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‘We consider a two-dimensional system of particles localized on randomly distributed sites of
a square lattice with anisotropic transition matrix elements between localized sites. The diagram
and replica methods are used. The conductivity of a system in different limits of local sites and
particles densities is calculated. The model is relevant to the problem of strong nonmagnetic
impurities in superconductors with d;_ 2 symmetry of the order parameter.

1. INTRODUCTION

We examine a system of randomly distributed impurities at a sites of a two-dimensional
square lattice. An impurity potential generates a localized state with a strongly anisotropic
(cross-shaped) wave function. The conductivity is produced by due to hopping of particles
between local states on the same vertical or horizontal lines. This picture can be realized in
two-dimensional d,:_ 2 -wave superconductors, where local bound quasiparticle states can arise
in the presence of unitary impurities [1]. The wave functions of the local states are strongly

- anisotropic, with exponential decay in all directions except ©,, = (2n+ 1) /4, where the wave
function is proportional to r~!.

A similar anisotropy has a wave function of bound states in the vortex core in d-wave
superconductors [2]. The wave function in the vicinity of gap nodes at large distances has the '
form

[¥|* o | — @n| exp(=2]p — @u|r/E),

with a maximum value |¥|? o« £/2r in the directions ¢ — @, ~ £/2r — 0.
We will consider the following tight-binding Hamiltonian:

CH ="t — )t ()9 (;)pr)e(r;), 1)
i)j ’
where 9 (r;), %" (r;) are creation and annihilation operators, p(r;) is the density of impurities,
equal to 1 at the impurity sites, and to 0 otherwise. The transition matrix element has a
cross-shaped configuration

t1) = (B0 + 8,0 (7), o)
with
gy =1 (2) exp (),
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: |
and a is the lattice constant.

The plan of this article is as follows. In Sec. 2 we consider the case of low impurity
density. In Sec. 3 we calculate the conductivity in the case of high impurity density. Results
are discussed in the Conclusion. :

2. LOW DENSITY

We consider now the limit of low impurity concentration (¢ < 1). In an external
electromagnetic field we substitute in (1)

t(r; — ;) — t(r; — rj)exp ie / A(r, t)dr

K

The electric current is defined as usual with the Hamiltonian (1) by varying over a gauge-in-
variant vector potential A

Jol) = —ie D = 1 )atis ¥ (¥ (Dpip; oxp (ieAD(r: — 7)) , 3)
5]

where t;; = t(r; — r;). Since we will calculate j(w), we assume that the potential A depends
only on time t. Using the equation for the Green function G(t1,ry,t,13)

%G(tl,n,tz,rz) _ <Tw\v <2)> — 8y — r2)8(t1 — ta), @)

we obtain after Fourier transformation in the linear A approximation
. e’ ‘ dQ e
o) = 5 3 s =196 = 5)p 490 | re@re -
- Z ti itk (i — oy — l‘z)ﬂA,e(w)/ —G(Ww+ Q,1;,1)G(Q, 1y, 1;)e ™. (5)

1,5,k,1

The summation in Eq.(5) is taken over impurity sites, and & — +0. In order to evaluate (5)
in the lowest order with respect to the concentration, we examine the case of two randomly-
located sites. The Green function is found easily:

. _ wtp
Gyt 1) = s >
. (6)
G(w,ri,1;) = 2

W+pP—t);

where 4 is the chemical potential. Substituting (6) into (5), we obtain in the case when the

sites are located on the same horizontal chain \

w p—
m/‘lz(w) = Qw)Az (). )
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A similar équation can be derived for the case of nonzero temperature. The result differs only
by the Fermi filling factor. After averaging over impurity sites we obtain for the conductivity

ow) = iQw)/w

.
o) = 2L / D@ nrw — 1) — np(—w — WIS — 26@))dz =

_ e 5 Tpt@o)lnrWw — p) — np(-w = p)] ,
gk |t (z0)] ’ ®)

where np is the Fermi distribution function, and 2t(z,) =
Substituting ¢(z) from (2) we get

w _ exp(—Kkzg)

