ОСОБЕННОСТИ СПИНОВЫХ ФЛУКТУАЦИЙ И СВЕРХПРОВОДИМОСТЬ $Tl_2Ba_2CaCu_2O_{8-\delta}$ ПО ДАННЫМ ЯМР ^{63}Cu , ^{17}O

А. П. Геращенко*, К. Н. Михалев, С. В. Верховский, Ю. В. Пискунов, А. В. Ананьев, К. А. Окулова

Институт физики металлов

Уральского отделения Российской академии наук
620219, Екатеринбург, Россия

А. Ю. Якубовский, Л. Д. Шустов

Российский научный центр «Курчатовский институт» 123182, Москва, Россия

Поступила в редакцию 18 ноября 1998 г.

Для соединения $Tl_2Ba_2CaCu_2O_{8-\delta}$ ($T_c=112$ K) получены данные о сдвигах линий ЯМР, скорости спин-решеточной релаксации ядер 63 Cu, 17 O и скорости спин-спиновой релаксации 63 Cu в нормальном и сверхпроводящем состояниях. Из анализа температурных зависимостей сдвига Найта оценены значения сверхтонких констант на атомах меди и кислорода в плоскости CuO_2 . В рамках модели антиферромагнитной ферми-жидкости обсуждается температурное поведение длинноволновой и коротковолновой частей динамической спиновой восприимчивости. Анализируется возможная связь характеристик спектра спиновых флуктуаций с температурой сверхпроводящего перехода для исследуемого оксила.

1. ВВЕДЕНИЕ

Исследования высокотемпературной сверхпроводимости, выполненные за прошедшее десятилетие, выявили ряд особенностей электронных свойств ВТСП-купратов, отсутствующих в низкотемпературных сверхпроводниках. Установлено, что температура сверхпроводящего перехода достигается при некоторой оптимальной концентрации дырок n_h^{opt} в слое ${\rm CuO_2}$ [1]. Анализ градиента электрического поля на атомах ${\rm Cu}$ и ${\rm O}$ в медных слоях, выполненный для металлооксидов [2–5], выявил тесную связь T_c как с общей концентрацией дырок в медных плоскостях, так и с относительной заселенностью валентных орбиталей атомов ${\rm Cu}(3d_{x^2-y^2})$ и ${\rm O}(2p_\sigma)$. Уменьшение заселенности $n_{3d_{x^2-y^2}}$ орбитали $3d_{x^2-y^2}$ при одновременном росте n_{2p_σ} сопровождается увеличением критической температуры для слабодопированных купратов с концентрацией носителей меньшей n_h^{opt} . Оценки одночастичной плотности состояний, полученные из данных сдвигов линий ЯМР 89 Y [6], не позволяют получить разумного объяснения высоких значений T_c с привлечением фононного механизма куперовского спаривания.

В экспериментах по неупругому рассеянию нейтронов и ядерной спин-решеточной релаксации 63 Cu, 17 O в металлической фазе ВТСП-оксидов обнаружено наличие силь-

^{*}E-mail: Gerashenko@ifm.ural.ru

ных антиферромагнитных $(q=Q_{AF}=\{\pi/a,\pi/a\})$ спиновых корреляций почти локализованных электронов орбиталей $3d_{x^2-y^2}$ соседних атомов меди. Учет особенностей спектра спиновых флуктуаций в слое представляется важным при описании основного состояния зоны проводимости и при анализе возможных нефононных каналов сверхпроводящего спаривания. В работах [7–9] обсуждалась возможность спаривания носителей в слое ${\rm CuO_2}$ за счет виртуального обмена антиферромагнитными парамагнонами в предположении, что носители тока вблизи поверхности Ферми испытывают притяжение, которое эффективно в слое толщиной, пропорциональной характерной энергии спиновых флуктуаций ${\Gamma_Q}_{AF}$. В этом случае предэкспоненциальный множитель в формуле БКШ для T_c может быть представлен в виде произведения ${\Gamma_Q}_{AF}\xi^2(1-n_h)$, где ξ — корреляционная длина спиновых флуктуаций, n_h — концентрация дырок в слое ${\rm CuO_2}$.

Оценки спин-флуктуационных параметров по данным экспериментов ЯМР в настоящее время ведутся в основном с использованием модели почти антиферромагнитной ферми-жидкости. Измерения скорости спин-решеточной релаксации (T_1^{-1}) на ядрах 63 Cu, 17 O и вклада косвенного спин-спинового взаимодействия в затухание поперечной ядерной намагниченности 63 Cu ($^{63}T_{2g}$) дают возможность изучать поведение динамической спиновой восприимчивости в области малых частот. В работах [3,4] из анализа данных для T_1^{-1} в YBa₂Cu₃O_{6.9} ($T_c = 94$ K), Tl₂Ba₂Ca₂Cu₃O₁₀ ($T_c = 115$ K) было установлено, что рост температуры сверхпроводящего перехода сопровождается смещением спектра спиновых флуктуаций в область больших энергий, что свидетельствует в пользу спин-флуктуационной природы сверхпроводимости в этих металлооксидах.

