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We consider advection of а passive sca1ar O(t, Г) Ьу an incompressible large-scale tшbuIепt 
flow. In the framework of the Кraichnan model а1l PDF's (probability distribution functions) for 
the single-point statistics of 8 and for the passive scalar difТerence О(Г.) - 8(Г2) (for separations 
Г. - Г2 lying in the convective interval) are found. 

INТRODUCТION 

@1999 

We treat advection of а passive sca1ar field ()(t, г) Ьу ап incompressible turbulent flow; 
the role of the scalar сап ье played Ьу temperature or Ьу pollutant density. The velocity field 
is assumed to contain motions from some intetval of sca1es restricted from below Ьу Lv . А 

steady situation with а permanent random supply of Ше passive scalar is considered. We wish 
to establish statistics of the passive sca1ar () for sca1es that are less Шan both the sca1e L v апд 

Ше рuтрing sca1e L, апд larger than the diffusion sca1e rdi! (for defmiteness we assume that 
L < Lv )' Such а сопуесНуе intetval'of scales exists if the Peclet number Ре = L/rdi! is 
large enough; we will assume this condition. Since а11 sca1es from Ше convective intetval are 
assumed to ье smaller than L v , we will discuss advection Ьу а large-sca1e turbulent flow. The 
рroЫет is of physica1 interest for dimensionalities d = 2,3, but formally it сап ье treated for 
ап arbitrary dimensionality d of space. Below we will treat d as а parameter. In particular, all 
expressions will ье true for а space of highdimensiona1ity d. 

Description of Ше small-sca1e statistics of а passive scalar advected' Ьу а large-sca1e 
solenoida1 velocity field is а specia1 рroЫет in' turbulence theory. This problem was treated 
consistently from Ше уесу beginning апд some rigorous results have Ьееп obtained, wblch is quite 
unusual for а turbulence problem. Batchelor (see Ref. [1]) examined the case of ап externa1 
velocity field being so slow that it does nQt change during the Оте ofthe spectra1 transfer ofthe 
sca1ar from the externa1 scale to the diffiision sca1e. Тhen Кraichnan (see Ref. [2]) obtained 
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plenty of results in the opposite limit of а velocity field delta-correlated in time. The pair 
correlation function ofthe passive scalar (8(r)8(O») was found to ье proportional tothe logarithm 
ln(Ljr), апd the pair соrrelаtiоп function of the passive scalar difference ([o(r) -0(0)]2) was 
found to ье proportional to ln(r j r di/) in· both cases. The assertions are really correct for 
апу temporal statistics of the velocity field (see Refs. [3,4]). Тhus we are dealing with the 
logarithmic case which is suЬstапtiallу simpler thап cases with power-like correlation functions 
usually encountered in turbulence problems (see Refs. [5-7]). 

Now about high-order correlation functions of the passive scalar. As long as all distances 
between the points are тисЬ less thап L, the 2n-point correlation functions of 8 are given Ьу 
their reducible parts (that is, are expressed via products of the pair correlation function) ир 
to n '" ln(Lfr), where r iseither the smallest distance between the points or rdi/. depending 
оп which is larger (see Ref. [4]). ТЬе reason for such Wick decoupling is ттрlу the fact that 
reducible parts contain more logarithmic factors (which are considered as the large ones) than 
non-reducible parts do. Consistent calculations of the fourth-order correlation function of the 
passive scalar at d = 2 (see Ref. [8]) confirm the assertion. Therefore, e.g., the single-point PDF 
of f) has а Gaussian core (that describes the first moments with n < lп Ре) and а non-Gaus
sian tail (that describes moments with n > lп Ре). ТЬе tail appears to ье exponential (see Refs. 
[3,'4]). ТЬе same is true of the passive scalar-difference !:J.{} = f)(r) - 8(0), where instead of lп Ре 
we should take ln(r jrdi/)' ТЬе tails do not depend оп ln Ре or оп ln(rjrdi/), and contain оnlу 
coefficients that depend оп the statistics of the advecting velocity. 

Correlation functions of the passive scalar сап ье written as averages of integrals of the 
pumping аlоng l.agrangian trajectories (see, e.g., Ref. [9]). For ехатрlе, the pair correlation 
function (8(r)0(0») is proportional 'to the average time needed for two points moving along 
Lagrangian trajectories to гип from the distance r to the distance L. Generally, correlation 
functions of а passive scalar are determined Ьу spectral transfer via evolution of l.agrangian 
separationsup to the. scale L. For the large-scale velocity field, the Lagrangian dynamics 
is determined Ьу the stretching matrix Uо.{Э = V {ЭVа and, consequently, the statistics of the 
matrix determines correlation functions of the passive scalar. For example, the coefficient of 
the logarithm in the pair correlation function of the passive scalar is P2j>' (see Refs. [1~]) 
where Р2 is the pumping rate of 02 and >. is Lyapunov exponent that is the average of the largest 
eigenvalue of the matrix 0-. Тhe coefficients in the exponential ШШ are more sensitive to the 
statistics of 0-; specifically, they depend оп the dimensionless parameter >.7' (see Ref. [4]) where 
т is the correlation time of 0-. ТЬе motion of the fluid particles in the random velocity field 
resembles in some respects random walks, but опе should remember th:').t correlation lengths of 
both the advecting velocity and of the pumping are тисЬ larger than scales from the convective 
interval we are interested in. Thus the situation is opposite to опе usually encountered in solid 
state physics, where, e.g., random potential is short-range correlated in space. 

Since ln(L j Т) is really not very'large, it is of interest to find all PD F's for the single-point 
statistics of f) and for the passive scalar difference М. It is possible to do this for the Kraichnan 
short-correlated case >.7' ~ 1 when the statistics of о- сап ье regarded to ье Gaussian. An 
attempt to do this was made in Refs. [10,11] in terrns'ofthe statistics ofthe main eigenvalue 
ofthe matrix 0-. Unfortunately, the scheme works опlу for the dimensionali~ d = 2 where the 
matrix о- Ьм а single eigenvalue. Тhis was noted in Ref. [12] where also the cotrect coefficient 
in the exponential tails for ап arbitrary dimensionality of space d was found. Here, we develop 
а scheme enabling опе to obtain all PDF's for arbitrary d. ТЬе schem~ is also interesting from 
а methodological point of view. For ехатрlе, its modification enables опе to calculate the 
statistics of local dissipation (see Ref. [13J). 
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The paper is organized as foIlows. In Sec. 1 we find а path integra1 representation for the 
simultaneous statistics of the passive sca]ar .. In Sec. 2 we ana1yze the generating functional 
for сопеlаtiоп functions of the passive scalar in the convective interva1 of sca1es. Using 
different approaches we obtain the functional and establish the applicability conditions of our 
consideration. In Sec. 3 we find explicit expressions for the single-point PDF and for the PDF 
of the passive sca1ar difference. Нl the Conclusion we briefly discuss the results obtained. 