AR i
o) = e’ Lmo[np(w p) —np(-w— #)]' (10)
8 R ) _
In the limit of low frequency we have the following asymptotic behavior:
1. k=0, 2o = QJ/w)/:
W T, ow) xw M, (11)
w<T, ow)ow3/, (12)
2. k#0, Kz ~ log(2J/w):
w> T, ow)xlog2]/w), | (13)
w&T, ow)xwlog(2]/w). _ (14)

3. HIGH DENSITY

3.1. Green function

In case of high density of impurities we assume that the distribution function of impurities
is a Gaussian with variance g:

p(r;) = ¢+ 6p(ry), ,
(60(x:)8p(r;)), = 6°6:5,

where (...), denotes the average over possible impurity configurations. We assume that the
concentration ¢ < I.

The one-particle Green functlon for the arbitrary impurity distribution is usually defined -
in terms of a functional integral as ’

(15)
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N T g o e n1=1 — o] DPDYY@P(E) exp(iS)
G(E,r,1) [E tt]P(rt)P(rJ)] o . ? f DED’(/) exp(iS) ) (16)
where |
S= S() + Sl, (17)
iSo =i PmEY(), (18)
iS1 = —i Y pr)tr — 12)p(r)p(r2)(r). (19)

nr

Introducing an additional integration over new fermion fields x, % in order to eliminate the

second order terms pp, we get

exp(iSy) = / DxDx exp {i D X r — r)x(r) —ic Y [ROBE) + X)) -

— 1
— i’y 8p(0) [ROW@) + PEOXO)] } 7

where

Z= / DxDyx exp {2 Zi(rl)t“(rl - l'z)X(l'z)} ,

r,n

t7(r) = —‘17 ; e (k)e™,

(f& + 4sin? 1“;—“) (nz + 4sin? @)] :

The Green function in terms of the new two-component field ¢,

- () = Y(r),
P2(r) = x(1),

P1(r) = %(r),
Pa(r) = X(r),

e(k) = Z t(r)e™ = —JIn

r

reads

Gr1, 1) = —i(((r) @ B(r2)),
where $(r) = (;(r), P,(r)), and angle brackets are defined as

_ | DYDyYDXDx(. . .) exp(iSess)
J DYDY DX Dy exp(iSefs)
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with .
iSesr =1 (1) ( i _Eép(r) i ‘5_”(:2)) ) (). | Q@7)

The equation for the Green function' after averaging over impurities in the Born
approximation reads .
GK) = (k) + C*K)EK)G(K), (28)

with the bare Green function

o1 — | £ —¢ ‘
[G"®)] [ —e e"(k)] (29
and the self-energy £ obtained by summing diagrams without intersections
- = 2,2 dk, z A z
2(k) = g*a / __(271‘)20 Gk;)o”. (30)
The solution of Egs. (28), (30) is
_(AcC |
zao—(CB), o (31
é(k) _. 1 ‘ 1+e(k)B —i(ct+iC)e(k) 32)
[1+e(k)R](E — A) — (c+iC)%(k) | —i(c +iC)e(k) e(kE—A) |’
where-
A= 2a2/ dk (E — A)e(k)
9% ] @r? T+e@BI(E - 4) - (c +iCPe®)’
B=4202/ dk 1 —-ek)B
7% | @ry T+e®BI(E - 4) — (c +iC)e®)’
O = 2/ dk (c+iC)e(k)
I | @rE [T+ e®BIE — A) — (¢ +i0Pe®)’
In the limit g?> < 1, we obtain
rRA_ Y pRA__,C 7 RA_- 4. ¢7
A :!:1.2, B JFZEZ X C :l:zEz, (33)
2
= 27rg2a2£:4—u (g) , ’ (34)
where v(e) is the density of states of the pure model (¢ =1, g =0):
_ [ dk
v(e) = / -(-5—7;—)-56(5 — e(k)). : (35)

Taking into account that A « E, BE < 1, C < ¢, we find for the Green function in the -
limit ¢? < 1 '

ARA (b — 1 I cek)
W B @ T iy (1 3@ o) /2 ( ce(k) e(k)E) * (36)

where GRand G4 are the retarded and advanced G_reen functions.
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3.2. Drude formula

