ОСОБЕННОСТЬ ФАЗОВОЙ p–T-ДИАГРАММЫ ОРГАНИЧЕСКОГО ПРОВОДНИКА (ET) $_4$ Hg $_3$ I $_8$

А. В. Корнилов^{аb}, А. П. Кочкин^а, Р. Н. Любовская^c, Р. Б. Любовский^{c*}, В. М. Пудалов^{ab}

 Институт физики высоких давлений Российской академии наук 142092, Троицк, Московская обл., Россия

> ^b Физический институт им. П. Н. Лебедева 117924, Москва, Россия

 Институт проблем химической физики Российской академии наук 142432, Черноголовка, Московская обл., Россия

Поступила в редакцию 21 сентября 1998 г.

В диапазоне давлений до 75 кбар и интервале температур 4.2–360 К исследована проводимость монокристаллов органического проводника (ET)₄Hg₃I₈ (ET — бис(этилендитио)тетратиафульвален). Обнаружено два фазовых перехода первого рода при комнатной температуре при давлениях 2.75 и 6.7 кбар. Экспериментально построена фазовая p-T-диаграмма переходов первого рода. Необычный вид фазовой границы (медленный монотонный рост температуры перехода с dT/dp = 4 град/кбар, сменяющийся в окрестности точки p_0 = 6.5 кбар, T_0 = 324 K резким падением) анализировался с помощью теории Ландау фазовых переходов второго рода. Анализ не только подтвердил гипотезу о существовании фазового перехода второго рода вблизи этой точки, но и привел к удовлетворительному согласию с наблюдаемой линией переходов первого рода.

1. ВВЕДЕНИЕ

Большинство низкоразмерных органических проводников (солей) интересно тем, что малые воздействия (температура, давление, магнитное поле) могут оказывать значительное влияние на их поведение и свойства. Результатом таких воздействий являются фазовые превращения с возникновением новых состояний. Как правило, это переходы второго рода, при которых скачок испытывают первые производные энтропии или объема. Этим переходам соответствует возникновение волн зарядовой или спиновой плотности в системе носителей заряда, переходов порядок-беспорядок или металлдиэлектрик, которые зачастую конкурируют с появлением сверхпроводимости [1, 2]. Значительно реже низкоразмерные органические проводники претерпевают переходы первого рода, при которых скачок испытывают первые производные основных функций состояния (термодинамического потенциала, свободной энергии и т.д.). Переходы первого рода в изучаемых соединениях характеризуются наличием гистерезиса в зависимости от давления или температуры и являются структурными переходами

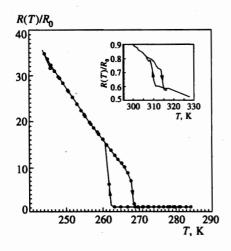
^{*}E-mail: rustem@icp.ac.ru

металл-диэлектрик [3] (как, например, в соли MEM(TCNQ)₂, где MEM — метилэтил-морфолиний, TCNQ — тетрацианхинодиметан), полупроводник-полупроводник [4] (в соли MTPP(TCNQ)₂, где MTPP — метилтрифенилфосфоний) или металл-металл [5] (в (BEDO-TTF)₂ReO₄·H₂O, где BEDO-TTF — бис-(этилендиокси)тетратиафульвален). Целенаправленный синтез органических проводников на основе ET и TMTSeF (тетраметитераселенфульвален) позволяет получать соли, в которых можно наблюдать все эти состояния.

Одним из наиболее интересных для исследования семейств являются соли состава $\mathrm{ET_4Hg_{3-\delta}X_8}$, где $\mathrm{X}=\mathrm{Cl}$, Br , I и, соответственно, $\delta=0.22,\,0.11,\,0$ [6]. Соль состава $(\mathrm{ET})_4\mathrm{Hg_{2.78}Cl_8}$ является органическим металлом при атмосферном давлении во всем диапазоне температур. С ростом давления она становится при низких температурах полупроводником, а при p=12 кбар переходит в сверхпроводящее состояние с $T_c=1.8$ K [7]. Соль состава $\mathrm{ET_4Hg_{2.89}Br_8}$ является сверхпроводником с $T_c=4.3$ K при атмосферном давлении. Для нее характерно необычное поведение T_c при изменении давления ($dT_c/dp>0$), и она становится диэлектриком при p>25 кбар [8]. Перечисленные соли изоструктурны и имеют несоизмеримые по аниону и катиону подрешетки. Третья соль этого семейства, ($\mathrm{ET})_4\mathrm{Hg_3I_8}$, значительно отличается от двух предыдущих как по строению, так и по свойствам. При атмосферном давлении и комнатной температуре она является полупроводником, который при T=260 K испытывает переход первого рода в диэлектрическое состояние [9].