Настоящая работа посвящена анализу данных ЯМР 63 Си и 17 О в ориентированном магнитным полем образце $Tl_2Ba_2CaCu_2O_{8-\delta}$ ($T_c=112~K$) с целью получения сведений об изменениях с температурой характерной энергии, корреляционной длины и других параметров спектра спиновых флуктуаций в этом соединении.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Измерения ЯМР были выполнены на однофазном керамическом образце $Tl_2Ba_2CaCu_2O_{8-\delta}$ с $T_c=112$ K, в дальнейшем Tl2212. Подробное описание процедуры синтеза и изотопного замещения $^{17}O^{-16}O$ приведено в [10].

Температура перехода в сверхпроводящее состояние определялась по появлению диамагнитного отклика при измерении магнитной восприимчивости на переменном токе. Для Tl2212 значение $T_c=112~{\rm K}$ соответствует максимуму на фазовой диаграмме $T_c(n_h)$ с оптимальной концентрацией носителей n_h^{opt} в слое CuO2. Поликристаллический образец был перемещан с эпоксидной смолой и ориентирован в магнитном поле 9 Тл.

Исследования ЯМР проводились на импульсном спектрометре ЯМР в диапазоне температур 10–300 К. Измерения для ядер 63 Си выполнены в магнитном поле $B_0 = 9$ Тл, для ядер 17 О в поле $B_0 = 8$ Тл. Метод записи спектров ЯМР состоял в возбуждении сигнала солид-эхо с последующим комплексным фурье-преобразованием второй половины эха. Для устранения искажений спектров за счет переходного процесса в резонансном контуре применялась последовательность с циклическим (0– 180°) альтернированием фазы первого РЧ импульса. При записи спектров с шириной, превышающей полосу частот, возбуждаемую РЧ импульсом, использовалось суммирование массива фурье-сигналов, накопленных на различных равноотстоящих частотах спектрометра.

Подобным образом были получены спектры ЯКР 63 Cu. Значение квадрупольной частоты ν_{O} определялось по максимуму линии ЯКР.

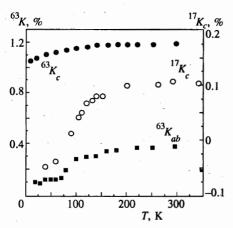
Компоненты $K_{\alpha\alpha}$ тензора магнитных сдвигов линий ЯМР ⁶³Cu и ¹⁷O определяли по положению пиков линий ЯМР перехода $m=1/2\to -1/2$ с учетом квадрупольных поправок $\nu_{ab,c}$ к сдвигу резонансной частоты до второго порядка теории возмущений.

Сдвиги линий определялись относительно положения ν_0 линий ЯМР ⁶³Си в металлической меди (⁶³ $K(\text{Cu}_{met}) = 0.23\%$) и ¹⁷О в H₂O.

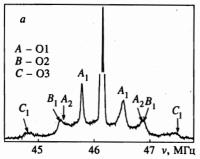
3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

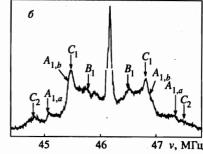
3.1. Сдвиги линий ЯМР, сверхтонкие поля на ядрах 63 Сu, 17 О и однородный вклад в спиновую восприимчивость χ_s (q=0)

3.1.1 Сдвиг линии ЯМР ⁶³Си


Температурная зависимость магнитного сдвига ^{63}K (рис. 1), включающего орбитальный сдвиг $^{63}K_{orb}$ и спиновый вклад $^{63}K_s(T)$, получена из общего сдвига линии ЯМР 63 Си (I=3/2) после вычитания квадрупольных поправок, вычисленных для случая аксиальной симметрии тензора градиента электрического поля [11]:

$$\nu_{ab} = \frac{1}{16} \left[I(I+1) - \frac{3}{4} \right] \frac{\nu_Q^2}{\nu_0}, \quad \nu_c = 0.$$
 (1)


В пределах погрешности измерения значение квадрупольной частоты $\nu_Q = 17.35(20)$ М Γ ц не зависело от температуры во всей области температур 10–300 K.


В области нормального состояния компоненты ЯМР-сдвигов монотонно уменьшаются при понижении температуры. Для $^{63}K_{ab}$ имеет место более сильная температурная зависимость, чем для $^{63}K_c$. При переходе в сверхпроводящее состояние величина сдвига резко уменьшается. Подобное поведение сдвига на ядрах Си является типичным для всех изученных сверхпроводящих оксидов и обусловлено вымораживанием спинового вклада (сдвига Найта), пропорционального однородной спиновой восприимчивости.