The conductivity in our case is defined as in Sec. 1in terms of the four-partlcle correlation

function

62 dkl dk2
o5W) = o0 | Gry Gy

where E is taken at the Fermi level,

va(kl)vu (kZ)KEw(kl ) k2: k2, k1)1

-1
Kok, ko kg ki) = = x

14
X gtexp (ik; (x—Y)) exp (ika(z—t)) <pxpypzptG“ (y,z E+= )G (t, x, E— u2_J ) >,,
" and
va(k) = %E’:k).

Inserting the solution (36) into (37), we find in the lowest approximation

"2 2.6 2
o) = £ [ ik (kE+%) Gk E-w/n =55 (3) 50

(2m)2 e 2r \E) B(E)’
where

o - di

am= [ Zhiw,  BE)- / =

ek)=E/c? e®=E/c?

Cuk) = /v2(k) + v2(k), and dly is the element of length of the Fermi surface.'
The conductivity can be expressed in terms of a particle density defined by
' /a /a
no(E) = a® / dk. / dk,0 (— - e(k)) .
—n/a —n/a

We obtain in the low and high density limits
' e?ct

no
— for ng < 1,
_ 9° 3rlog2 °
7= 6266 1 —ng
— for 1-no«1l.
92 4xtlog’k
The asymptotic behavior in the intermediate range 0 < ng < 1 is
5= 2teS e%ct 1
g2 (1 —my)? log[I/(l - no)l’
with maximum value
1
Tmas ™ 573 logk
reached at 1 — ng ~ &*/3.
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Fig. 2. Crossed-ladder vertex

3.3. Perturbation corrections

To go beyond the quasiclassical approximation we include contributions to the conductivity
from «diffusion-ladder» and «crossed-ladder» or «cooperon» vertices [3, 4]. The additional term
is :
6264 dkl dkz

@) (2r)?

where for the «diffusion» vertex contribution we obtain (see Fig. 1)

d0pW) = —— 5 Va(k)a (k)G F (k)G (k) Gl () G (k1) K pepa ki, k), (46)

D) _ D
KD =g0%of+g / G GR, 0K, Gt 1 (o3 . (47)
The solution of this equation does not depend on k; and k;. Therefore the contribution
of the «diffusion» vertex'to the conductivity is equal to zero because
dk,
(27)?

Now we consider the «cooperon» vertex contribution. The vertex K(© obeys the equation
(see Fig. 2)

7 0a (k)G (k)G (ky) = 0. - (48)

KO0 = Fotos +9 [ o )2auabg GLOGHA-DK i@, @

where ¢ = k; + ks.
Using the Green functlon from (36) we can rewrite thls equation:

1 :
Kt(lf;)bd - Zb(w'l k)o-:eangeﬂngblKii);b,d = gzafcalfd’ . (50)
where
42
b=1+ %(iw -D¥), D= 64";=, | (51)
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and

. ( exp(@) 1
T 1 exp(=6) J°
where exp() = ¢/E.

We seek a solution of (50) in the form

e — 2
Kac;bd =g szbGZdK”",

uv

where u,v € {0,z,y, 2}, and K*¥ satisfies

K" — b(w, k) Z Ap/\K'\V = %géw,

A=0,z,y,z
with
cosh® 6 coshf 0 sinhfcoshé
A= l coshd 1 0 sinh @
2 0 0 0 0
—sinh@coshf —sinhd 0 —sinh?d
and
{100 0
._lo1o0 o0
ge 001 0
000 -1

" A solution of (54) can be found in terms of matﬁces U, B:
K" =U,mBLNn (U Y,
where «
U YmuAwUon = 2m6m N,

1
T 1- blw, k)zpm

The eigenvalues z), and matrix U are

Bun U Ymug" Uun.

ZO=17 21=0, 22=0, Z3=0,

[ —-cosh® —=coshd —isinhf 0 )

V2 V2
1 1
—_ _ 0 0
o=| V2 V2
0 0 0 1
——1— sinh 6 L sinhd icoshf 0O
Vi ™ 73 /

1100

(52)

(53)

(54

(55)

(56)

(57)

(58)

(59)

(60)

(61)
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We see from (51) and (60) that the eigenmode with N = 1 only has singular behavior
for w, k — 0. Substituting solutions (60), (59), (57), (54), and (53) mto (46) we obtain a
logarlthmlcally divergent correction to the conductivity:

= dgq |
b=~y / =3 (62)

We consider the problcm in detail in the next section using field-theoretic methods for
diffusion mode interactions.