1. GENERAL RELATIONS 

The dynamics of the passive scalar О advected Ьу the velocity field v is described Ьу Еч. 

(1.1) 

Иеre, the term with the velocity v describes the advection of the passive sca1ar, the next term is 
ditТusive (~ is the ditТusion coefficient), and Ф describes а pumping source ofthe passive scalar. 
Both v(t, r) and ф(t, r) are assumed to Ье random functions of t and r. We regard the statistics 
of the velocity and source to ье independent. Therefore, аll сопеlаtiоп functions of О are to 
Ье treated as averages over both statistics. 

А. Simultaneous Statistics 

The source Ф is believed to possess Gaussian statistics and to ье Б-соrrelаtеd in time. Тhe 
statistics is entirely characterized Ьу the pair correlation function 

(1.2) 

where we assume that the pumping is isotropic. The function Х(Т) is assumedto have а 
characteristic scale L, which is the pumping length. We wil1 ье interested in the statistics 
of the passive sca1ar оп scales much sma1ler than L. 

Simultaneous сопеlаtiоп functions ofthe passive scalar О сап ье represented ~ coefficients 
in the expansion over у of the generating functionaI 

Ж(у) = (ехр {iY J dr ,8(r)o(o,r)}) , (1.3) 

where ,8 is а fuпсtiоп of the coordinates and angular brackets denote averaging over both 
the statistics of the pumping Ф and the statistics of the velocity у. The generating functionaI 
Ж (У) contains complete information about the simultaneous statistics of the passive sca1ar {). 
Specifically, knowing Ж(у) опе сап reconstrиct the simultaneous PDF of the passive scalar; 
the problem is discussed in Sec. 3. 

If characteristic sca1es of,8 in (1.7) are much larger than the ditТиsion scale r dif' then it is 
possible to neglect ditТusion when treating the generating functiona1 (1.3). Then the Ieft-hand 
side of Еч. (1.1) describes simple advection, and it is reasonable to consider а solution of Еч. 
in terms of Lagrangian trajectories U(t) introduced Ьу Eq. 

atu = v(t, и). (1.4) 

We Iabel the trajectories with r, which are the positions of the Lagrange particles at t = О: 

и(О, r) = r. Next, introducing ё(t, r) = O(t, и), we rewrite'Eq. (1.1) as дtё = ф, which Ieads to 

922 



ЖЭТФ, 1999, 115, вьm. 3 Passive sca/ar in а large-scale . .. 

о 

0(0, r) = J dt ф(t, (!) . (1.5) 

-00 

Here we Ьауе taken into account thatat t = О the functions О and О coincide. Starting with (1.5) 
and exploiting Gaussian pumping statistics, we сап average the generating functional (1.3) 
ехрliсitlу over the statistics. ТЬе result is 

Of(y) - (ех+У; 1 dtu]) , (1.6) 

и = J drldr2 fЗ(rl)fЗ(r2)x(IQI - (!2\) , (1.7) 

where angular brackets mean averaging over the statistics of the velocity field only. 
_ Being interested in the single-point statistics of О we should take fЗ(r) = o(r). But this is 

impossible since we Ьауе neglected diffusion. We take fЗ(r) = ол(r) instead, where the function 
ол(r) tends to zero at ЛТ > 1 fast enough, and is normalized Ьу the condition 

J drол(r) = 1. 

Then the generating functional (1.6) wШ describe the statistics of an object 

Ол = J drол(r)О(r), (1.8) 

smeared over а spot of size Л -1. lf т dif Л « 1, then the statistics of the object is not sensitive to 
diffusivity. Оп the other hand, if ЛL :» 1, then knowing the correlation functions of О л, we сап 
reconstruct single-point statistics due to ·the logarithmic character of the correlation functions. 
То obtain single-point correlation functions one should substitute simply Л -+ T;;';~ into the 
correlation functions of Ол. ТЬе i1bove inequalities ЛТdif « 1 and лL :» 1 are compatible 
because of Ре :» 1. If we асе interested in the statistics of the passive scalar differences in 
points with а separation ro (where То :» Т dif) then instead of о л (r) we should take 

fЗ(r) = ол(r - ro/2) - ол(r + ro/2). (1.9) 

ТЬеп the generating functional (1.6) will describe .the statistics of an object 

/).8л = Ол(rо/2) - Ол( -ro/2). (1.10) 

Again, correlation functions of the passive scalar differences сап ье found from correlation 
functions of /),Ол after the substitution Л -+ T;;';~. 

В. Path Integral 

Below, we treat advection of the passive scalar Ьу а large-scale velocity field, that is, we 
assume that the velocity correlation length L" is larger than the scales from the convective 
interval. ТЬеп for the scales опе сап expand the difference 

(1.11) 
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Here О'а/З(t) сап ье treated as ап r-independent matrix field. Then Бq. (1.4) leads to 

Ot«(Jl,a - (J2,a) = О'а/З(t)«(Jl,/З - (J2,/З). 

А formal solution of Eq. (1.12) is 

(1.12) 

(1.13) 

where :т denotes antichronological ordering. Note that det W = 1; this property is а 
90nsequence of Tr о- = о and the initial condition W = 1 at t = О. The Lagrangian difference 
in (1.7) is now rewritten as 

(1.14) 

where the subscript Т denotes а matrix transpose. Note that det iJ = 1 тпсе det W = 1. 
ТЬе generating funetional ~(y) (1.6) сап Ье ехрНеШу calculated in the Кraiсhnaп еше 

(see Ref. [2]) when (Ье statistics of the veloeity is o-correlated in time. Then the veloeity 
statistics is Gaussian and is entirely determined Ьу the pair eorrelation function, which in the 
convective interval is written as 

(1.15) 

(1.16) 

Here ?Уа is а huge r-independent eonstant and D is а parameter eharacterizing the amplitude 
of the strain fluctuations. The strueture of Expr. (1.16) is determined Ьу the assumed isotropy 
and spaeiaI homogeneity, and Ьу the incompressibiIity condirion V' v = О. Тhеп the statistics 
of о- is Gaussian and is determined Ьу the pair eorrelation funetion, which сап ье found from 
Eqs. (1.15), (1.16): 

(1.17) 

Note that the correlation function (1.17) is r-independent, as it should Ье. We see from (1.17) 
that the parameter D characterizes the amplitude of о- fluctuations. 

. Аvеrчing over (Ье statistics of О-сап ье replaced Ьу а path integral over unimodular 
matrices W (t) with а weight ехр (i .9). ТЬе effective aetion :f = J dt IZ о is determined 
Ьу (1.17): 

i!Z'o = - 2d(d ~ 2)п [(d + I)Tr(o-T 0-) + Tr0-2] • (1.18) 

Then (Ье generating functional (1.7) сап Ье rewritten as the following functional integral over 
unimodular matrices . 