При температуре ниже T_c появляется дополнительный диамагнитный вклад K_{dia} в сдвиг ЯМР, обусловленный распределением магнитных полей внутри образца за счет

Рис. 1. Температурные зависимости магнитных сдвигов (a,b,c — главные оси кристалла)

Рис. 2. Спектры ЯМР ¹⁷О при температуре T=120 К для ориентаций $\mathbf{B}_0 \parallel \mathbf{c}$ (a) и $\mathbf{B}_0 \perp \mathbf{c}$ (б)

вихревой структуры магнитного поля. По нашим оценкам для магнитного поля 9 Тл и при температуре 10 К значение $K_{ab,dia} < 0.005\%$, что меньше погрешности определения величины сдвига. При определении спинового вклада $K_{ab,s}$ в сдвиг линий ЯМР мы положили, что $K_{ab,s}=0$ при T=10 К. Из этого предположения в соответствии с рис. 1 следует, что орбитальный вклад $K_{ab,orb}=0.1\%$. Его значение принято неизменным во всей области температур нормального и сверхпроводящего состояний. В этом случае разность K_{ab} ($T=T_c$) — K_{ab} (T=10 K) определяет значение спинового вклада $K_{ab,s}$.

3.1.2. Сдвиг линии ЯМР ¹⁷О

На рис. 2 представлены спектры ЯМР 17 О (I=5/2) ориентированного образца T12212, записанные в широком диапазоне частот, включающем линии ЯМР всех переходов. Спектры получены при температуре 120 К для случая, когда ось с кристаллитов ориентирована параллельно (a) и перпендикулярно (b) направлению b. Их вид подобен спектрам, приводимым для магнитно-ориентированных порошков таллиевых керамик (T12201) [12] с одной плоскостью CuO_2 . Мы сохранили те же самые обозначения сателлитных линий кислорода, соответствующих различным позициям, что и в предыдущей работе по T12212 [10]. Дальнейшее обсуждение спектров ЯМР 17 О будет касаться линий, обнаруживающих сильно зависящий от температуры положительный сдвиг и относящихся к атомам кислорода в слоях CuO_2 (позиция O1).

Для определения значений квадрупольных частот ν_Q и параметра асимметрии η тензора градиента электрического поля мы использовали положение особенностей сателлитных линий переходов $\pm 3/2 \leftrightarrow \pm 1/2$ при различных ориентациях внешнего магнитного поля \mathbf{B}_0 относительно оси \mathbf{c} кристаллитов. Так, например, пик A_1 позиции, для которой главная ось тензора градиента электрического поля лежит в плоскости ab, в поле $\mathbf{B}_0 \parallel \mathbf{c}$ должен соответствовать частоте ν_1 , определяемой выражением [11]

$$\nu_1 = \nu_0 (1 + K_y) - \frac{\nu_Q}{2} (1 + \eta) + \frac{5\nu_Q^2}{16\nu_0} \left[1 + \frac{2}{3}\eta + \frac{1}{9}\eta^2 \right]. \tag{2}$$

В случае ${\bf B}_0 \perp {\bf c}$ возникают пик A_{1b} для кристаллитов с главной осью тензора градиента электрического поля, перпендикулярной ${\bf B}_0$:

$$\nu_2 = \nu_0 (1 + K_x) + \frac{\nu_Q}{2} (1 - \eta) + \frac{5\nu_Q^2}{16\nu_0} \left[1 - \frac{2}{3}\eta + \frac{1}{9}\eta^2 \right], \tag{3}$$

и пик A_{1a} для кристаллитов с главной осью тензора градиента электрического поля, параллельной ${\bf B}_0$:

$$\nu_3 = \nu_0 (1 + K_z) - \nu_Q + \frac{5\nu_Q^2}{36\nu_0} \eta^2. \tag{4}$$

При анализе сдвигов линий ЯМР ^{17}K предполагалось, что симметрия тензора близка к аксиальной: $^{17}K_x = ^{17}K_y$. Для исследуемого соединения мы получили значения $^{17}\nu_Q = 1.09$ МГц, $\eta = 0.33$, не зависящие от температуры. Параметры тензора градиента электрического поля близки к приводимым для позиций атомов О в Y123, Tl2201, Tl2212. Компоненты тензора магнитных сдвигов линий ^{17}K определяли по положению пика линии ЯМР перехода $1/2 \leftrightarrow -1/2$, принимая во внимание квадрупольную поправку ν_c к сдвигу резонансной частоты ν_0 [11] атомов кислорода в цепочках Cu–O–Cu вдоль оси с кристалла:

$$\nu = \frac{(3+\eta)^2}{144} \left[I(I+1) - \frac{3}{4} \right] \frac{\nu_Q^2}{\nu_0}.$$
 (5)

На рис. 1 приведена температурная зависимость компоненты $^{17}K_c$ тензора магнитного сдвига линий ЯМР, соответствующая позиции О1. Значение $^{17}K_c$ с понижением температуры монотонно уменьшается с ростом крутизны изменения сдвига по мере приближения к T_c .