3.4. Field-theoretic description

Quantum corrections to the conductivity can be described in terms of a diffusion modes
interactions. To derive an effective Lagrangian we make use of a replica method. Conductivity
properties are determined by the density—density correlation function

Kw)= (G§+u/g(r1,T2)Gg—w/2(rl’ 1)), €3)
where |
GRA(E) = [E £1i6 — ti;p(r)p(r;)] -, ©4)

and angle brackets denote impurity averaging.
Integrating over anticommuting Grassmann variables x*, x we can write

J D&*Diki(r); (r2)kn+1(r)K N 4 (12) €xp(i S)

R A = _ .
G B2 (11, 12)G /(1 12) T Dr Droxp(i5) , (65)
where
iS=iy Z Ka ) {[E + @+ i)l i, tr.,r,P(l'l)p(l'z)} Kn(r2), (66)
n,rn n=1
_J 1L n<N, v _

and N is the number of replicas.
The quadratic term pp can be transformed with the help of the additional Grassmann fields
7

exp {—z > Z t(ry — 12)p(ry) p(r2)x, (rl)Km(rZ)} / Dv* Dy x

r,rn n=l

xexp{ ZZt RUR A GV R zZZp(r) [a®ma@ s, (r)un<r>]}

re,n n=l r n=1
—1 R
[ / Dv* Dy exp{ > Zt ' = (rl)u(rz)}] : (68)
n,r; n=1
It is convenient to define spinors ‘¥, x:

1101



E. A. Dorofeev, S. 1. Matveenko ' E v X3TD, 1999, 115, ewin. 3

or

¥=@w', x=@Cx", ¢

0 -1
6mn(1 0 ),’

(69)

(70)

(71)

where C' is the charge conjugation matrix. The same relations hold between the original and

Fourier components

Poi(@) = Cij¥ni(—=p),  ¥ni(p) = C;i¥ni(-p),

Xni(®@) = CijXni(=p),  Xni(®) = CjiXni(—D),

where
1 ; - 1 .
Wni(r) = ——=Y¥ni elpl', nill) = —T—=Xni e,
(r) Z,,:\/Tv" ) Xni(r) ijmx ®
The action (66) takes the form

is =i {Z ¥ [E+ (5 +i6) A ¥m) + 3 X0t @ - m)x(ea)-

r,n
- [xOwe) + %)x(r)]} ,
r
where A is a diagonal matrix consisting of elements \,,. Introducing new bispinors

_(YO\ o o
o(r) (x(r))’ () = (P(r) x(r)

we can rewrite the action as

iS =iy FENGT (1, n)p(r) —i Y SpOFE)" (),

n,n r

where

E+(“—2’+i5),\ —c )

Gyl(r,r) =
—c t~i(r — 1)

is the bare Green function.

Performing the average over a Gaussian distribution for the randomness we obtain
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- : 2
(exp(iSint)) = <exp [—zzap(r)cpma w(r)]> =exp{ —%Z[a(r)aﬂp(r)]’}. (78)

The order parameter in the localization theory is a traceless tensor proportional to (¥'F).
Taking into account only long-wavelength fluctuations we can rewrite (78) as

(eXD(iSint)) = exp lg? 3 o200 de"(r)P"”(r)] (19

where

P () = % > A ®FL @+ dexp(—igr), v ={n,i}.

P4

Spinors ¢ and @ are related by charge conjugation (71). This imposes symmetry conditions
(PLY(r)* =PY'(x), or P'=P, o (80)
P=CPTCT. (81)

~ Introducing a Gaussian integration over the c-number matrix field @, we obtain

expiS.) = [DQexo {Z () [i65 "m0t | o~

rn,n

-1
-3 %Tr (Qa'Qo’)} { / DQexp [— 3 %Tr '(Qa=Qa=_)] } NGV))

After integration over the bispinof field y we obtain

iSets =Tr In [:GO + = Q] Z 77T Qo7Qo%). (83)
In the saddle-point approximation we use the equation |
65/6Q =0, |
or .
(iGo“ + %Q)—l - 5’—;30”(20” =0. (84)

