK, (29) 

where ~± are the spin-3/2 currents, Т is the stress-energy tensor, and K,is the U(1) current, 
while the leftmoving N = 2 super-Virasoro algebra maps identically. Thus, PL T-duality in 
the classical N = 2 SWZNW models is а mirror duality. 

3. POISSON-LIE T-DUALIТY AND MIRROR SYMMETRY IN ТНЕ QUANТUM N = 2 
SUPERCONFORМAL WZNW MODELS 

We start with the Manin triple construction of the N = 2 Virasoro algebra generators of 
the quantum SWZNW model оп the group (G, J) [32,33,38]. 

Let us specify ап orthonormal basis 

(30) 

in the Мaniп triple (gC, g+, g_), so that {Еа} is а basis in g+, and {Еа } is а basis iq 9 _. The 
commutation relations and Jacoby identity in this basis take the form 

[Еа,ЕЬ] = ПЬЕС, 

[Еа , ЕЬ ] = f~bEc, 
[Еа,Еь] = ПСЕС - ПСЕс , 

16 

(31) 



ЖЭТФ, 1999, 116, выn. 1(7) Тhe quantum Poisson-Lie T-dua/ity ... 

f abjdc + fbcfda + fcafdb = О de de de , 

f:bfdc + ftcfda + f:afdb = О, 
f a fbm - fa fbm - fb fam + fb fam = fmfab 
тс d md с тс d md с cd т' 

Let us introduce the matrices 

вь = f fCb + fCfb 
а с а са' 

АЬ = fd fbc 
а ас d . 

(32) 

(33) 

Let ja(z),ja(z) Ье the generators ofthe affine Кас-Мооду algebra ?/', corresponding to the 
f1хед basis {Еа, Еа }, so that the currents ja generate the subalgebra g+ and the currents 
ja generate the subalgebra 9_ (we shall omit in the following the super-world-sheet indices 
±, keeping in mind that we are in the rightmoving sector). The singular operator product 
expansions (OPEs) between these currents are the following: 

1 
зa(z)jb(w) = -(z - wГ2'2k(Еа, ЕЬ) + (z - W)-l ПЬГ(W) + reg, 

1 
ja(z)jb(w) = -(z - w)-2'2k(Еа, Еь) + (z - wг1 f~bjc(w) + reg, (34) 

1 
зa(z)jb(w) = -(z - w)-2'2(qбg + k(Ea,Eb» + (z - wг1UьсjС - fbCjc)(w) + reg, 

where k(x, у). denotes the Ki11ing forrn for th.e vectors х, у of gC. Let фа(z), фа(z) Ье free 
ferrnion . currents which have the following singular О PEs: 

(35) 

Then the N = 2 Virasoro superalgebra currents and the central charge are given Ьу [31-33,38] 

(36) 

( 2ВЬ ) 2 К = --;f - б~ : фафь : -q(fсjС - Гjс), 

т = -t : (jaja + jaja) : -~ : (дфаФа - фадфа) :, 

с = 3 ( d _ 2:~) . (37) 

The set of currents (36) сап Ье combined into the supemelds 

± 1 + ( 1 ) г = -~ + е т -,r. -дК. J2 '2' 
(38) 
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so that the energy-momentum super-tensor is given Ьу the sum 

1 + _ 1 ( 2 
Г=2(Г +г )=-q: DI,I):+3q2 :(I,:{I,I}:):. (39) 

Here 1 denotes Lie aIgebra valued super-Кас-Moody currents of the affine superaIgebra g: 

I a = _ Лфа + 8 (ja + (~Hc : фь фс : + f:b : Фь фс :) ) , 

I a = - JIФа + 8 (ja + (~f~c : фьфс : + f~b : фЬфс :) ) . 

(40) 

We now propose а qшщtum version of the PL T~duaIity transformation. Perhaps the 
most comprehensive way to find PL Т -duality transformation rиles for the quantum fields of 
the ~оdеI is to quantize canonically the Sfetsos canonicaI transformations for PL Т -duаIitу 
related a-mоdеIs [21] and then define and soIve the quantum version of the equations (22), 
(24), (26). Though developing this approach for the N = 2 superconformaI field theory is an 
important problem and worth soIving, it is beyond our reach at the present moment. 