Ж(у) ~ ! !»W ехр и dt (i.2'. - ~и)] · 
и = J dr1dr2 jj(rl)jj(r2)X [y'(r1a - Т2а)Ва/З(rl/Э - Т2/Э)] 
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Here, we shoиld substitute и = at Иr(Иr)-1 and recall the boundary condition W = 1 at t = О .. 
Some words about the «potential,. и (1.7) fJgUring in (1.20). ТЬе characteristic value of 

rl - r2 in the integral (1.7) is of order л- I for !З(r) = дл(r). Since we зssите ЛL» 1, then 
for single-point statistics и ::::: Р2, where Р2 = х(О), if в is not уесу large. In particular, it 
is сопесt at moderate times Щ, since В = i at t = О. With increasing ltI the argument of Х 
in (1.20) grows and и tends to zero when the argument of Х becomes greater than L. For the 
passive scalar difference when f3 is determined Ьу (1.9) the situation is а Ы! more complicated. 
Then и is а difference of two contributions. ТЬе first contribution behaves asfor single-point 
statistics. ТЬе second contribution contains Х with the argument dеtепninеd Ьу rl - Т2 ::::: ±ro. 
Then at t = О the meaning of the second contribution is determined again Ьу Р2, but it vanishes 
with increasing Itl earlier than the first contribution. 

ТЬе path integral representation (1.19) indicates that we reduced our problem to the 
quantum mechanics with d2 - 1 degrees of freedom. Nevertheless 10 solve theproblem we 
should perform an additional reduction of the degrees of freedom. ТЬе conventional way to 
do this is passing to eigenvalues, say, of the matrix В fщuring in (1.20) (see, e.g., Ref. [14]) 
and excluding angular degrees of freedom. Just this way was used Ьу Bemard, Gawedzki and 
Kupiainen (see Ref. [12]). Then the authors using known facts about the quantum mechanics 
associated with the eigenvalues (see, e.g., Ref. [15]) Ьауе found the coefficient in the exponential 
tail of the single-point PDF of 8. Unfortunately this way is not уесу convenient to find the 
whole PDF. То do this we will use а special representation of the matrix W in the spirit of 
the nonlinear substitution introduced Ьу Kolokolov (see Ref. [16]). That is the subject of the 
next subsection. 

С. Choice of Parametrization 

То examine the generating functional :1С(у) we use а mixed rotational-triangle paramet
rization 

Иr=НТ, (1.21) 

where R is an orthogonal matrix and Т is а triangular. matrix; ТОЗ = О for i > j. The 
parametrization (1.21) is the direct generalization of the 2d substitution suggested in Ref. [17]. 
N ote. that det Т = 1 since det W = !. N ote also that the matrix В introduced Ьу (1.14) does 
not depend оп Н, as is seen from (1.21). That is а motivation to exclude the matrix Н from 
consideration, integrating over the сопеsропding degreesoffreedom in the path integral (1.19). 
А Jacobian appears in the integration. То avoid an explicit calculation ofthe Jacobian, which 
needs а discretization over time and then an analysis of an infinite matrix (see Ref. [10]), we 
use an altemative procedure described below. 

Let us examine the dynarnics of thematrix Т. It is determined Ьу the equation 

atTij = 'J:.iiTij + L:: ('J:.ok + 'J:.ki)Tkj , 
i<kSj 

following from Eqs. (1.13) and (1.21). Несе we used the notations 

i:.= нтuН. 

Next introducing the quantities 
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we rewrite Eq. (1.22) as 

atPi = l:ii , (1.25) 

at % = (l:ij + l:ji) ехр(рз - Рд + L (l:ik + l:ki) exp(Pk - P;)fJkj . (1.26) 
i<k<j 

Comparing (1.13) with (1.21), опе сап find the following expression for А = ЯТдJl: 

Aij = l:ij ifi > j, Aij = -l:ji ifi < j. (1.27) 

Опе сап easi1y check that the irreducible pair сопеlаtiоп function of ~з has the same 
form as for (Щ [see Eq. (1.17)]: 

(l:ij(t,)l:mn(t2») = D[(d + l)БimБjn - БinБjm - БijБmn]Б(t, - t2)' (1.28) 

Furthermore, the average value of l:ij is norizero (see Ref. [10)): 

(l:") = _Dd(d - 2i + 1) Б .. 
'З 2 'З • 

(1.29) 

Nonzero averages of~j are related to Lyapunov exponents (not only the first опе), see Ref. [18] 
(for our model see Ш0 Ref. [19]). То obtain (1.29) опе should take into account that the matrix 
Н propogates backward in time since Н = 1 is fIXed at t = О and we treat negative t. Solving 
Eq. А = НТ atH for Н оп а small interval т we get 

ТЬеп with the same accuracy we get from Eq. (1.23) 

(1.30) 

The average value oft arises from the second term оп the right-hand side of(1.30). ТЬе explicit 
form of the average сап ье found using 

( >:;j(' - Т) j dt' >;"..(t'») ~ ~ [(d + l)б'mбj• - б,.бjm - б"бm.J. (1.31) 
t-r 

Here we uti1ized Eq. (1.28) and replaced the integral 

t J dt' Б(t - т - t') 

t-r 

Ьу 1/2. ТЬе reason is that the correlation function of а- actually has а finite correlation time, and 
therefore Б(t) (representing this сопеlаtiоп function) should ье replaced Ьу а папоw function 
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symm~tric under t --+ -t. Then we wШ get 1/2. Expressing.A via f: from (1.27) in (1.30) and 
calcиlating its average using (1.31) we get the answer (1.29). 

Тhe expressions (1.25), (1.26), (1.28), and (1.29) entirely determine the stochastic dynamics 
of Р. and 'fJij. Using the conventional approach (see Refs. [20-24]) сопеlаtiоп functions of 
these degrees of freedom сап Ье described in terms of а path integral over Pi, 'fJij and over 
auxiliary fields which we denote Ьу т. and J.tin (i < n). This integral should ье taken with 
the weight exp(i J dt !Z'), where the Lagrangian is 

~ [ d(d - 2а + 1)] iD [ " (") 2] !Z' = ~ та. atPa + D 2 +"2 d ~ т~ - ~ та + 

+ iDd L exp(2pj - 2рдJ.t~j + 2iDd L J.tij J.tik exp(2Pk - 2Рд'Т/kj + 
i<j i<k<j 

+ L J.tijдt'Т/ij + iDd L J.timJ.tin'Т/km'Т/kn exp(2pk - 2pi). (1.32) 
'<) i<k<m,n 

Since the matrix fз in accordance with (1.21) does not depend оп R it is enough to know the 
statistics of Ра. and 'fJij to detertnine the average (1.6). Therefore, instead of (1.19) we get 

(1.33) 

Here и is determined Ьу (1.20), where the matrix fз is determined Ьу Eqs. (1.21), (1.24). 
Thus we obtained the expression for the generating functional (1.3) in tепns ofthe 

functional (path) integral which is convenient for the -analysis presented in the subsequent 
section. 

