ВЛИЯНИЕ СПИН-ОРБИТАЛЬНОГО ВЗАИМОДЕЙСТВИЯ ДВУМЕРНЫХ ЭЛЕКТРОНОВ НА НАМАГНИЧЕННОСТЬ НАНОТРУБОК

Л. И. Магарилл, А. В. Чаплик*

Институт физики полупроводников Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

Поступила в редакцию 28 октября 1998 г.

Вычислена намагниченность нанотрубки в продольном магнитном поле. Показано, что спин-орбитальное взаимодействие двумерных электронов, находящихся на поверхности нанотрубки, приводит к качественному изменению намагниченности: в зависимости от параметров системы возможен как диа-, так и парамагнетизм, а динамическая восприимчивость характеризуется аномальной дисперсией в области малых частот.

1. ВВЕДЕНИЕ

Двумерный электронный газ на поверхности круглого цилиндра реализуется в разных экспериментальных ситуациях. С ним связан, например, эффект Ааронова— Бома [1] в условиях слабой локализации [2]. Магнитные свойства металлического тонкостенного цилиндра (в том числе в режиме сверхпроводимости) исследовались еще в 1970 г. Куликом [3]. В области мезоскопических масштабов следует упомянуть прежде всего углеродные нанотрубки, в которых также может осуществляться двумерная проводимость. В самое последнее время была разработана оригинальная методика «сворачивания» напряженных слоев GaAs/InAs [4], приводящая к образованию цилиндров и рулонов с радиусом кривизны порядка нескольких десятков или сотен ангстрем.

В предлагаемой работе исследуются магнитные свойства нанотрубок в поле, параллельном оси цилиндра. Оказывается, что спин-орбитальное взаимодействие 2D-электронов на поверхности цилиндра приводит к качественным особенностям в поведении намагниченности как в постоянном, так и в переменном внешних магнитных полях даже при очень малых частотах. Последнее обстоятельство существенно для экспериментов, в которых используется модуляционная методика для измерения магнитной восприимчивости. Физическая причина упомянутых особенностей связана с пересечением (или квазипересечением) одноэлектронных термов, рассматриваемых как функции магнитного потока.

2. МАГНИТНЫЙ МОМЕНТ НАНОТРУБКИ В ПОСТОЯННОМ ПОЛЕ

Будем учитывать спин-орбитальное взаимодействие в рамках модели Рашба [5]. Соответствующий гамильтониан для плоской 2D-системы записывается как

^{*}E-mail: chaplik@isp.nsc.ru

$$\hat{V}_{so} = \alpha [\hat{\boldsymbol{\sigma}}, \hat{\mathbf{p}}] \mathbf{n}, \tag{1}$$

где $\hat{\sigma}_i$, **р** — соответственно матрицы Паули и оператор двумерного импульса, **n** — нормаль к поверхности, α — эффективная константа спин-орбитального взаимодействия. Константа α не обращается в нуль для ориентированной поверхности, на которой два направления **n** неэквивалентны. Из (1) следует, что в рассматриваемой системе (электронный газ на поверхности кругового цилиндра в магнитном поле, направленном вдоль оси цилиндра) гамильтониан имеет вид (предполагается, что радиус цилиндра R много больше постоянной решетки и используются цилиндрические координаты с осью zвдоль оси цилиндра)

$$\hat{H}_{0} = \frac{\hat{p}_{z}^{2} + (\hat{p}_{\varphi} + \Phi/R)^{2}}{2m} + \alpha [\hat{\sigma}_{z}(\hat{p}_{\varphi} + \Phi/R) - \hat{\Sigma}\hat{p}_{z})],$$
(2)

$$\hat{\Sigma} = \begin{bmatrix} 0 & ie^{-i\varphi} \\ -ie^{i\varphi} & 0 \end{bmatrix}.$$
(3)

Здесь p_z — оператор продольного импульса, $\hat{p}_{\varphi} = -i(1/R)\partial/\partial\varphi$, Φ — магнитный поток через сечение цилиндра в единицах кванта потока $\Phi_0 = 2\pi\hbar c/e$, e — абсолютная величина заряда электрона; величину \hbar полагаем равной единице.