3.1.3. Константы магнитного сверхтонкого взаимодействия и орбитальный сдвиг

Для определения сверхтонких констант на атомах меди и кислорода использовались параметрические зависимости $^{63}K_c(^{63}K_{ab})$ и $^{17}K_c(^{63}K_{ab})$, которые строились с использованием данных для нормального состояния выше $100~\rm K$, чтобы исключить влияние диамагнитного вклада, влияние которого при температурах ниже T_c начинает заметно возрастать. В соответствии с гамильтонианом Мила—Райса [13], предложенного для описания магнитных сверхтонких взаимодействий атомов в слое $\rm CuO_2$, сдвиг Найта на атомах меди и кислорода пропорционален однородной спиновой восприимчивости $\chi_s(q=0)\equiv\chi_0$ слоя:

$$^{63}K_{ab,c} = (A_{ab,c} + 4B)\chi_0, \tag{6}$$

$$^{17}K_c = 2C_c\chi_0. (7)$$

Анизотропная константа $A_{\alpha\alpha}$ учитывает суммарный вклад магнитного сверхтонкого взаимодействия спина ядра 63 Cu с почти локализованным электронным спином орбитали $3d_{x^2-y^2}$. Вклад косвенного взаимодействия Cu–O–Cu от четырех ближайших соседей атомов Cu учитывается сверхтонкой константой B, которая предполагается в [13] изотропной величиной. Наконец, эффект ковалентности орбиталей $\mathrm{Cu}_{3d_{x^2-y^2}}$ и O_{2p_σ} учитывается константой C, значение которой зависит от направления магнитного поля относительно кристаллографических осей. Для дальнейшего анализа мы предполагаем, что значения $A_{\alpha\alpha}$ в исследуемом соединении такие же, как и в YBa₂Cu₃O₇ [13], и равны $A_{ab} = 37$ к Θ/μ_B , $A_c = -165$ к Θ/μ_B . В соответствии с (6), (7) из наклона зависимостей $^{63}K_c(^{63}K_{ab})$ и $^{17}K_c(^{63}K_{ab})$ получены значения B = 71 к Θ/μ_B , $C_c = 73$ к Θ/μ_B .

Оценки сверхтонких констант совпадают с данными для $Tl_2Ba_2Ca_2Cu_3O_{10}$ [4] (в дальнейшем Tl2223) и несколько превышают значения, приводимые для изоструктурного соединения Bi2212 в [14].

Учитывая, что $^{63}K_{ab,orb}=0.1\%$, из параметрических зависимостей следуют значения $^{63}K_{c,orb}=1.08\%$, $^{17}K_{c,orb}=-0.02\%$. Величина орбитального сдвига $^{63}K_{ab,orb}$ определяется ван-флековской восприимчивостью атомов Си. Уменьшение $^{63}K_{ab,orb}$ по сравнению с $^{63}K_{ab,orb}=1.25\%$ (Y123) может свидетельствовать о дополнительном смещении относительно E_F вниз по энергии положения заполненных орбиталей d_{xy} , d_{xz} , d_{yz} в $\text{Ti}_2\text{Ba}_2\text{CaCu}_2\text{O}_{8-\delta}$.

3.1.4. Главное значение тензора градиента электрического поля для 63 Cu и 17 O и за-селенности орбиталей атомов Cu, O в Tl2212

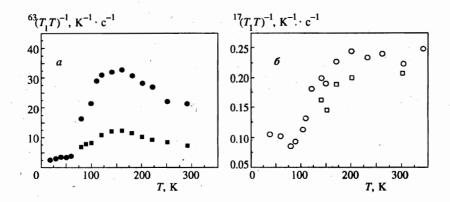
Значения квадрупольной частоты ν_Q для кислорода и меди в исследуемом соединении, $^{63}\nu_Q=17.3(2)$ МГц и $^{17}\nu_Q=1.09(5)$ МГц, близки к значениям для Tl2223 ($T_c=115$ K) [2], соответственно $^{63}\nu_Q=17.3$ МГц и $^{17}\nu_Q=1.15$ МГц.