Instead we deterrnine the quantum counterpart of the mapping (25) as an automorphism 
of the operator a1gebra of the quantum fields, defined Ьу right multiplication Ьу the rightmoving 
matrix-vaIuеd function H(Z), which impIies that N= 2 SWZNW modeI is PL self-dual. We 
propose а very simple way to find the matrix elements of Н using super-Кас-Moody Ward 
identities and the Кnizhnik-Zamolodchikov equation. 

In the N = 1 superfield forrnaIism an arbitrary conformaI superfield is defined Ьу the 
following OPEs [39]: 

Iа (ZI)РЛ(Z2) = Zi;I/2 Еа РЛ(Z2) + reg, 

Iа (ZI)РЛ(Z2) = Zi;I/2 ЕаРЛ(Z2) + reg. 
(41) 

Here Еа, Еа denote the generators of the glC in the representation with the highest weight Л, 

where the conformaI dimension д is given Ьу 

(43) 

and we have used the standard notations for even and odd world-sheet super-iпtеrvаIs between 
а pair of points Zi = (Zi, 8д, i = 1,2: 

so that 

Z n+1/2 _ zn _ '71 
12 - 12812, n Е ILJ. 

We postulate the quantum version of the formula (25): 
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(46) 

which is the quantum counterpart of (25) (here and in what fol1ows the leftmoving coordinate 
dependence of the fields will Ье omitted for simplicity). It fol1ows from the Sugawara 
formula (39) and the OPEs (41), (42) that the conformal superfield FЛ(Z) ofthe model satisfies 
the Knizhnik-Zamolodchikov equation [39] 

(47) 

which is а quantization of the classical relation 1 = а- 1 DG. In view of (46) the dual field 
FЛ satisfies the sirnilar equation 

~DFЛ(Z) = - : FЛ1: (Z) =:...: FЛн-1IН: (Z) + ~FЛН-1DН(Z). (48) 

Let us go back for а moment to the classica1 сме and consider Eqs. (22), (24), and (26). 
Using them we сап write 

Ав its quantum version wepropose 

fJ..FЛН-1DН(Z) = -2: Fл(i+ - H-1I-Н): (Z). 
2 

Тhe substitution (50) converts (48) into 

: р\1- - 1+) : (Z) =: FЛ(н-1(I+ - I-)Н) : (Z). 

(49) 

(50) 

(51) 

Using the left-invariant сотрleх structure J оп the group G опе сап rewrite it in the form 

: FЛ(JЕпd(Н)J1) : (Z) =; FЛJ ; (Z), (52) 

where we have introduced the notation End(H)x = Н xH- 1, Х Е gC and we imply that End(H) 
belongs to the group of super-Kac-Moody a1gebra automorphisms. Тhe equation (52) means 
that End(H) interchanges the isotropic suba1gebras ofthe Manin triple because it anticommutes 
with the сотрlех structure J. 

Ву virtue of (52) eq. (48) takes the form 

fJ..FЛН-1DН(Z) =: FЛ«Епd(н-1)JЕпd(Н)J - 1)1) : (Z). 
2 

(53) 

. Using super-Kac-Moody Ward identities [39] it is ему to see that (53) decaysinto the system 
of equations 

H-1DH=0, 

Епd(н-1)JЕпd(Н)J - 1 = О. 