В данной работе мы изучали фазовую диаграмму соли $(ET)_4Hg_3I_8$ при давлениях до 26 кбар и температурах 4.2–360 К путем измерения электросопротивления. При комнатной температуре измерения сопротивления проведены до давления 75 кбар.

2. ЭКСПЕРИМЕНТ


Кристаллы соли $(ET)_4Hg_3I_8$ были получены электрохимическим окислением ET в тетрагидрофуране в присутствии электролита $(Bu_4N)_2Hg_3I_8$. Кристаллическая структура $(ET)_4Hg_3I_8$ состоит из катион-радикальных слоев, образованных стопками из двух независимых молекул ET, и слоев аниона $Hg_3I_8^{2-}$. Атомы ртути находятся внутри тетраэдров I_4 , при этом заселенность каждой позиции ртути составляет 0.5.

Проводимость, измеренная при комнатной температуре в плоскости проводящего слоя ab, для разных партий образцов соответствует 0.3-2 (Ом см) $^{-1}$. Проводимость, измеренная в поперечном направлении, соответствует анизотропии ~ 10³, обычно характерной для низкоразмерных органических проводников. В экспериментах использовались кристаллы одной партии, причем отдельные измерения на образцах из других партий не выявили заметных отклонений в наблюдавшейся фазовой диаграмме. Для исследования проводимости в зависимости от давления использовались несколько аппаратов разных типов. Измерение проводимости при давлении до 75 кбар и при комнатной температуре осуществлялось в ячейке типа тороид из литографского камня [10]. Для температурных измерений этот тороид помещался в аппарат типа беличье колесо [10], который позволял фиксировать давление на кристалле до 26 кбар (±2 кбар) и охлаждать до гелиевых температур. Температурные измерения в диапазоне 4.2-360 К при давлениях до 15 кбар были выполнены в камере высокого давления типа поршеньцилиндр [11]. Давление в этой камере измерялось с помощью манганинового датчика с точностью до 0.03 кбар, температура измерялась с помощью термопары Сu-CuFe с точностью до 0.5 К.

Построение фазовой диаграммы проводилось следующим образом: давление фиксировалось при комнатной температуре, после чего измерялось сопротивление в зависимости от температуры. По регистрируемому скачку сопротивления при охлаждении как наиболее четко выраженному (см. рис. 1) определялась точка фазового перехода с одновременным измерением давления по манганиновому датчику.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Температурная зависимость сопротивления монокристалла (ET)₄Hg₃I₈, измеренная вдоль оси **b** при атмосферном давлении, показана на рис. 1. Видно, что при $T=260~{\rm K}$ соль испытывает фазовый переход полупроводник–диэлектрик. При этой температуре сопротивление скачком увеличивается на 1–1.5 порядка. Энергия активации выше температуры перехода соответствует $E_1=500~{\rm K}$ и $E_2=5000~{\rm K}$ ниже его. Этот переход является переходом первого рода с гистерезисом $\sim 9~{\rm K}$. На рис. 2 показана зависимость сопротивления монокристалла (ET)₄Hg₃I₈ от давления, измеренная в камере типа поршень—цилиндр. Видно, что при увеличении давления в камере сопротивление кристалла дважды изменяется скачком, при 2.75 и 6.7 кбар, что говорит о возможном существовании трех разных фаз в этом образце. При снижении давления заметны два гистерезиса ширинами $< 0.1~{\rm u}~0.25~{\rm kбаp}$. На вставке к рис. 2 приведена зависимость проводимости монокристалла, измеренная до давления 75 кбар при комнатной температуре с помощью аппарата типа тороид из литографского камня. С ростом давления проводимость постепенно насыщается, как это характерно для большинства органических проводников, и при 75 кбар увеличивается приблизительно в 18 раз. Столь небольшое

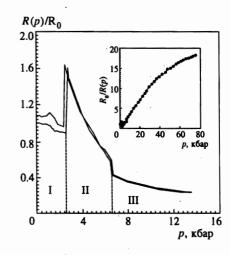


Рис. 1

Рис. 2

Рис. 1. Температурная зависимость сопротивления монокристалла (ET)₄Hg₃I₈ при атмосферном давлении. Вставка: вид гистерезиса для фазового перехода I \leftrightarrow II при $p\approx 3.9$ кбар и T=310 К