В работе [15] показано, что градиент электрического поля $V_{\alpha\alpha}$ на атомах меди и кислорода в слоях ${\rm CuO_2}$ в основном формируется за счет вклада электронов частично заполненных орбиталей атомов с симметрией, отличной от сферической. В этом случае значение квадрупольной частоты

$$^{63}\nu_Q = \frac{3e^2Q}{2I(2I-1)} V_{cc}$$

будет пропорционально заселенности орбитали $3d_{x^2-y^2}$ меди, а изменение квадрупольной частоты ядер ¹⁷О будет определяться приращением заселенности орбитали: $O_{2p_{\sigma}}$ $\Delta\nu_Q\sim\Delta n_{2p_{\sigma}}$. В рамках этой схемы в работе [2] проанализировано распределение заряда для некоторых сверхпроводящих купратов. Авторы работы установили, что рост температуры сверхпроводящего перехода сопровождается уменьшением заселенностей орбиталей $3d_{x^2-y^2}$ меди и увеличением $n_{2p_{\sigma}}$. Полученные для Tl2212 экспериментальные значения ν_Q подтверждают это эмпирическое правило: равным квадрупольным частотам $^{63}\nu_Q$ в Tl2212 и Tl2223 соответствуют близкие значения T_c , а большему значению ν_Q для кислорода в Tl2223 (или большей дырочной концентрации $n_{2p_{\sigma}}$) соответствует большее значение T_c . Рост заселенности кислородных орбиталей может означать увеличение веса менее локализованных состояний $O_{2p_{\sigma}}$ в волновой функции, описывающей состояние дырочных носителей зоны проводимости в ряду Y123–Tl2212-Tl2223.

3.2. Магнитная релаксация ядер 63 Cu, 17 O и характеристики спектра спиновых флуктуаций в слое CuO₂


3.2.1. Скорость спин-решеточной релаксации ядер $^{63}\mathrm{Cu}$ и $^{17}\mathrm{O}$

На рис. 3 представлены температурные зависимости величин $^{63}(T_1T)^{-1}$ и $^{17}(T_1T)^{-1}$ для ориентаций внешнего магнитного поля ${\bf B}_0 \parallel {\bf c}$ и ${\bf B}_0 \perp {\bf c}$.

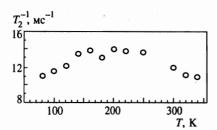
При измерении T_1 для 63 Cu регистрировалось изменение интегральной интенсивности спектра ЯМР, y(t), измеренной в пределах ширины линии. Экспериментальный массив обрабатывался методом наименьших квадратов по формуле

$$y(t) = A + B \exp(-t/T_1) + C_2 \exp(-6t/T_1), \tag{8}$$

где A, B, C и T_1 — варьируемые параметры.

Рис. 3. Температурные зависимости величин $^{63}(T_1T)^{-1}$ (a) и $^{17}(T_1T)^{-1}$ (б) при ориентациях магнитного поля $\mathbf{B}_0 \perp \mathbf{c}$ (квадраты); $\mathbf{B}_0 \parallel \mathbf{c}$ (кружки)

Температурные зависимости величины $^{63}(T_1T)^{-1}$ при ориентациях внешнего магнитного поля $\mathbf{B}_0 \parallel \mathbf{c}$ и $\mathbf{B} \perp \mathbf{c}$ имеют характерный максимум при T=150 K.


Для измерения T_1 ядер 17 О (I=5/2) использовалась методика выравнивания населенностей энергетических уровней с различными магнитными квантовыми числами m. На образец, находящийся в магнитном поле, воздействуют серией радиочастотных импульсов, частота заполнения которых изменяется в пределах полной ширины спектра по определенному периодическому закону, и через время t измеряют амплитуду спинового эха. Из решения системы релаксационных уравнений для населенностей уровней следует, что в случае выравнивания населенностей неэквидистантных энергетических уровней намагниченность $M_z(t)$ ведет себя как одноэкспоненциальная функция времени. Использование описанной методики существенно уменьшило погрешность определения $^{17}T_1$. Для разделения вкладов в результирующий сигнал эха атомов 17 О из других слоев при измерении T_1 регистрировалось изменение интенсивности сигнала поглощения, соответствующего линии ЯМР позиции О1 в слое CuO_2 . Результаты эксперимента обрабатывались по формуле (8). Коэффициент C при «медленной» экспоненте достигал значения 0.8, свидетельствуя о зависимости функции восстановления намагниченности близкой к одноэкспоненциальной.

Температурная зависимость величины $^{17}(T_1T)^{-1}$ при ориентации внешнего магнитного поля ${\bf B}_0 \parallel {\bf c}$ монотонно уменьшается в нормальном состоянии с дальнейшим резким падением в сверхпроводящей области. Для выявления анизотропии скорости спин-решеточной релаксации были проведены измерения при ориентации внешнего магнитного поля ${\bf B}_0 \perp {\bf c}$. Обнаружено, что коэффициент анизотропии $^{17}r = (T_1)_{ab}/(T_1)_c = 1.3$.

3.2.2. Скорость спин-спиновой релаксации ядер меди

На рис. 4 представлена температурная зависимость величины $^{63}T_{2g}^{-1}$ при ориентации внешнего магнитного поля ${\bf B}_0 \parallel {\bf c}$.