Уравнение Шредингера с гамильтонианом (2) допускает точное решение. Энергетический спектр дается выражением

$$E_{j,\mu}(k) = B\left[k^2 + \lambda_j^2 + \frac{1 - 2\Lambda}{4} + \mu D_j\right],$$
(4)

где $D_j = \sqrt{\lambda_j^2(\Lambda - 1)^2 + k^2\Lambda^2}$, $B = 1/2mR^2$, $k = p_z R$, j — проекция полного момента на ось цилиндра (полуцелое число), $\lambda_j = j + \Phi$, $\Lambda = 2m\alpha R$, $\mu = \pm 1$ — квантовое число, нумерующее две ветви спиново-расшепленного закона дисперсии каждой подзоны j. Нормированные волновые функции имеют вид (L — длина цилиндра)

$$\Psi(\varphi) = \frac{\exp\left(ip_z z\right)}{\sqrt{L}} \begin{pmatrix} \exp\left\{i(j-1/2)\varphi\right\} & \psi^{(1)} \\ \exp\left\{i(j+1/2)\varphi\right\} & \psi^{(2)} \end{pmatrix},\tag{5}$$

где

$$\psi_{j+}^{(1)} = \psi_{j-}^{(2)} = iA_jC_j/\Lambda k, \quad \psi_{j-}^{(1)} = \psi_{j+}^{(2)} = A_j,$$

$$A_j = |\Lambda k|/\sqrt{4\pi D_jC_j}, \quad C_j = D_j + \lambda_j(\Lambda - 1).$$
(6)

Спектр и волновые функции для случая $\Phi = 0$ найдены ранее в работах [6].

Магнитный момент пропорционален равновесному току (persistent current), который определяется (на едини́цу длины цилиндра) выражением

$$J = -\frac{e}{L} \operatorname{Sp}\{\hat{V}f(\hat{H}_0)\},\tag{7}$$

где

$$\hat{V} = 2B\left(-\frac{\partial}{i\partial\varphi} + \Phi\right) + \frac{\alpha}{R}\hat{\sigma}_z \tag{8}$$

Рис. 1

Рис. 2

Рис. 1. Зависимость энергии от продольного импульса вблизи полуцелого значения потока: $\Phi = 0.4995$, $\Lambda = 0.046$ (GaAs для R = 100 Å). Кривая a: j = -1/2, $\mu = -1$, кривая b: j = -1/2, $\mu = +1$. Щель исчезает при $\Phi = 1/2$

Рис. 2. Поведение равновесного тока в области малых магнитных потоков; $J_0 = eB/\pi R$, $N_{\bullet} = 2.3 \cdot 10^9 \text{ см}^{-2}$, остальные параметры те же, что на рис. 1

— оператор угловой скорости, а $f(H_0)$ — равновесная матрица плотности ($f(\varepsilon)$ — функция Ферми). Используя (5), (6), легко находим необходимые для вычисления тока по формуле (7) диагональные матричные элементы оператора \hat{V} , после чего из (7) имеем

$$J = -\frac{eB}{2\pi R} \sum_{j,\mu} \int dk \left[2 + \mu \frac{(\Lambda - 1)^2}{D_j} \right] \lambda_j f(E_{j,\mu}(k)).$$
⁽⁹⁾

Очевидна периодическая зависимость тока от потока с периодом равным единице. Кроме того, видно, что ток обращается в нуль для всех целых и полуцелых значений Φ . Действительно, из нечетности тока как функции Φ следует обращение J в нуль при $\Phi = 0$ (а следовательно, при всех целых Φ). Далее, заменяя в сумме (9) j на -(j + 1)видим, что J обращается в нуль также при полуцелых Φ . Упомянутое выше пересечение термов имеет место для полуцелых Φ и при k = 0: в этой точке совпадают энергии двух спиново-расщепленных ветвей спектра (см. рис. 1).