Рис. 2. Зависимость сопротивления и проводимости (вставка) монокристалла (ET)₄Hg₃I₈ от давления при комнатной температуре

Puc. 4

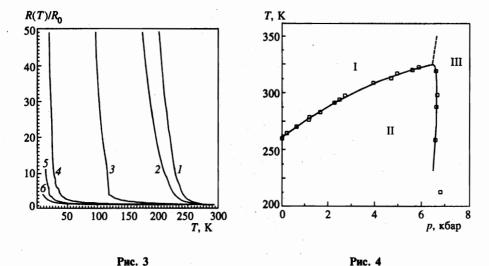


Рис. 3. Температурные зависимости сопротивления, измеренные при давлениях 4 (кривая 1), 6 (2), 12 (3), 16 (4), 22 (5) и 26 (6) кбар

Фазовая p-T-диаграмма для соли (ET)₄Hg₃I₈. Точками указаны эксперименталь-Рис. 4. ные данные, сплошные кривые — результат приближения, описанный в тексте. Штриховая линия — граница между фазами I и III, полученная из расчетов

возрастание проводимости в органическом проводнике при таком высоком давлении говорит о довольно плотной упаковке молекул этой соли. Следует отметить, что существует другая модификация этой же соли, в которой отсутствует фазовый переход под давлением, а проводимость с ростом давления увеличивается при 75 кбар в 300 раз.

Температурные измерения сопротивления (рис. 3) показывают, что в фазе, которая возникает при p > 6.7 кбар и которая является полупроводниковой по характеру проводимости, с ростом давления величина запрещенной зоны уменьшается, так что не исключен переход этой фазы в металлическое состояние при давлениях в области 30 кбар.

Экспериментально найденные точки переходов изображены на рис. 4. Видно, что фазовая граница монотонно зависит от давления вплоть до точки с координатами $p_0 =$ = 6.5 кбар и $T_0 = 324$ K, после чего появляется резкий изгиб, и далее фазовая граница идет вниз по температуре практически вертикально.

При нормальном давлении и температуре $T = 260 \text{ K в соли } (ET)_4 \text{Hg}_3 \text{I}_8$ происходит фазовый переход первого рода с обычной формой гистерезиса шириной $T\approx 9~{
m K}$ и сильным изменением сопротивления на границе перехода (рис. 1). С ростом давления переход, наблюдаемый по кривым R(T), быстро смещается вверх по температуре, а скачок сопротивления монотонно уменьшается по высоте (вставка к рис. 1) и размывается при давлении $p_0 = 6.5$ кбар и температуре $T_0 = 324$ K, т.е. в точке, где dT/dp обращается в нуль. Гистерезис при этом уменьшается, что, возможно, говорит об уменьшении скачка объема.

Из рис. 2 видно, что в этой соли при комнатной температуре помимо перехода между фазами I и II, который происходит при p = 2.75 кбар, имеет место еще один переход при p = 6.7 кбар между фазой II и предполагаемой фазой III. Исследование

границы перехода между фазами II и III по кривым R(T) в области давлений 6.5–9 кбар показало, что эта граница с ростом давления резко идет вниз по температуре до значения p=6.7 кбар, где $dT/dp \to -\infty$, а затем возвращается в область меньших давлений и температур. Скачок на кривой R(T) в этой области также имеет гистерезис, что говорит о переходе первого рода.

Такой необычный вид фазовой p–T-диаграммы позволяет считать, что фазы I и III не тождественны друг другу, в связи с чем мы предполагаем, что между ними существует фазовый переход второго рода, граница которого начинается в тройной точке с координатами $p_0=6.5$ кбар и $T_0=324$ К и уходит вверх по температуре. При измерении R(T) при высоких температурах нам не удалось найти различия между этими фазами, так как никаких скачков сопротивления на этих кривых не наблюдалось.

4. АНАЛИЗ ФАЗОВОЙ ДИАГРАММЫ

Как правило, влиянием перехода второго рода на равновесие фаз вблизи границы перехода первого рода можно пренебречь. Это, однако, не так в случае, когда скачки энтропии и объема при переходе первого рода малы, что не противоречит значениям величин наклона кривой dT/dp при p < 6.5 кбар.