Its solution is given Ьу the constant matrix anticommuting with J: 

DH=O, 

JEnd(H) + End(H)J = О. 
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In the orthonorrnal basis we have chosen, аnу matrix which anti-commutes with J should have 
the forrn 

(56) 

where h is аn arbitrary complex matrix (the bar denotes complex conjugation). Let us denote 
Ьу Aut(g, J) the group of automorphisms of g which commute with J. It is clear that 

End(H) = (~ ~) (57) 

is а solution of (55). Неnсе each solution of (55) should have the forrn: 

End(H) = (~ ~) (~ ~), (~ ~) Е Aut(g, J). (58) 

In view of (52) End(H) should Ье also аn automorphism of the algebra g. It imposes оп фе 
matrix m the relation 

(59) 

Тhe next condition we should demand is t2 = 1 (that is, PL T-duality is аn involution). It 
gives the second relation for т: 

тСЬт- =,;:с 
Ьа иа · (60) 

Therefore the set of PL Т -duality transforrnations in the N = 2 superconforrnal WZNW model 
оп the group manifold G is given Ьу the set of matrices (58) satisfying (59), (60). Неnсе, under 
the quantum PL T-duality the currents (40) transforrn as 

or in components, 

t: 'Фа _ mаЬ'Фь, ja _ mabjb, . _·Ь 

За - таЬ] . 

(61) 

(62) 

Taking into account (36), (59), and (62) we find the PL T-duality transformation ofthe N = 2 
Virasoro superalgebra currents: 

t : };± _ };'F, 

t:k_-к, Т-Т. 
(63) 

Notice that, as in the classical сме, PL T-duality acts in the leftmoving sector as аn 
identity transforrnation. Therefore we тау conclude that quantum PL Т -duality in the N = 2 
superconforrnal WZNW models is а mirror duality and. has а geometric realization which is 
given Ьу PL G±-holomorphic action оп the target space of the model. 

Here а remark is in order. In таnу examples ofthe N = 2 SWZNW models оп the compact 
groups (ВU(3), ВU(2) х u (1) , ... ) the transforrnations (61) coincide with Weyl ref1ections. 
In these cases mirror symmetry was interpreted Ьу the authors of [28] as а gauge symmetry. 
Тhey presented also а contradictory example, ВU(2) х SU(2)-SWZNW model, where the Weyl 
ref1ections failed to give mirror symmetry. It follows from our forrnula (61) that in this example 
mirror symmetry is given Ьу аn external automorphism of the Lie algebra su(2) х su(2). This 
example illustrates the general picture: PL Т -duality is given Ьу аn automorphism (internal or 
external) which interchanges the isotropic subalgebras of the underlying Manin triple. 
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4. POISSON-LIE T-DUALIТY AND MIRROR SYМMETRY 
IN QUANТUM КAZAМA-SUZUКI MODELS 

In this section we consider PL Т -duality in Kazama-Suzиki models. Kazama and Suzuki 
have studied [40]· the conditions under which ап N = 1 superconformal coset model сап have 
ап extra supersymmetry, giving rise to ап N = 2 superconformal model. ТЬеп the N = 2 
superconformal coset theories were classified more accurately in [41]. Their conclusion сап Ье 
reformиlated as follows. Suppose the Manin triple (gC, g+, g_) associated with the pair (g, J) 
has а Manin subtriple (Ь, Ь+, Ь_), that is, Ь± С g± are subalgebras ofg± such that h == Ь+ EIlh_ 
is а subalgebra of gC and 7 : Ь+ _ Ь_. N otice that the Manin subtriple specified above defines 
(with the help of the involution 7) а pair (k, J) such that kC = h and k С g. 

Assume that the basis (3О) is chosen so that the subbases 

{Ei,i = 1, ... ,dh }, 

{Ei, i = 1, ... , dh } 

are bases in the subalgebras Ь+ and Ь_, respectively. Let us consider а vector subspace 

generated (over С) Ьу the vectors 

{Е"', а = dh + 1, ... ,d}, {Е"" а = dh + 1, ... ,d}. 