The solution of this equation to lowest order in g’ is

Qsp = A(cosh @ — o* sinh 6 + o%) exp 0, (85)

E/c=exp9, - . (86)
with the Green function

. 1103
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- 1 1 EJc
¢ E + Aw/2 — c2e(p) — 2ivA ( E/c E*/c? ) : (87)

Expanding near the saddle point and using the symmetry of the ténsor Q, we find

. e S | 72

iSyr =Tr In (G5 + 36Q) ~ 16 Zr:Tr {IQ+6QM]10% [Q +5QM]o%}.  (83)
Taking Fourier transforms, Eq.(88) reads

2
85y =~z 7 3 {Tr[acz(q)a%cz(—q)aﬂ -
q

d .
-7 [ GaETICEQWER + D5Q(-9] +Tr [’i"f— (00) 6Q<q)] b
Due to the symmetry of the Q we can write the variation §q as

0Quc = Qa0pc,0¢,cs , (90)

where all matrices @), are real. Inserting the relation (90) into (89), we find, taking into account
only low-energy transverse (Q6Q + §QQ = 0) modes,

2 b .
551 = ~ g3 2 [5aa - {T,r(a"o”m"a%)] QaQp + QaTe, o1
arﬂ
where

.D_ki D = 0461
4y’

T.=1e[ 5 (g o) o%er]

After diagonalization we obtain

7 =coshf + g% sinhf + 0%,
92)

iseff=%ZTr{ 3123 T 8®a(W-g5 3 Tria®a(- W1+ AUa,qu)}, 93)
2 |

1=2,3,4
where
Qo =Uuq, 94)
1 1
— —_ 0 0
V2 V2
1 1
—coshf —=coshf —isinhf 0
Uu=| V2 V2 . (95)
1 i
———sinhf ——=sinhf® —coshd 0
V2 V2
0 0 0 1
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We see that the action (93) consists of only one diffusion type mode (I = 1). Taking
into account only these modes and neglecting interactions with other higher-energy modes, we
obtain the well-known action of the nonlinear o model,

= % / dr [Tr(VQ)? — &Tr(AQ)], (96)

where

o~ | —

Lo -
w= 1647 16g2D'

blﬁ

The renormalization group equations for this case were studied in Ref. [5]. In the limit N — 0,
we see that in lowest order

dt 2
dink 8’ ©7)
ding
et ln: =0. (98)

Since the conductivity o is proportional to the diffusion constant D, equations (97) and (98)
determine the frequency and system length dependence of the conduct1v1ty In particular, we
have from (98) that o(w) x D o w for small w.

4. CONCLUSIONS

We have investigated a two-dimensional model with a new type of disorder due to a random
distribution of local states with strongly anisotropic overlaps of wave functions. This type
of disorder, described by a quadratic impurity density Hamiltonian (1), was not considered
previously. The conductivity of the system was calculated in the limits of low (Sec. 2) and
high densities (Sec. 3) of local states. Since perturbation theory leads to divergent terms
(«Cooperon» vertices) we used the field theoretic description in terms of a diffusion mode
interaction. Introducing an additional integration over fermion field and performing the average
over impurities with the help of a replica trick, we obtained the action of the nonlinear o model.
Renormalization group equations for this model determine the behavior of the diffusion constant
and the conductivity. We have shown that this type of disorder leads to weak localization
phenomena in the high density limit, as in the usual two-dimensional case [6].

As mentioned in the Introduction, a similar picture can be realized in nontrivial
. superconductors. A strong scattering impurity potential produces a resonant or marginally
bound state inside the gap in a d-wave superconductor, The wave function of the impurity bound
state is highly anisotropic, with 1 /r decay along the nodes of the gap, and, an exponential, angle-
dependent decay range otherwise. A finite concentration of impurities leads to an formation of
the narrow quasiparticle band. If we simplify a picture and take into account scattering processes
of quasiparticles inside this band only, we obtain our model. We note that our consideration is
applicable only in the case of strong unitary impurities producing local bound states.  Opposite
cases of weak impurity scattering with different types of disorder were studied in Refs. [7, 8].
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