Поэтому для интерпретации наблюдавшейся кривой фазовых переходов первого рода $I \leftrightarrow II$ и (предположительно) $II \leftrightarrow III$ можно попытаться воспользоваться теорией Ландау фазовых переходов второго рода, что, как оказывается, приводит не только к правильному качественному, но также и удовлетворительному количественному согласию с результатами эксперимента и позволяет с большой долей уверенности утверждать, что линия фазовых переходов второго рода между фазами I и III действительно существует.

Для определенности предположим (что подтверждается видом полученной кривой), что фаза I является симметричной (в смысле теории Ландау) (рис. 4), а фаза III — ее несимметричной модификацией (с ненулевым параметром порядка η).

Химический потенциал несимметричной фазы есть [12]

$$\mu_3 = \mu_1 + A\eta^2 + B\eta^4 + \dots, \tag{1}$$

причем B>0, а для A вблизи линии переходов второго рода справедливо разложение

$$A(p,T) = a(T - T_0) + \alpha(p - p_0), \tag{1'}$$

так что из уравнения A(p,T)=0 получается зависимость температуры перехода $I \leftrightarrow III$ вблизи тройной точки от давления:

$$T_c(p) = T_0 - (\alpha/a)(p - p_0).$$
 (1")

После минимизации μ_3 в (1) по η [13] получим

$$\eta^2 = -A/2B$$
, $\mu_3 = \mu_1 - A^2/4B$.

Равновесие фаз I и II определяется равенством химических потенциалов: $\mu_1(p,T) = \mu_2(p,T)$; дифференцирование дает уравнение Клапейрона–Клаузиуса и наклон фазовой границы:

$$\frac{dT}{dp} = \frac{v_{12}}{s_{12}}.$$

Здесь $s_{12} = s_1 - s_2$, $v_{12} = v_1 - v_2$ — разности соответственно удельных энтропии и объема. Для перехода $II \leftrightarrow III$ получаем

$$\mu_2(p,T) = \mu_3 = \mu_1(p,T) - A^2/4B$$

а уравнение Клапейрона-Клаузиуса в этом случае приобретает вид

$$\frac{dT}{dp} = \frac{v_{12} - \alpha A/2B}{s_{12} + aA/2B}.$$

Это уравнение решается при заданных (в окрестности T_0) наклонах кривых для переходов $I \leftrightarrow II$ и $I \leftrightarrow III$:

$$t'_0 = \frac{v_{12}}{s_{12}}, \quad t'_c = \frac{dT_c(p)}{dp} = -\frac{\alpha}{a}.$$

Введя переменные $T - T_0 = t$, $p - p_0 = x$, приводим это уравнение к виду

$$t' \equiv \frac{dt}{dx} = \frac{t'_0 + t'_c(t - t'_c x)/T_m}{1 + (t - t'_c x)/T_m},$$
(2)

где $T_m = 2Bs_{12}/a^2$.

Поскольку скачок теплоемкости при переходе второго рода, как известно [12], есть

$$\Delta c_{31} = c_3 - c_1 = T_0 \alpha^2 / 2B$$

(ясно, что в окрестности тройной точки $T_c \to T_0$), нетрудно видеть, что

$$T_m = \frac{T_c s_{12}}{\Delta c_{31}} = \frac{\Delta q_{12}}{\Delta c_{31}},$$

где Δq_{12} — теплота перехода I \leftrightarrow II. Таким образом, T_m имеет смысл отношения теплоты перехода первого рода к скачку теплоемкости при расположенном рядом переходе второго рода. Сделав в уравнении (2) (справедливом лишь при x>0) подстановку $y=t-t'_cx$, получаем его решение

$$y + y^2/2T_m = (t_0' - t_c')x + \text{const.}$$
 (3)

Учитывая, что при x=0 имеем t=0, а значит, и y=0, из уравнения (3) находим, что const =0 и

$$t = \begin{cases} t'_0 x, & x < 0, \\ t'_c x - T_m + \sqrt{T_m^2 - 2T_m(t'_c - t'_0)x}, & 0 < x < x_m, \end{cases}$$
(4)

где $x_m = T_m/2(t_c' - t_0')$.