2. GENERATING FUNCТIONAL 

Here we calculate the generating functional (1.3) for а single-point statistics of () that is of 
the object (1.8) corresponding to fЗ(г) = ол(г), and also the statistics of the ditference that is of 
the object (1.10) сопеsропding to (1.9). The starting point for the subsequent consideration is 
the expression (1.33). There ~re ditferent ways to examine Ж(у). We wШ describe two schemes 
leading to the same answer but carrying in some sense complementary information. We a1s0 
believe that consideration of the ditferent schemes is useful from а methodological point of 
view. А modification of the second _scheme is presented in the Appendix. 

А. Saddle-Point Approacb 

The first way to obtain the answer for the generating functional (1.3) is Ьу using the saddle
point approximation for the path integral (1.33). Тhe inequa1ities justitYing the approximation 
are ЛL » 1 for the object (1.8) and Лr » 1 for the object (1.10). 

As we will see, large values ofthe ditferences Р> - Pk (i < k) will ье relevant for us. Тhen 
fluctuations of 'Т/ and J.t are suppressed and it is possible to neglect the fluctuations. Therefore 
we сап omit the integration over 'Т/ and J.t in (1.33), substituting 'Т/ = J.t = О into (1.32). After 
that we obtain а reduced Lagrangian: 
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(2.1) 

Now, to obtain Ж(у) опе should integrate the exponent in (1.33) (with !Z'r) over Ра and та. 
То examine (2.1) it is convenient to pass to .new variables Фа = ОаЬРЬ and та = Оаьть, 
where д is an orthogonal matrix. We make the following transformation: 

гз . 
ФI = V d(d2:1j [(d - 1)РI + (d - 3)Р2 + ... + (1 - d)Pd] , 

(2.2) 
1 

. .., Фd = .fd [РI + Р2 + ... + Pd] . 

Then the expression (2.1) wi1l ье rewritten as 

. ,,р - . ~ - д Ф Dd ~ - 2 . Dd V d(d2 - 1) -
z.z; r - ~ ~ та t а - т ~ та + ~T 3 ml· 

а=1 а=1 

(2.3) 

The Lagrangian (2.3) is а sum over different degrees of freedom. The dynamics of Фl is 
ballistic, whereas the dynamics of Фа for d > а > 1 is purely diffusive. ТЬе condition det Т = 1 
means Фd = О, correspondinly the dynamics of Фd determined Ьу the Lagrangian (2.3) is trivial: 
дtФt = О. We will see that times determining the main contribution to the generati.ng functional 
are !аще enough that ФI » Фа for the re!evant region. Therefore, the potential и (1.20) depends 
essentially опlу оп ФI, and it is possible to integrate explicitly over Фа and та for а > 1. After 
that we are left with опlу опе degree of freedom, which is described Ьу the Lagrangian 

(2.4) 

Neg!ecting all Фа for а > 1 and inverting transformation (2.2) we obtain 

3(d - 1) 
d(d + 1) ФI, 

d - 2а + 1 
Ра ~ d _ 1 PI· (2.5) 

We will see below that the characteristic value ФI » 1. Therefore the characteristic value of 
еР' is much larger than other еРа; and we conclude that the potentia! и d~pends really only оп 
PI. For the case of the single..:point statistics, the characteristic value of the difference rl - r2 
in (1.20) is Л -1" ТЬеп it follows from (1.21) and (1.24) that the potential и decreases from 
Р2 to zero near the point РI = lп(LЛ), which is near the point ФI = Фл, where 

фл = 
d(d + 1) 
3(d _ 1) lп (LЛ) . 

For the difference the potential increases from zero to 2Р2 at ФI = ФR, where 

d(d + 1) L 
3(d - 1) ln То ' 
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and then decreases from 2Р2 to zero near ФI = ФА' The expressions (2.6) and (2.7) determine 
the characteristic values of ФI, which are actually large, since Lл » 1 or L/ro » 1; this 
justifies our conclusions. 

Now we сап employ the saddle-point approximation: 

о 

ln~(y) ~ J dt (i-2''t - ~ и) (2.8) 

-00 inst 

where we should substitute solutions of the extremal conditions, which we will call instantonic 
equations. ТЬе instantonic equations, which сап Ье found from extremal conditions for 
i!Z'1 - у2U /2, are 

(2.9) 

, 
(2.10) 

Eqs. conserve the «energy» 

. Dd - J d(d2 - 1) + Dd - 2 + у2 и 
-~2тl 3 2 ml "2' (2.11) 

. The conservation law is satisfied since i!Z'1 - у2U /2 does not explicitly depend оп t. The 
«energy» (2.11) is equal to zero, since as t '-+ -00 the value of тl should tend to zero. тhis 
property сап ье treated as the extremal condition when i!Z' r - у2U /2 is varied over the initial 
уаlие of Фl' Equating the «energy» (2.11) to zero, we сап express тl via ФI' Next, since (2.11) 
is zeIO, the saddle-point value of ~(y) (2.8) сап ье written as i J dФI тl, where the integral 
over фl goes from zero to infinity. 

Substituting the expression for тl in terms of ФI into i J dФI т 1, we ge~ for the single-point 
statistics 

ln~(y) ~ d(d6+ 1) [1- 1 12У2Р2] 1 (L ) + Dd2(d2 _ 1) пА. (2.12) 

Note that the expression (2.12) has (ш а function ofy) two branch points у = ±iY$ing, where 

2 _ Dd2(d2 - 1) 
Y.ing - - 12Р2 (2.13) 

The same procedure сап ье done for the passive scalar difference, or, more precisely, for the 
object (1.10). Taking into account the presence ofthejumps (2.6) and (2.7) in the potential 
и, we get an answer slightly different from (2.12): 

ln~(y) ~ d(d: 1) [1- 1 24У2Р2] 1 ( ) + Dd2(d2 _ 1) n rоЛ , (2.14) 

2 _ Dd2(d2 - 1) 
Ysing - 24Р2 (2.15) 
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Note that (2.14) does not depend оп the pumping scale L, but still depends оп the cutoff А. 
The chamcteristic value of ФI is determined Ьу the quantity (2.6) which is much larger 

chan unity. Then it follows from (2.5) that exp(2pj - 2Рд <t: 1, i > j, (excluding а short initial 
stage of evolution) and we see from (1.32) that fluctuations of the fields 'Г/ are suppressed in 
comparison, say, with Ра' This justifies neglecting the fields 'Г/ and J.L leading {о the reduced 
Lagmngian (2.1). Next, the dynamics of Фа for а > 1 is diffusive, and it follows from (2.3) 
that the ~haracteristic value of Фа сап Ье estimated to ье y'Ddltl. As follows from (2.3), 
дtфl ,..., Dd5/ 2, and we find from (2.6) the instantonic lifetime 

t/t = D- 1d-2 ln(LА) , (2.16) 

which determines times producing nonzero contributions to the effective action. At Itl '" tlt, 
the chamcteristic values of Фа for а > 1 are of order y'ln(LA)/d, and we conclude that 

Фа 1 
ф;"'" d~ <t: 1 (2.17) 

at times Itl "" t/t. The inequality (2.17) justifies passing to the Lagmngian (2.4). The same 
arguments сап ье applied to the generating functional for the passive scalar difference; the on1y 
rnodification is in the substitution lп(LЛ) -+ lп(тоЛ). 