Рассмотрим ситуацию заданной двумерной концентрации электронов N_s . Будем вычислять ток при температуре равной нулю, для чего в формуле (8) необходимо выразить энергию Ферми E_F через N_s и Ф, используя равенство

$$N_{s} = \frac{1}{4\pi^{2}R^{2}} \sum_{j,\mu} \int dk \theta (E_{F} - E_{j,\mu}(k))$$
(10)

 $(\theta(x)$ — ступенчатая функция Хевисайда). Область интегрирования по k в (9) и (10) определяется видом дисперсионных кривых $E_{j,\mu}(k)$, которые могут иметь либо минимум при k = 0, либо максимум в этой точке и два боковых минимума. Последнее осуществляется для ветвей $\mu = -1$ при $\Lambda^2/2 > |(\Lambda - 1)\lambda_j|$. Хотя интегралы в (9), (10) выражаются через элементарные функции, получающиеся формулы весьма громоздки. Поэтому приведем результаты (см. рис. 2) численного расчета равновесного тока как функции магнитного потока для случая, когда при $\Phi = 0$ заполнены лишь состояния $j = \pm 1/2$, $\mu = -1$, что требует выполнения условия $n_s < 4(\Lambda^2 + |1 - \Lambda|)$ ($n_s = 2N_s(\pi R)^2$).

Без учета спин-орбитальной связи линейная восприимчивость, определенная как J/Φ , равна $-2\pi e N_s/mR$, что соответствует диамагнетизму. Обращаем внимание на смену знака линейной восприимчивости при $\Phi \approx 0$, вызванную спин-орбитальным взаимодействием (диа-пара переход). Мы проверили, что это имеет место, если константа Λ больше некоторого положительного Λ_+ либо меньше некоторого отрицательного Λ_- , зависящих от концентрации. Кривые $\Lambda_+(n_s)$ и $\Lambda_-(n_s)$ приведены на рис. 3. Механизм перехода становится ясным из рассмотрения парциальных вкладов различных термов. В отсутствие спин-орбитальной связи и при малом магнитном потоке низшему уровню системы соответствует состояние с m = 0 (m — азимутальный момент), дважды вырожденное по спину. При наличии спин-орбитального взаимодействия этот уровень расшепляется (при конечном Φ) на термы j = -1/2, $\mu = -1$ и j = 1/2, $\mu = -1$, причем

Рис. 4. Зависимость тока от Φ вблизи $\Phi = 1/2$

нижним оказывается (при $\Phi > 0$) терм j = -1/2. Вклады этих подуровней соответствуют диамагнетизму (j = 1/2) и парамагнетизму (j = -1/2), а заселенности слегка различаются (при малом потоке). Кроме того, различаются вклады в ток электронов с одинаковыми k, но разными j. При $\Lambda = \Lambda_{\pm}$ вклады в восприимчивость состояний с $j = \pm 1/2$ компенсируются.

С ростом потока заселенность уровня $(j = 1/2, \mu = -1)$ стремится к нулю, а вклад в ток от уровня $(j = -1/2, \mu = -1)$ убывает и при некотором Φ_c меняет знак. Об этом свидетельствует поведение подынтегральной функции в (9). Такое поведение объясняет еще одно обращение $J(\Phi)$ в нуль на рис. 2. При $\Phi > \Phi_c$ зависимость $J(\Phi)$ практически такая же, как в отсутствие спин-орбитального взаимодействия.

Кроме того, вблизи $\Phi = 1/2$ зависимость $J(\Phi)$ имеет изломы, которые связаны с резким изменением области интегрирования по k (переход от ситуации двух боковых минимумов в $E_{-1/2,-1}(k)$ к одному центральному; см. рис. 4).

3. ДИСПЕРСИЯ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ НАНОТРУБКИ

В этом разделе рассмотрим отклик электронов, находящихся на поверхности цилиндра, на переменный магнитный поток. Предположим, что кроме постоянного потока Ф, проходящего сквозь цилиндр, имеется также малый переменный поток $\phi(t)$. Нас интересует отклик системы в линейном приближении по $\phi(t)$. В гамильтониане системы появляется дополнительное слагаемое $\hat{F}(t)$:

$$\ddot{H} = \ddot{H}_0 + \ddot{F}(t),\tag{11}$$

где $\hat{F}(t) = \phi(t)\hat{V}$. Для динамической восприимчивости $\chi(\omega)$ ($\tilde{J}_{\omega} = \chi(\omega)\phi_{\omega}$; \tilde{J}_{ω} , ϕ_{ω} — фурье-компоненты переменных составляющих тока и магнитного потока) нетрудно получить формулу типа Кубо:

$$\chi(\omega) = \frac{ie}{L} \int_{-\infty}^{0} dt \exp\left\{(\delta - i\omega)t\right\} \operatorname{Sp}\left\{\hat{V}\exp\left(i\hat{H}_{0}t\right)[\hat{V},\hat{f}]\exp\left(-i\hat{H}_{0}t\right)\right\} - \frac{2e}{L}\operatorname{Sp}\left(\hat{f}\right).$$
(12)