При измерении T_{2g} ⁶³Cu также регистрировалось изменение интенсивности линии спектра ЯМР. Экспериментальный массив обрабатывался методом наименьших квад-

Рис. 4. Температурная зависимость величины $^{63}T_{2g}^{-1}$ при ориентации магнитного поля ${f B}_0 \parallel {f c}$

ратов по формуле

$$y(t) = A \exp\left\{-0.5 \left(\frac{t}{T_{2g}}\right)^2 - \frac{t}{T_{2L}}\right\},\tag{9}$$

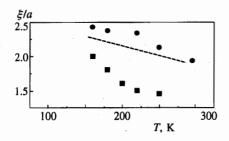
где t — время между первым импульсом и сигналом спинового эха,

$$1/T_{2L} = 3(1/T_1)_c + (1/T_1)_{ab}. (10)$$

Значение гауссовского вклада T_{2g}^{-1} в скорость спин-спиновой релаксации для внешнего магнитного поля ${\bf B}_0 \parallel {\bf c}$ медленно возрастает при понижении температуры, достигает максимума при T=160 K и затем уменьшается. Полученная температурная зависимость подобна приведенной для Tl2223 ($T_c=115$ K) [4].

3.2.3. Оценки параметров спектра спиновых флуктуаций в модели антиферромагнитной ферми-жидкости

Миллис, Моньен и Пайнс [16] предложили феноменологическую модель антиферромагнитной ферми-жидкости для описания спиновых корреляций в слое ${\rm CuO_2}$. В этой модели значение динамической спиновой восприимчивости $\chi_s(q,\omega)$ в центре (q=0) и на границе $(q=Q_{AF})$ зоны Бриллюэна связаны между собой. Это позволило обсуждать в рамках одной спиновой степени свободы данные ЯМР разных атомов. Соответствующую мнимую часть восприимчивости в пределе малых частот записывают в виде


$$\chi''(q,\omega\to 0) = \frac{\pi\chi_0\omega}{\Gamma_0} \frac{1+\beta(\xi/a)^4}{\left[1+\xi^2(q-Q_{AF})^2\right]^2}.$$
 (11)

Здесь ξ — магнитная корреляционная длина, Γ_0 — характерная энергия спиновых флуктуаций при q=0, a — параметр решетки, β — параметр, учитывающий рост интенсивности флуктуаций при $q=Q_{AF}=\{\pi,\pi\}$ относительно ее значения в центре зоны Бриллюэна. Выражение (11) получено с использованием следующих условий связи для значения параметров спиновых флуктуаций при q=0 и $q=Q_{AF}$:

$$\chi_Q = \chi_s \beta^{1/2} (\xi/a)^2, \tag{12}$$

$$\Gamma_Q = (\Gamma_0/\beta^{1/2})(\xi/a)^2\pi. \tag{13}$$

Для исследуемого соединения мы получили анизотропию скорости спин-решеточной релаксации $^{63}r=^{63}(1/T_1)_{ab}/^{63}(1/T_1)_c$. Эта величина приблизительно постоянна во

Рис. 5. Температурные зависимости величины ξ/a для соединений Tl2212 (кружки), Tl2223 (квадраты) и Y123 (штрихи)

всем температурном диапазоне и равна $^{63}r=2.65(0.3)$. Полученное значение больше $^{63}r\approx 1.8$ для Tl2223 [3,4] и меньше $^{63}r=3.7$ для Yl23 [17, 18]. В пределе $\xi\gg a$ величина ^{63}r определяется комбинацией сверхтонких полей [19].

Температурно-независимое поведение коэффициента анизотропии ^{63}r может свидетельствовать в пользу применимости приближения больших значений корреляционных длин ξ .

Как было показано в [20], гауссовская составляющая $^{63}T_{2g}^{-1}$ скорости спин-спиновой релаксации на меди в ориентации ${\bf B}_0 \parallel {\bf c}$ несет информацию о зависящей от волнового вектора действительной части спиновой восприимчивости. Для $\xi > a$ вклад флуктуаций при $q = Q_{AF}$ в T_{2g}^{-1} является доминирующим [19]:

$$\left(\frac{1}{T_{2g}}\right)^2 = \frac{0.69(^{69}\gamma\eta)^4(Ac - 4B)^4}{32\pi\eta k_B}\beta\chi_0^2 \left(\frac{\xi}{a}\right)^2 \tag{14}$$

 $(\gamma$ — гиромагнитное отношение). Удобно записать (14) в другом виде:

$$\left(\frac{1}{T_{2g}}\right)^2 = \frac{0.69(^{69}\gamma\eta)^2(Ac - 4B)^2}{16\pi\eta k_B} \left[\frac{2}{^{63}(T_1T)_{ab}} - \frac{1}{^{63}(T_1T)_c}\right] \chi_0\eta\Gamma_0. \tag{15}$$