ТЬе Manin triple construction of the Kazama-Suzuki models is given Ьу the following. 
Proposition. Suppose the isotropic subspaces 

are Lie subalgebras. ТЬеп the сuпепts 

+ _ 2 (.1''''' 1 f'Y . • 1."'.1./3.1. .) ~C" - Jёj 'Р З", + 2 "'/3' 'Р 'Р 'Р'У' , 

where 

j a = j!;'Y, j - j'Y С'" = jAaj", + fA ja", 
, а - а'У' /3 а/3 а /3 ' 

Uk = J'k - j/3k'" ' . • 1,/3.1._ .',. и - з' + j/3 . • 1,"'.1. . 'Р 'P~ k - k ka . 'Р 'Р{3" 

satisfY the OPEs of the N = 2 super-Virasoro algebrawith the central charge 
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(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 
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(71) 

This is just the N = 2 extension [42] of the Goggard-Kem-Olive construction formulated 
in terms of Manin triples and сап Ье checked Ьу direct calculations. 

The Kazama-Suzuki model based оп the coset G jK сап Ье obtained from the SWZNW 
model оп the group G Ьу gauging ап anomaly-free subgroup К [43]. In view ofthe Manin triple 
construction (68), (71) this implies classical1y that the currents corresponding to the Manin 
subtriple (Ь, Ь+, Ь_) shoи1d vanish: 

(72) 

In quantizing the theory canonically опе should impose in some way such constraints оп physical 
states. We impose 

Ii (Zl)Ф(Z2) = reg, 

ЦZl)Ф(Z2) = reg, 
(73) 

that is, the physical states of the coset are the highest vectors of the trivia1 h-representation. 
Under PL T-duality (61) the set of constraints (73) will transform, in general, into ап 

other set of constraints giving another coset model. Therefore we should define PL Т -duality 
transforrnations in the Kazama-Suzuki model as the subset of (58)-(60) which stabilizes the 
set (73), or equivalently, as the subset which stabilizes the Manin subtriple (Ь, Ь+, Ь_). Taking 
into account this condition and using (61) we obtain PL T-duality transformation rиles for the 
currents (68) of the N = 2 super-Virasoro a1gebra, 

t . 1;± -+ 1;'1' 
. св cs' 

(74) 

which are sirnilar to (63). It is clear that PL Т -duality in the leftmoving sector is given Ьу the 
identity transformation. 

Let us consider ап example ofthe Кazama-Sиzuki model based оп the coset И (2) j (И (1) х 
хU(1» (the N = 2 minima1 model). The complexification ofu(2) is the Lie algebra gl(2,C). 
In this case the commutation relations (31) in the orthonorrnal basis (3О) are given Ьу 

[ЕО,Е1 ] = Е1 , 

[Ео ,Е1 ] = Е1 , (75) 

[Е1 , Е1 ] = _ЕО + Ео . 

The isotropic suba1gebras g+ and g_ of the complex Manin triple are generated Ьу the vectors 
ЕО , Е1 and Ео , Е1 respectively. The currents of the super-Kac-Moody algebra 91(2, С) are 
characterized Ьу the fol1owing OPEs 

I a(Zl)Ib(Z2) = Z-u 1/ 2 f: b IC(Z) + reg, 

I a(Zl)Ib(Z2) = Z-u 1/ 2 f~blc(Z) + reg, 

I a(Zl)Ib(Z2) = - Zi2 1 ~bb + Z-u 1 / 2 (fьJс - fЬc I c) + reg, 
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where а, Ь, {: = О, 1 and the structure constants are given Ьу (75). The Manin subtriple defining 
our coset model is given Ьу 

(77) 

Thus, the Manin subtriple corresponds to the N = 2 U(1)2-SWZNW model which is described 
Ьу the pair of scalar сотрlех free superfields XO(Z), Xo(Z) with obvious OPEs 

(78) 

The currents of the super-Kac-Moody algebra 91(2, С) сап Ье realized in terrns of the fields 
XO(Z), Xo(Z) and super-parafermions SI(Z), SI (Z) [44]: 

1° = vq DXo Lo = vq DXo 
2 ' 2 ' 

1 . 1 (1 ХО») 1 = ~S ехр - vq(Xo - , . ( 1 о) 11 = ~SI ехр vq(Xo - Х) . 

(79) 

The super-parafermion OPEs are deduced from the OPEs (76), (78) and the nul1-vector relation 
in the trivial su(2)-representation. 