There are also additional applicability conditions for the results (2.12) and (2.14). 
То establish the conditions, one should go beyond the main order of the saddle-point 
approximation. It will Ье more convenient for us to develop ап altemative scheme, which 
enables опе to findthe conditions more simply. Тhat is the subject of the next subsection. 

В. SchrOdinger equation 

Here we present another way to get the answers (2.12) and (2.14). As before, we start with 
the path integral repre~entation (1.33) for the genemtion functional iК(y). 

Unfortunately it is impossible to get а closed equation for iК(y). То avoid the difficulty 
we introduce ап аихiliасу quantity 

'1'(', у, р" "') ~ j.'i'J p.'i'J • .'i'Jт.'i'J р ехр [1 dt' (;2' - ";И) ] (2.18) 

It follows from the definition (2.18) that 

iК(y) = liт jПdРаd'Г/ij'Р(t,у,р,'Г/). 
t-+oo 

(2.19) 

Eq. for'the function 'Р сan ье obtained from the expression (1.32) and the definition (2.18): 

Dd [d д2 1 (d д) 2 d . д 
Bt'P= - L-2 - - L-, - L(d-2z+ 1)-+ 

2 i=1 BPi d i=1 др, i-I др, 

& д д 
+ 2 L exp(2pj - 2Р;)-2 + 4 L exp(2pk - 2pi)-.. --о 'fJkj + 

i<j Bryij i<k<j д'Г/,] Bry.k 

д д ] у2U + 2 L exp(2pk - 2Рд-- --rykmrykn 'Р - -'Р. 
'<k< Bryim Bryin 2 , т,n 

(2.20) 
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We see that Eq. (2.20) for'P resembles the Schrodinger equation. The initial condition for the 
equation сап ье found directly from the defmitioQ (2.18): 

(2.21) 

The Уа1ие of :К, in accordance with (2.19), is determined Ьу the integra1 of'P over 'fJ апd р. 
This integral is equal to unity at t = О, and then varies with increasing time t due to и =f О, 
siпсе-опlу the term with и in (2.21) breaks the conservation of the integra1. Thus, to find :К 
we must establish the evolution of the function 'Р from t = О to large t. 

Below we concentrate оп the single-point statistics. The scheme сап obviously ье 
generalized for the passive scalar difference. 

Let us first describe the evolution qualitatively. The initia1 condition (2.21) s1!ows that at ' 
t = О the function 'Р is concentrated at the origin. Then it undergoes spreading in аН directions, 
except for Рl + ... + Pd, since the operator оп the ri~ht-hand side of (2.20) comrnutes with 
Рl + .. . +Pd· Тhи isaconsequence ofthe condition detT = 1 (to ье satisfied), which implies that 
during evolution Рl + ... + Pd = О. ,This теаns that а solution of (2.20) is'P <х 6(Рl + ... + Pd). 
The function 'Р is smeared diffusively with time, and also moves as а whole in sOme direction, 
which is determined Ьу the term with the first derivative in (2.20). The rate ofballistic motion is 

(д .) = D d(d - 2i + 1) 
tP. 2' (2.22) 

Therefore 'Р describes а cloud, the center of which moves according to the law 

d(d - 2i + 1) 
Р; = D 2 t. (2.23) 

EfТecHye diffusion coefficients for the 'fJ'S decrease with increasing t, since in accordance 
with (2.23) the difТerences Pk - Pi, figuring in (2.20), are negative and grow in absolute value. 
Therefore ditТusion over 'fJ stops when the characteristic va1ues of Р; - Pk becomes greater than 
unity. Note that the «frozen. values of'fJ do not depend оп У, sinсе и сап ье considered 
uniform during the initial stage of evolution. After that the ",'s are frozen, ditТusion continues 
only over the p's. If the cloud is inside the region where и ~ Р2, then evolution of the cloud 
is not influenced Ьу U. After а period oftime t/t (2.16), the cloud reaches а barrier, where the 
potentia1 и decreases from Р2 to О. The subsequent history depends оп the value of У. For 
moderate У the cloud passes this barrier and continues to тоуе at the same rate. After this, the 
integral of'P will not change in time, and its value will determine the generating functional :К (у). 
Naive estimates yield lп:К (У) = -y2t/t /2, which reproduces the pair correlation function of В. 

Specia1 consideration is needed}f lyl ~ Ysing, or ify is close to ±iYsing, where Ysing 
is defined Ьу (2.13). Just this region determines the PDF's, and is consequently of special 
interest. NQte that У = ±iYsing cortesponds to the арреaranсе of а bound state near the 
pumpingboundary (where и decreases from Р2 to zero). If У ~ Y8ing, then the front of the 
cloud reaches the jump of the potential much earlier than t/t. The remainder of the cloud 
(inside the potentia1 well) is damped due to the term with У, and does not contribute to :К (у). 
If lyl ~ Ysing then :К(у) ~ exp(-y2tlt/2); the asymptotics of :К(у) is actually exponential 
in the case. If Iy ± iYsingl «: Ysing then the cloud stays near the pumping boundary for а 
long time, that is the shape of'P inside the region и ~ Р2 varies in time comparatively slowly. 
Furthermore, а part of'P percolates out to the region where и ~ О, and the integra1 of 'Р 
grows with increasing Щ. As У approaches iYsing,this stage lasts longer. Опе сап say that the 
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back of the cloud '1' gives the right answer for Я (у). ТЬе important point is that if у is not 
very close to iYsing, then during the time '1' leaves the potential, the width оfЧ' in terms of 
diffusive degrees of freedom is much less than ln LЛ. This means that the function '1' is really 
narrow, which justifies our consideration. 

For а quantitative analysis it is convenient to pass to the variables Фi (2.2). Since the 
1]-dependence of '1' is frozen after the initial evolution, it is possible to obtain ап equation for 
the integral оfЧ' over 1]: 

(2.24) 

where we also included ап integration over Фd to remove the factor Б(Рl + ... + Pd)' Eq. for 
the function (2.24) is 

- _ Dd [~д2 Jd(d2 - 1) д] - у2Й -
дtЧ' - 2"" L...J дф~ - 3 дф '1' - -2-'1', 

i=' ' 1. 

(2.25) 

where й is function of Фа only which сап ье found Ьу substituting into и the «frozen. values of 
1]'s. Qualitatively й has the same structure as и itself. Оne сап conclude from (2.25) that the 
cloud described Ьу Чt moves ballistically in the Фl direction and spreads along other directions . 
. We are going to treat the situation when the cloud remains narrow during the relevaпt part of 
the evolution. ТЬеп опе сап integrate Чt over all Фi, i > 1 in а similar way as in the case with 
1]'S, aпd get а ld equation for 

ТЬе function Чt satisfies Eq. 