Используя (15) и значения однородной спиновой восприимчивости χ_0 , получим оценки характерной энергии $\eta\Gamma_0(T)$ спиновых флуктуаций. Ее значение существенно превышает $\eta\Gamma_0=1.2$ эВ для YBa₂Cu₃O₇ [21] и сравнимо с данными для Tl2223 в области температур больше 180 К. Величина $\eta\Gamma_0$ сохраняет приблизительное постоянство в широком диапазоне температур ($\eta\Gamma_0=2.91$ эВ). Подобное не зависящее от температуры поведение наблюдалось в соединении YBa₂Cu₃O₇. В отличие от этого для Tl2223 обнаружено значительное уменьшение с температурой величины $\eta\Gamma_0$ для области нормального состояния. Существенный рост $\eta\Gamma_0$ свидетельствует о смещении спектра флуктуаций в высокочастотную область в соединении Tl2212, имеющем большее значение T_c в сравнении с Y123.

Для определения корреляционной длины с использованием соотношения (14) необходимо знать значение β , которое учитывает рост интенсивности флуктуаций при $q=Q_{AF}=\{\pi,\pi\}$ относительно его значения в центре зоны Бриллюэна. В частности, в ранних работах, в основном для соединений YBaCuO, значение β принималось равным $\pi^2\approx 10$. В [3,4] приводится значение $\beta=60$. В данной работе мы приняли $\beta=60$, что соответствует значению для родственного по структуре и сверхпроводящим свойствам соединения $Tl_2Ba_2Ca_2Cu_3O_{10-d}$.

Значения длины корреляции антиферромагнитных спиновых флуктуаций приведены на рис. 5 в единицах параметра a, равного расстоянию между соседними атомами Cu. Зависимость ξ/a от температуры для Tl2212 очень близка к аналогичной для

 $YBa_2Cu_3O_7$ [21]. Интересно отметить, что вблизи T_c значение ξ/a для $Tl_2Ba_2Ca_2Cu_3O_{10}$ приближается к полученному для $Tl_2Ba_2CaCu_2O_8$ в данной работе.

Монту и Пайнс [8] показали, что если куперовское спаривание осуществляется за счет виртуального обмена антиферромагнитными парамагнонами, то взаимодействие между электронами в паре будет пропорционально энергии спиновых флуктуаций. В этом случае для температуры сверхпроводящего перехода было предложено следующее выражение:

$$T_c = \frac{\Gamma_0}{\pi \beta^{0.5}} 0.79(1 - n_h) \exp\left(-\frac{1}{\lambda}\right).$$
 (16)

Здесь λ — безразмерная константа связи (для данной системы $0.42 < \lambda < 0.48$), n_h — концентрация дырок в слое. Предэкспоненциальный множитель $\Gamma_0/\pi\beta^{0.5}$ в (16) для исследованного соединения в полтора раза превышает аналогичное значение для $YBa_2Cu_3O_7$ при T=220 K, что вполне сопоставимо с большим значением T_c в T12212 при учете возможной разницы других величин (λ, n_h) . Полученные оценки параметров спектра спиновых флуктуаций, на наш взгляд, свидетельствуют в пользу нефононного механизма сверхпроводимости, обсуждаемого для YBaCuO в [8].

В металлах с широкой зоной проводимости скорость релаксации пропорциональна температуре. Это объясняется тем, что в пределе малых времен корреляции электронного движения, $\omega_0 \tau_e \ll 1$, плотность состояний спиновых возбуждений в области частот ЯМР ω_0 постоянна, а их число пропорционально температуре. Пространственные дисперсии спиновой восприимчивости $\chi(q)$ и затухания квазичастиц Γ_q слабо выражены. Их значения определяются плотностью состояний на уровне Ферми $N(E_F)$. В парамагнитном состоянии величина $\chi''(q,\omega)/\omega$ имеет частотную зависимость лоренцевского типа:

$$\chi(q) \approx \chi(q=0) \equiv \chi_0 = 2\mu_B^2 N(E_F), \quad \Gamma_q \approx \Gamma \propto N^{-1}(E_F).$$

В этом случае выражение для скорости релаксации принимает следующий вид:

$$^{17}W = \gamma^2 \eta k_B T C^2 \sum_q \frac{\chi''(q, \omega_0)}{\omega_0} \approx \gamma^2 k_B T C^2 \sum_q \frac{\pi \chi(q)}{\Gamma_q} \approx 2\gamma^2 \hbar k_B T C^2 N^2(E_F). \tag{17}$$

Обычно при анализе процессов релаксации в нормальных металлах для оценки K_s используют соотношение Корринги:

$$K_s^2 T T_1 = \frac{4\pi \mu_B^2}{\hbar \gamma^2 k_B} \equiv \text{const.}$$
 (18)