Это решение описывает ветвь перехода II \leftrightarrow III выше (по температуре) точки, в которой $dT/dp \to -\infty$. Второе решение уравнения (3) описывает растущую (с ростом давления) ветвь перехода II \leftrightarrow III (ниже точки $dT/dp \to -\infty$):

$$t = t_c' x - T_m - \sqrt{T_m^2 - 2T_m(t_c' - t_0')x}, \quad x < x_m. \tag{4'}$$

Это решение имеет смысл, если теория Ландау применима также и в окрестности точки вертикального наклона линии перехода II \leftrightarrow III: $(p_0 + x_m, T_0 + t_c'x_m - T_m)$. Для

этого необходима малость члена $C\eta^6$ в разложении (1) для μ_3 , т.е. выполнение неравенства $A \ll B^2/C \sim B$ (поскольку обычно $C \sim B$), а так как $A = \alpha y = -\alpha T_m$, это эквивалентно условию $T_m \ll B/a$.

На рис. 4 показана фазовая диаграмма исследованного соединения, где сплошная линия представляет собой для перехода $I \leftrightarrow II$ результат приближения параболой с помощью метода наименьших квадратов экспериментальных данных, показанных точ-ками, а для перехода $II \leftrightarrow III$ получена с помощью формул (4) и (4') при $p_0 = 6.5$ кбар, $T_0 = 324$ K, $t_0' = 4$ K/кбар, $t_c' = 125$ K/кбар, $T_m = 47$ K.

Таким образом, если принять предложенное объяснение вида фазовой диаграммы, то из него следует, что в высокотемпературной области с необходимостью должна присутствовать линия $I \leftrightarrow III$ фазовых переходов второго рода, уравнение которой есть (1") с приведенным значением $t'_c = -\alpha/a$.

Что же касается микроскопической природы перехода, т. е. возникающего изменения симметрии, то представляется естественным считать, что оно связано с появляющимся в несимметричной фазе отличием от 0.5 заселенностей возможных мест для атомов Hg в анионной цепочке (согласно рентгеноструктурным данным [9], выполненным при комнатной температуре и относящимся к фазе I, анионная подрешетка состоит из примыкающих друг к другу тетраэдров, в вершинах которых находятся атомы иода, а центр каждого заселен с вероятностью 0.5 атомами ртути). На справедливость этого предположения указывает и то обстоятельство, что если исключить наличие фазы II, зависимости сопротивления от давления в фазах I и III (рис. 2) ложатся практически на одну общую кривую. Дело в том, что проводимость осуществляется переносом зарядов по органическим молекулам ET, никак не затрагиваемым при таком изменении симметрии.

Полный анализ нарушения симметрии в изучаемом соединении возможен лишь при наличии рентгеноструктурных данных при этом переходе. Однако можно с уверенностью утверждать, что параметр порядка не может быть более чем одномерным [13], а это единственное, что требуется для справедливости предлагаемого объяснения.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты 96-02-18957, 97-02-17387 и 97-03-33686а), Министерства науки и технологий, NWO и INTAS.

Литература

- 1. T. Ishiguro and K. Yamaji, Organic Superconductors, Springer, Berlin-Heidelberg (1990).
- 2. J. P. Pouget and S. Ravy, J. de Phys. I 6, 1501 (1996).
- 3. R. C. Lacoe, G. Gruner, and P. M. Chaikin, Sol. St. Comm. 36, 599 (1980).
- A. Graja, G. Sekretarczyk, and M. Krupski, J. de Phys. 46, 1743 (1985).
- 5. S. Kalich, D. Shweitzer, J. Heinen et al., Sol. St. Comm. 80, 191 (1991).
- R. B. Lyubovskii, R. N. Lyubovskaya, and O. A. Dyachenko, J. de Phys. I 6, 1609 (1996).
- 7. Р. Б. Любовский, Р. Н. Любовская, Р. П. Шибаева и др., Письма в ЖЭТФ 42, 380 (1985).
- 8. С. И. Будько, А. Г. Гапотченко, А. Е. Луппов и др., ЖЭТФ 101, 1841 (1992).
- 9. T. Takhirov, O. N. Krasochka, O. A. Dyachenko et al., Mol. Cryst. Liq. Cryst. 185, 215 (1990).
- Р. Б. Любовский, Р. Н. Любовская, Н. В. Капустин, ЖЭТФ 93, 1863 (1987).
- A. V. Kornilov, V. A. Sukhoparov, and V. M. Pudalov, in *Proc. High Pressure Science and Technology*, ed. by W. Trzeciakowski, World Sci. Publ. (1996), p. 63.
- 12. Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика (том ІХ, часть 1), Наука, Москва (1978).
- Ю. А. Изюмов, В. Н. Сыромятников, Фазовые переходы и симметрия кристаллов, Наука, Москва (1984).