(2.26) 

The initialcondition for Eq. (2.26) is Чt(t = О) = 8(ф,). ТЬе potential й is obtained from й 
Ьу the .substitution Фа -+ О for а > О. In fact, for the direction (2.23) the potential й depends 
only оп р,. The barrier is reached when Р, ~ lпLЛ. Passing to the variables Фi, we conclude 
that the potential й diminishes from Р2 at ФI < Фл to zero at ф, > фл,whеre Фл is defined 
Ьу (2.6). 

ТЬе character of the solution of Eq. (2.26) сап ье analyzed semiqualitatively in terms of 
the width 1 оfЧt over ф, and its amplitude h. WheJ1. Чt reaches the ритрing boundary, it stops 
there for а period oftime. ТЬеп the width 1 and the amplitude h are govemed Ьу the equations 

dl = -Dd>' + Dd 
dt 1 ' 

(2.27) 

where >. = Vd(d2 - 1)/12, Dd>' is the rate of cloud motion along the Ф, direction (when 
и = const), and Dd is the diffusion coefficient for the Фl direction. Onе сап estimate from 
the first equation the width 1 '" 1 / >.. ТЬеп from the second equation the height h decreases or 
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grows in time depending оп У. The characteristic У where the regime changes is of the order 
\Ysing 12 ""' Dd),2 i Р2' We show this Ьу consistent calculations. 

Eqution (2.26) сап ье solved analytically, e.g., Ьу the Laplace transform over Нте t .. Taking 
the Laplace transform, опе gets 

(2.28) 

We are interesting in the bound state described Ьу this equation. Solutions for 'f(p) in the 
interva1s (-00, О), (О, Фл), (Фл, (0) are exponential, and must ье matched. The function 'f(p) 
as а function of р has two ЬтпсЬ points at 

(2.29) 

corning from the regions Фl < Фл and Фl > Фл, re/)'pectively. When опе ofthese branch points 
passes р = О, q, starts to grow exponentia1ly in time. This happens when У passes ±iYaing, 
moving along the imaginary аЮз. 

ТЬе 'value of the generating functional is determined in ассосdanсе with (2.19) Ьу the 
large-time behavior of 'P(t). This теапз that we should ье interested in the behavior of 'Р(р) 
at зтall р. ТЬе function f dФl Ф(Р) in (2.19) has а pole at р = О related _о the asymptotic . 
behavior 

at Фl > ФА and small р; the behavior сап ье found [сот (2.28). The residue of f dФl 'f(p) 
at the pole deterrnines ~(y). ТО find the residue we must analyze the behavior of 'f(p) at 
0< Фl < фА' At small р there асе two contributions to чt; proportional to 

{ ( Jd(d2 - 1) ± 
ехр 12 

d(d2 - 1) У2Р2) } 
12 + Dd Фl , (2.30) 

аз follows from (2.28) at р = О. Therefore the residue, which is determined Ьу the integral 
f dФl Чt(р) over the region Фl > Фл, is proportional to 

{ ( Jd(d2 - 1) + 
ехр 12 (2.31) 

Substituting (2.6) here, we reproduce (2.12). 
Let us now esfublish the applicability condition for the above procedure. The 

expression (2.31) implies that the exponent with the minus sign in (2.30) makes а negligible 
contribution to 'Р(р) at Фl = Фл. Тhe condition is satisfied if 

\ 2 + 2 I 2 Dd У У"оnу ФА:» Р2 . 

Substituting (2.6) and (2.13) here, we obtain 
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I У ± i.Ysing I » (a1ln2 LЛ) -1 . 

Уsшg 
(2.32) 

For У close to ±iYsing, one must Ье carefиl, since then the subtle analytic structure of Ж(У) 
will ье relevant. As an analysis for d = 2 shows Ж (У) has а system of poles along the imaginary 

serniaxis starting from ±iYsing, and the parameter (d41n2 Lл) -1 deterrnines the separation 
between the poles. Тhe poles correspond to bound states. Тhe assertion about the cut rnade in 
the previous subsection is related to the restrictions of the saddle-point approximation which 
cannot feel this fine pole structure; it yields the cut, which is а picture averaged over the interpole 
distances. This averaged picture is acceptable at the condition (2.32). 

Note that the same criterion (2.32) justifies our assumption that the cloud described Ьу 
'1' is narrow during the relevant part of the evolution. Namely, the duration of the part is 
deterrnined Ьу the Нте texit = pi1 (see (2.29». This is the time that the cloud stays near the 
barrier. For У close to ±iYSing, the time сап ье estimated to ье t;;it ....., P21Ysing Ily =F iYsing 1. 
Then the diffusive width J Ddtexit of'l' in the directions. Фа for а > 1 is тисЬ less than Фл 
precisely if (2.32) is satisfied. In principle the diffusive dynarnics at d > 2 could modit)r the 
noted fine pole structure of Ж; this problem requires additional investigation. 

ТЬе same procedure сап ье done for the passive scalar differences. Тhe cloud '1' should pass 
the region Р1 < In(L/ro) before it reaches the potential. Тhen it enters the region Й = 2Р2 
with some fmite diffusive width. One can note, however, that this is irrelevant. Тhe on1y 
characteristics of the potential that are needed are its value (here 2Р2 instead of Р2) and the 
length ofthe path inside it (which is t:.P1 = lп(rоЛ) instead оflп(LЛ». Тhe evolution of'f goes 
in the same wayas in the case ofsingle-point statistics. Again, we get (2.14) and the criterion 
analogous to (2.32). 

In this subsection we presented an analysis based оп the dynarnical equation (2.20) for 
the auxiliary object '1'. Тhe results obtained сап ье reproduced also in altemative language: 
for this we must introduce another auxiliary object, the equation for which is stationary. Тhe 
corresponding scheme, which rnight ье interesting fюm а methodological point of view, is 
sketched in the Appendix. 

З. CALCULATION OF PDF 

In this section we ca1culate the PDF's 9 for the objects (1.8) and (1.10). Тhe most 
convenient way to do so is Ьу using the relation 

9(19) = ! ~: ехр( -iу19)Ж (У) , 
where 19 is 

19 = J dr (3(r)O(O, r) . 

Let us recall that knowing 9(19), one сап also restore the moments of 19: 

(119ln ) = ! d19It9ln 9(19) . 
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The generating functional in (3.1) is determined Ьу (2.12) or (2.14). Being interested in 
the main exponential dependence ofthe PDF's for the objects (1.8) and (1.10), we сап forget 
about preexponents. Then 

(3.4) 

where for the single-point statistics and for the statistics of the passive scalar difference 
respectively 

2 _ Dd2(d2 - 1) 
Ysing - 12Р2 ' 

2 _ Dd2(d2 - 1) 
Ysing - . 24Р2 ' (3.5) 

= d(d + 1) 1 (Т ) 
q 6 П.чА , 

d(d+ 1) 
q = 6 In(roA). (3.6) 

Since both q defined Ьу (3.6) are regarded to ье much larger than unity, the integral (3.4) сап 
Ье calculated in the saddle-point approximation. J'he saddle-point value is 

_ . Ysing 
Увр - t 1 + q2/y2. {)2· 

s.ng 
(3.7) 

Then 

1 + Ysing 2 {)2) 
q2 (3.8) . 