Вычисляем шпур в формуле (12), используя базис волновых функций (5), (6). Для недиагональных (по μ) матричных элементов оператора скорости \hat{V} имеем:

$$V_{j,k,\mu;j,k,\bar{\mu}} = B(1-\Lambda)\frac{i\mu\Lambda k}{D_j}$$
(13)

 $(\bar{\mu} = -\mu)$. В результате для $\chi(\omega)$ находим:

$$\chi(\omega) = \frac{ieB^2\Lambda^2(1-\Lambda)^2}{2\pi R} \sum_{j,\mu} \int dk \frac{k^2}{D_j^2} \frac{1}{\nu + i(E_{j,\bar{\mu}}(k) - E_{j,\mu}(k) - \omega)} -$$
(14)

$$-\frac{e}{\pi R}\sum_{j,\mu}\int dk f(E_{j,\mu}(k)).$$
⁽¹⁵⁾

Здесь мы заменили бесконечно малую δ из формулы (12) феноменологической частотой релаксации ν .

На рисунке 5 приведены результаты численного расчета вещественной и мнимой частей восприимчивости в окрестности точки $\Phi = 1/2$. Очевидно, что в этой области

Рнс. 5. Вещественная (сплошная линия) и мнимая (штриховая линия) части динамической восприимчивости как функции $\delta \Phi$ ($\delta \Phi = \Phi - 1/2$); $\omega/B = 10^{-4}$, $\omega/\nu = 5$

из-за пересечения термов должны наблюдаться аномалии магнитной восприимчивости при малых частотах ω (однако, разумеется, должно выполняться обычное условие проявления частотной дисперсии, $\omega \gg \nu$). Область вблизи Ф равного нулю не представляет интереса для рассматриваемого нами случая низких частот, $\omega \ll B$. Следует подчеркнуть, что дисперсия магнитной восприимчивости существует только при наличии спин-орбитального взаимодействия, так как при $\Lambda = 0$, как видно из (12), $\chi(\omega)$ сводится к постоянной.

Таким образом, учет спин-орбитальной связи существенно меняет магнитные свойства нанотрубки в продольном магнитном поле: в области малых полей диамагнитное поведение сменяется парамагнитным, а вблизи $\Phi = 1/2$ возникают изломы (при нулевой температуре) на зависимости $J(\Phi)$. Пересечение термов при $\Phi = 1/2$ приводит к аномалиям в поведении динамической восприимчивости в области очень малых частот $\omega \ll B$.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 96-02-19058), программы «Физика твердотельных наноструктур», а также фонда INTAS (грант № 95-0657).

Литература

- 1. Д. Ю. Шарвин, Ю. В. Шарвин, Письма ЖЭТФ 34, 285 (1981).
- 2. Б. Л. Альтшулер, А. Г. Аронов, Б. З. Спивак, Письма ЖЭТФ 33, 101 (1980).
- 3. И. О. Кулик, Письма в ЖЭТФ 11, 407 (1970).
- V. Ya. Prinz, V. A. Seleznev, V. A. Samoylov, and A. K. Gutakovsky, Microelectronic Engineering 30, 439 (1996); V. Ya. Prinz, V. A. Seleznev, A. K. Gutakovsky, 24th International Conference on Semiconductor Physics, Jerusalem, Israel, Abstracts (1998).
- 5. Ю. А. Бычков, Э. И. Рашба, Письма в ЖЭТФ 39, 66 (1984); Е. I. Rashba, V. I. Sheka, in *Landau Level Spectroscopy*, ed. by G. Landwehr and E. I. Rashba, Elsevier (1991), p. 178.
- Л. И. Магарилл, Д. А. Романов, А. В. Чаплик, Письма в ЖЭТФ 64, 421 (1996); ЖЭТФ 113, 1411 (1998); А. V. Chaplik, D. A. Romanov, and L. I. Magarill, S & M 23, 1231 (1998).