The most general PL T-duality transformation in U(2)~SWZNW model is given Ьу 

1° -+ 10, 10 -+ 1°, 

11 -+ ехр(iф)11 , 11 -+ ехр(-iф)11 , 
(80) 

where Ф is an arbitrary real number. We see that the constraints transform into itself. From 
these formulas we easily find the PL Т -duality transformations of the parafermions of the coset 

SI -+ ехр(iФ)SI, SI -+ exP(-iф)SI. (81) 

Thus, the PL T-duality transformation acts in the U(I)2-subspace of the U(2)-SWZNW 
model as the usual R -+ I/R T-duality (at the self-dual point), while the PL T-duality 
transformation (81) corresponds to the axial-vector duality of the coset SU(2)/U(1) [29] (to 
see this it is enough to recover the leftmoving constraints). 

It is clear that there is а direct generalization ofthis example to the coset models G/U(1)r, 
where r is the dimension of the maximal torus of the group G. The PL Т -duality transformation 
will act оп the maximal torus as an Abelian R -+ 1/ R T-duality (at the self-dual point), 
while in the N = 2 Kazama-Suzuki model it will act as an axial- vector duality [45]. In 
the non-Abelian coset moqels the PL Т -duality transformation rules of the fields are given Ьу 
the non-Abeliangeneralization of the axial-vector duality via [46]. In principle they сап Ье 
found using the non-Abelian generalization of the super-parafermions (79). Some aspects of 
this construction in the поп supersymmetric case сап Ье found in [47]. 

Thus, in summary, we conclude that quantum PL T-duality in the Kazama-Suzuki 
-models is а mirror duality also. 

5. CONCLUSION 

In this work we have considered the PL Т -duality transformation in quantum N = 2 
superconformal WZNW and Кazama-Suzuki models. The PL Т -duality transformation rules 
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in the quantum N = 2 SWZNW models are found using the Manin triple construction of the 
N = 2 SWZNW models, the Кnizhnik-Zamolodchikov equation, Ward identities, and the 
conjecture that, as in the classical case, PL Т -duality is given Ьу constant automorphisms 
of the rightmoving super-Кас-Moody algebras of the models which interchange the isotropic 
subalgebras of the underlying Мaniп triples. We have shown that in these models PL Т -duality 
is а mirror duality. We have thus given а geometric realization ofthemirror symmetry in these 
models. Notice also that our results are in agreement with the conjecture proposed in [28] 
that mirror symmetry сап Ье considered as а gauge symmetry (whiф is extended in some cases 
Ьу the external automorphisms) of the self-dual points of the moduli space of the N = 2 
superconformal field theories. 

We have given Manin triple construction of the Kazama-Sиzиki models, representing 
them as (М anin triple)j(M anin subtriple)-cosets. Ву means of this representation we 
defined PL Т -duality transformations in the Kazama-Sиzuki models as the subset of PL Т­
duality transformations of the пumеПltоr triple which stabilize the denominator triple. It was 
shown that, thus defmed, PL Т -duality is а mirror duality also. An interesting ореп problem 
is to find the corresponding geometric picture of PL Т -duality and mirror symmetry in the 
classical Kazama-Suzuki models. 

Our results are useful in discussing Calabi-Уаu superstring compactifications and allow us 
to conjecture that PL Т -duality is ап adequate geometric structure underlying mirror symmetry. 
The extension of our results to theGepner construction ofsuperstring уасuа [48] (see also [49]) 
would Ье а test of the conjecture. 

Another interesting problem is to quantize the equations (22), (24) and determine the 
quantum version of (21) and (23). Moreover, their solution is important in the context of 
quantum PL Т -duality and mirror symmetry; it mау Ье usefиl also in discussing Т ':'duality for 
ореп strings and D-branes оп curved backgrounds and will Ье helpfиl in «quantization» of the 
existing treatments [17, 18]. 

This work was supported in part Ьу grants INTAS-95-IN-RU-690, CRDF RPI-277, 
RFBR 96-02-16507. 
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