This expression leads to the exponential tail 

(3.9) 

realized at '{)I »q/Ysing. Тhe coefficient Ysing in (3.9) determined Ьу (2.13) is in agreement 
with the result obtained in Ref. [12]. 

Тhe expression (3.8) enablesone to find the following averages in accordance with (3.3): 

2 _ 2Р2 
(()л) - d(d _ 1)D In(LA) , 

2 _ 4Р2 
(.МЛ) ) - d(d _ I)D ln(roA). (3.10) 

The expressions (3.10) сап also Ье obtained Ьу direct expansion of iК(Y) from (2.12) or (2.14). 
The universal tail (3.9) is realized if 

()л» V(()l) dln(LA), Il()л» J(Мл)2) dln(roA). (3.11) 

Since both logarithms ate assumed tobe large, we conclude that there exists а relatively wide 
region where the statistics of {) is approxiI11ately Gaussian; the region is determined Ьу the 
inequalities inverse to (3.11). 

Let us discuss the applicability conditions of the expression (3.8). First, if опе calculates 
the passive scalar PDF Ьу the saddle point method, then the position of the saddle point is 
determined Ьу (2.32) if 

{)« d2/"§ ln2(LA). 
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The applicability domain of the saddle-point method overlaps the region of validity of (2.12) 
for the generation functi.on Ж(у). The аЬоуе inequalities асе c.orrect f.or Вл ; for ЫJл .опе must 
replace lп(LЛ) with lп(rоЛ). Sec.ond, fluctuati.ons.of у have t.o ье small c.ompared t.o the distance 
between Уор апд Ysing. This gives the same criteri.on (3.12). 

Let us stress that though f.ormally.our procedure is incorrect at f) ~ d2...jP2/ D Iп2(LЛ) the 
answer will ье the same: the PDF will ье determined Ьу the exp.onential tail (3.9). The point 
is that the character .of the integral (3.1) at such extremely large f) will ье determined Ьу the 
position .of the singular p.oint .of Ж(У) nearest to the сеа! axis. This is just iYsing, leading 
t.o (3.9). То conclude,. only the character .of the preexponent in fJ'(f) is changed at f) I"V 

""' d2 J Р2/ D lп2(LЛ), whereas the principal exponential behavi.or of fJ'(f) remains unchanged 
there. . 

4. CONCLUSION 

The single-point statistics .of the passive scalar () and the statistics of its difference АВ are 
traditi.onal .objects which carry essential inf.ormati.on ab.out c.orrelati.on functi.ons .of the passive 
scalar in the convective interval. We examined the passive scalar in the large-scale turbulent 
fl.ow, where the c.orrelati.on functions l.ogarithmically depend оп sca1e. Since the l.ogarithms 
are actually not уесу large, it is usefu1 t.o have all the PDF's of В and ЫJ. Тhat was the main 
purpose .of our investigati.on, which was perf.ormed in the context ofthe Кraichnan m.odel. The 
single-p.oint РОР f.or the passive scalar апд the РОР f.or the passive scalar differences сап ье 
.obtained fr.om (3.8) ifwe substitute Л -+ rdi} where Тщ is the diffusive length. Th.ough both 
the адуесНng vel.ocity апд the pumping force in the Kraichnan model асе c.onsidered o-c.or
related in time, we hope that .our results асе ,universal, that is, асе true in the limit when the 
size .of the c.onvective interval tends to infinity f.or arbitrary temporal behavi.or .of the velocity 
апд ритрing. The reason is that the spectral transfer time grows with increasing c.onvective 
interval, and in the limit is much larger than the c.orrelati.on times ofthe velocity and pumping. 

We ЬеНеуе als.o that the analytic scheme pr.op.osed in .our work c.ould ье extended f.or 
other problems related t.o the passive scalar statistics. N.ote as an example Ref. [13] where а 
modificati.on of the scheme enabled .опе t.o find the statistics of the passive scalar dissipati.on. It 
is als.o useful f.or investigating the large-scale statistics (.оп scales larger that the pumping length) 
.of the passive scalar see Ref. [25]. We als.o h.ope that it is p.ossible t.o g.o bey.ond the case of the 
large-scale velocity field using а perturbati.on technique .of the type pr.oposed in Refs. [26-28]. 

We асе' grateful t.o Е. Вalkovsky, М. Chertk.ov, G. Falkovich, К. Gawedzki апд 
М. Olshanetsky f.or useful discussi.ons. This work was supported in part Ьу the Einstein anд 
Minerva Centers at the Weizmann Institute, Ьу grants fr.om·the Minerva F.oundation, Germany 
anд the Israel Science Foundation, Ьу the Russian Foundati.on f.or Вasic Research (1. К., М. S., 
Grant 98-02-17814), Ьу S.oros F.oundati.on(M. S., Granta98-674) and bylNТAS (М. S., Grant 
96-0457) within the ICFPM program. 

APPENDIX 

Hs:re we present an altemative way t.o .obtain the results (2.12) anд (2.14). We use ап 
auxiliary quantity 
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"в(у, Ро, 'Гfo) = / ffjJp1iJ'Гf1iJm1iJjl ехр [] dt (i.? -~ и)] ,(А.1) 
-00 р(о)-ро,,,(о)=,, • 

. so 

~(y) = "В(у, о, о). (А.2) 

ТЬе function S сап ье also defined as 

ЩУ,РО,'Гfо) = Нт /ПdРаd'Гfij'Р(t,у,р,'Гf)' 
. t-+oo 

(А.З) 

where 'Р is governed Ьу Eq. (2.20) with initial condition 'P(t= о, у, Р, 'Гf) = б(р - Ро)б('Гf - 'Гfo). 

ТЬе equation for S сап ье found from Eqs. (1.32) and (A.I): 

(А.4) 

Thе boundary condition for Eq. (А.4) foIlows from the definition (А.l): for large enough Pi, 'Гf. 

the potential и = о at t = О апд also remains zero at finite times t. Therefore the integral 
(А.l) must Ье equal to unity in the case. Thus "в(у, Р, 1/) must tend to unity where Р, 'гf -+ 00. 

Let us rewrite Eq. (А.4) in terms of the variables (2.2): 

• d-l 82 82 8 8 
I = 2: 8ф2 + 22: exp(2pk - 2р.) ат + 4 2: exp(2pk - 2РЙ'Гfkn Г Г + 

,=2, i i<k 'Гfik i<k<n 'Гfш 'Гf.k 

д 8 
+2 2: exp(2Pk - 2P.)ТJkm'Гfkn -а 8 . 