Феноменологическая модель почти антиферромагнитной ферми-жидкости приводит к соотношению между временем спин-решеточной релаксации T_1 и сдвигом Найта K_s , отличному от закона Корринги, а именно:

$$K_s T_1 T = \text{const.} \tag{19}$$

Набор экспериментальных данных по сдвигу Найта и скорости спин-решеточной релаксации хорошо аппроксимируется зависимостью \

$$^{17}K_s^{0.95\pm0.2}TT_1 = \text{const.}$$

Полученный результат позволяет сделать вывод о том, что электронные возбуждения в медных слоях $Tl_2Ba_2CaCu_2O_{8-\delta}$ лучше анализировать в модели, учитывающей наличие сильных спиновых корреляций между атомами меди в плоскостях CuO_2 .

4. ЗАКЛЮЧЕНИЕ

В работе представлены данные ЯМР 63 Си и 17 О для областей нормального и сверх-проводящего состояний ориентированного купрата $Tl_2Ba_2CaCu_2O_{8-\delta}$. Из анализа квадрупольных частот 63 Си и 17 О получены сведения о перераспределении заряда в медных плоскостях по сравнению с другими ВТСП-оксидами. Полученые данные подтверждают обнаруженную корреляцию между ростом температуры сверхпроводящего перехода в ВТСП и усилением ковалентной связи медь-кислород.

Из анализа скоростей спин-спиновой и спин-решеточной релаксаций в модели Миллиса, Моньена и Пайнса выявлен существенный рост характерной энергии спиновых флуктуаций по сравнению с Y123, в то время как магнитная корреляционная длина существенно не меняется при увеличении температуры сверхпроводящего перехода. Таким образом, по данным ЯМР рост T_c в соединении $Tl_2Ba_2CaCu_2O_{8-\delta}$ сопровождается увеличением энергии спиновых флуктуаций, что является серьезным аргументом в пользу механизма сверхпроводимости, непосредственно связанного со спиновыми флуктуациями в медных слоях.

Работа выполнена в рамках Государственных программ РФ фундаментальных исследований в области физики конденсированного состояния: направление «Сверхпроводимость» (проект № 961223) и поддержки ведущих научных школ (проект 96-15-96515).

Литература

- 1. C. Berthier, M. Horvatic, P. Carretta et al., Physica C 235, 67 (1994).
- 2. G. Zheng, Y. Kitaoka, K. Ishida et al., J. Phys. Soc. Jpn. 64, 2524 (1995).
- 3. G. Zheng, Y. Kitaoka, K. Asayama et al., J. Phys. Soc. Jpn. 64, 3184 (1995).
- 4. G. Zheng, Y. Kitaoka, K. Asayama et al., Physica C 260, 197 (1996).
- 5. K. Magishi, Y. Kitaoka, G. Zheng et al., J. Phys. Soc. Jpn. 64, 4561 (1995).
- 6. H. Alloul, J. Appl. Phys. 69, 247 (1991).
- 7. P. Monthoux, A. V. Balatsky, and D. Pines, Phys. Rev. Lett. 67, 3488 (1991).
- 8. P. Monthoux and D. Pines, Phys. Rev. B 49, 4261 (1994).
- 9. T. Moriya, Y. Takahashi, and K. Ueda, J. Phys. Soc. Jpn. 59, 290 (1990).
- 10. A. Trokiner, K. Mikhalev, A. Yakubovskii et al., Physica C 252, 204 (1995).
- 11. R. B. Greel and S. L. Segel, J. Chem. Phys. 60, 2310 (1972).
- 12. S. Kambe, H. Yasuoka, A. Hayashi, and Y. Ueda, Tecnical Report of ISSP., ser. A № 2551 (1992).
- 13. F. Mila and T. M. Rice, Physica C 157, 561 (1989).
- 14. K. Ishida, Y. Kitaoka, K. Asayama et al., J. Phys. Soc. Jpn. 63, 1104 (1994).
- 15. K. Schwarz, C. A. Draxl, and P. Blaha, Phys. Rev. B 42, 2051 (1990).
- 16. A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 (1990).
- 17. R. E. Walstedt, W. W. Warren, R. F. Bell, and G. P. Espinosa, Phys. Rev. B 40, 2572 (1989).
- 18. S. E. Barrett, J. A. Martindale, D. J. Durand et al., Phys. Rev. Lett. 66, 108 (1991).
- 19. V. Barzykin and D. Pines, Phys. Rev. B 49, 1554 (1994).
- 20. C. H. Pennington and C. P. Slichter, Phys. Rev. Lett. 66, 381 (1991).
- 21. D. Thelen and D. Pines, Phys. Rev. B 49, 3528 (1994).