.<k<m,n 'Гfim 'Гf.n 

(А.5) 

(А.6) 

(А.7) 

Here и as а fиnction of Фl is equal to Р2 inside а region restricted Ьу Ф;: аnд ф~ (where фt are 
functions of variables Ф2" .. , Фd, 'Гf) and tei1ds to zero outside the region. We solve Eq. (А..5) 
using pertиrbation theory over 1', ~. Then the zero-order equation is 

I\SI = о.' (А.8) 

Equation (А.8) сап easily ье solved at Ф;: < /фl < ф~; the answer is 

"В1 ~ 2л ехр {- (Jл2 + y2P2/Dd - л) (Ф: - Фl)}' (А.9) 
Jл2 + нш+ л 
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where л = Jd(d2 - 1)/12, Ddл is the rate ofthe cloud motion along thеФI direction. The 
resu1t (А 9) сап Ье obtained using the inequality J л 2 + у2 Р2/ Dd ln LA :» 1. The derivative 
881/8фl = О at Фl < ф-;. However, 81 =f 1 in this region. This is дuе to the following fact: 
this region corresponds to the evolution of 'Р when its initial position is to the left of potential 
И (see (АЗ». During evolution, cloud 'Р passes the region of И апд its integral over р, 'ГJ 

changes. Then 8 is not equal to 1. Оn1у when the distance between the initial position апд 
potential is of order ln2 LA will the diffusion of the cloud lead to smallness of the part of'P that 
passes the potential И, anд 8 becomes closer to unity. Thus, function 8 has а long tail from 
the potential pointing toward negative Фl, where it is notequal to 1. The procedure offinding 
8 from Eq. (А8) corresponds to the geometrical optics approximation (taking into account 
Оn1у derivatives in propagation direction; this allows опе to get the fact of propagation). This 
tail of 8 in this approximation is попе other than the shadow of potential U. Higher orders of 
perturbation theory over the transverse derivatives correspond to diffraction corrections. 

Now let us consider the correction~. Eq. for it looks like (Г1 +.y)~ = -.уз1 • Again let us 
neglect.y оп the left-hand side апд solve the equation. 31 is some exponential function with 
scale of the order 1. Then .у8 1 "" 81. Note that .у31 is almost equal to zero at Ф1 > Ф1. ТО 
estimate ~ опе must construct the Green function G ( Ф 11 Фо) for operator Г 1 : 

/ 

G(0IФО)~2\ехр(-( Л2+У~~2-Л)ФО)(1-сеХР(-2 Л2+У;;;(ф~-фО»))' (А 10) 

where 

The unity in the parentheses in (А 10) gives the correction for 8, which has the saпrе exponential 
factor as 81' Thus ~ does not change the answer, to logarithmic accuracy. The second term 
in the parentheses gains while Фо is close to Ф 1. This is дuе to the nonzero width of the cloud 
8 апд to the дерепдепсе of t/t оп other variables. Again,. it does not change the exponent. 

То get Ж from 8 we in accordance with (А2) have to substitute zero values of р апд 'ГJ into-
8. Then Фl = О апд Ф1 = Фл where Фл is defined Ьу (2.6). Substituting the values into (А9) 
we reproduce (2.12). The case of the passive scalar differences сan Ье considered in а similar 
way. 

References 

1. О. К. Batche1or, J. Fluid МесЬ. 5, 113 (1959). 
2. R. Кraichnan, Phys. Fluids 10, 1417 (1967); Phys. Fluids 11, 945 (1968); J. Fluid МесЬ. 47, 525 
, (1971); J. Fluid МесЬ; 67, 155 (1975); J. Fluid МесЬ. 64, 737 (1974). 
3. В. 1. Shraiman and Е. D. Siggia, Phys. Rev. Е 49, 2912 (1994). 
4. М. Chertkov, О. Fa1kovich, 1. Ko1oko1ov, and У. Lebedev, Phys. Rev. Е 51, 5609 (1995). 
5. О. К. Batche1or, Тheoгy 01 Hoтogeneous Turbulence, Cambridge University Press, New York (1953). 
6. А. Monin and А. Yaglom, Statistica/ F/uid Mechanics, MIТ Press, Cambridge (1975). 
7. U. Frisch, ТuгЬu/еnсе: the Legacy 01 А. N. Ko/тogorov, Cambridge University Press, N ew York (1995). 
8. Е. Ba1kovsky, М. Chertkov, 1. Ko1oko1ov, and V.Lebedev, JETP Lett. 61, 1049 (1995). 
9. О. Falkovich and У. Lebedev, Phys. Rev. Е 50, 3883 (1994). 

9З8 



ЖЭТФ, 1999, 115, вьm. 3 Passive 'scalar in а large-scale . .. 

10. М. Chertkov, А. ОатЬа, and 1. Kolokolov, Phys. Lett. А 192, 435 (1994). 
11. а. Falkovich, 1. Kolokolov, У. Lebedev', and А. Migdal, Phys. Rev. Е 54, 4896 (1996). 
12. ,D. Bemard, К. Gawedzki, and А. Kupiainen, J. Stat. Phys. 90, 519 (1998). 
13. А. ОатЬа and 1. Kolokolov, E-prints archive, chao-dyn/98 08 001. 
14. М. L. МеЫа, Randoт Matrices and the Statistical Тheoгy о/ Еnеф Levels, Academic Press, New 

York (1967). 
15. М. А. 01shanetsky and А. М. Perelomov, Phys. Rep. 94, 313 (1983). 
16. 1. У. Kolokolov, Ann. of Phys. 202, 165 (1990); JETP 76, 1099 (1993). 
17. М. Chertkov, а. Falkovich, and 1. Kolokolov, Phys. Rev. Lett. 80, 2121 (1998). 
18. О. N. Dorokhov, Sov. Phys. JETP 58, 606 (1983). 
19. А. ОатЬа and 1. Kolokolov, J. Stat. Phys. 85, 489 (1996). 
20_ Н. W. Wyld, Ann. Phys. 14, 143 (1961). 
21. Р. С. Martin, Е. Siggia, and Н. Rose, Phys. Rev. А 8, 423 (1973). 
22. С. de Dominich;, J., de Phys. 37, cOI-247 (1976). 
23. Н. Janssen, Z. Phys. В 23, 377 (1976). 
24. С. de Dominicis and L. Peliti, Phys. Rev. В 18, 353 (1978). 
25. Е. Balkovsky, а. Falkovich, and У. Lebedev, submitted to Phys. Fluids (1999). 
26. В. 1. Shraiman and Е. D. Siggia, CRAS 321, Ser. П, 279 (1995). 
27. А. Pumir, В. 1. Shraiman, and Е. D. Siggia, Phys. Rev. Е 55, 1263 (1997). 
28. Е. Balkovsky, G. Falkovich, and У. Lebedev, Phys. Rev. Е 55, 4881 (1997). 

939 


