ЭХО-СПЕКТРОСКОПИЯ ДВУХУРОВНЕВЫХ СИСТЕМ В КРИСТАЛЛЕ У2SiO5 : Pr³⁺

Р. С. Борисов^{*}, Б. В. Гринев^{*}, Н. В. Знаменский, Ю. В. Малюкин^{*}, Э. А. Маныкин, Д. В. Марченко, Б. И. Минков^{*}, Е. А. Петренко

> Российский научный центр «Курчатовский институт» 123182, Москва, Россия * Институт монокристаллов Национальной академии наук Украины 310001, Харьков, Украина

> > Поступила в редакцию 25 июня 1998 г.

Представлены результаты экспериментального исследования низкотемпературных оптических спектров и фазовой релаксации электронных возбуждений примесных ионов Pr³⁺ в кристалле Y₂SiO₅. Установлен несвойственный для кристаллов низкотемпературный механизм уширения спектральных линий, обусловленный взаимодействием примесных ионов с двухуровневыми системами. Найдены константы, характеризующие взаимодействие примесных ионов Pr³⁺ с фононами и двухуровневыми системами.

1. ВВЕДЕНИЕ

Основные усилия, предпринятые в многочисленных работах по исследованию динамики электронных возбуждений кристаллов, были направлены на выяснение общих закономерностей, определяющих однородное уширение спектральных линий примесных центров [1–5]. В итоге были установлены универсальные механизмы, которые определяют уширения спектральных линий в результате упругих, магнитных и электрических взаимодействий примесного центра с кристаллическим окружением [1–4]. Универсальность вскрытых механизмов такова, что изменение кристаллической матрицы или примеси отражается только на величине параметров, которые их характеризуют.

Наряду с универсальными взаимодействиями примесного центра с кристаллом в системе «примесный центр — кристаллическое окружение» может возникать специфическое взаимодействие локального характера, которое зачастую не удается конкретизировать на микроскопическом уровне. Такой тип взаимодействий приводит к появлению у примесного центра квазинепрерывного или дискретного энергетического спектра межатомного происхождения. Примером может служить неоднородное уширение спектральных линий [6, 7] или мультиплеты Шпольского [8]. Принято считать [6–10], что неоднородное уширение оптических спектров в кристаллах определяется статическим беспорядком. Однако по аналогии со стеклами [11–14] статический беспорядок в кристаллах также может зависеть от временного масштаба эксперимента [4, 15, 16]. Для стекол в области низких температур временная зависимость беспорядка определяется туннельными переходами в двухуровневых системах [17, 18], которые связаны с многоямным адиабатическим потенциалом ядер [11–14, 17, 18]. Такие возбуждения получили название туннелонов [13, 14]. Взаимодействие примесного центра с двухуровневыми системами сводится к переходам примесного центра между неэквивалентными состо-

яниями, различающимися по энергии. Этот механизм также дает вклад в однородное уширение спектральных линий примесного центра [11-14]. В отношении кристаллов многоямный адиабатический потенциал пока остается экзотикой [19-24], и тем более неясно само существование двухуровневых систем и их проявление в релаксационных процессах. Поэтому особый интерес представляют случаи, когда у примесного центра в кристалле возникает многоямный адиабатический потенциал с малой энергией активации двухуровневых систем, обеспечивающей эффективное квантовое туннелирование в области низких и сверхнизких температур, так как именно в этом случае можно разделить вклады в однородную ширину спектральных линий от фононов и от двухуровневых систем. В силу более слабого беспорядка в кристаллах по сравнению со стеклами число разных двухуровневых систем может быть ограниченным, и окажется реальным идентифицировать обобщенную координату многоямного адиабатического потенциала и изучать квантовое движение примесных центров на микроскопическом уровне. К примеру, набор двухуровневых систем в стеклах настолько широк (времена релаксации могут изменятся на десятки порядков, начиная с 10^{-15} с [11–14]), что решение подобной задачи становится невозможным.

С учетом сказанного выше немалый интерес представляет кристалл YSO : Pr³⁺, в котором для примесных ионов может существовать иерархия неэквивалентных состояний, различающихся по энергии. В первую очередь эти состояния могут быть связаны с замещением двух неэквивалентных катионных узлов в решетке YSO [25]. Несмотря на то что эта особенность отмечается в кристаллах YSO : Nd^{3+} [26] и YSO : Eu^{3+} [27], что подтверждается наличием двух оптических центров, в кристалле YSO : Pr³⁺ она не обнаружилась [28]. Но в противоположность этому в [29] при исследовании оптических спектров YSO : Pr³⁺ в ограниченном спектральном диапазоне наблюдались спектральные линии, идентифицированные как линии, принадлежащие примесным ионам Pr^{3+} , которые локализованы в неэквивалентных катионных узлах. Другой тип неэквивалентных состояний примесных ионов, но уже в пределах узла локализации, был обнаружен по детальному исследованию контура спектральной линии [30], соответствующей переходу ${}^{3}H_{4}(0) - {}^{3}P_{0}$ примесных ионов в кристалле YSO : Pr^{3+} , а также по внешнему эффекту Штарка [29] на переходе ${}^{3}H_{4}(0)-{}^{1}D_{2}(0)$. В последнем случае речь идет о локальном специфическом взаимодействии примесного иона с кристаллическим окружением, которое может исчезнуть либо при изменении кристаллической матрицы, либо при изменении примеси.

В настоящей работе в результате исследования низкотемпературных оптических спектров кристалла YSO : Pr^{3+} однозначно установлено два оптических центра Pr^{3+} , которые соответствуют локализации примесных ионов в двух неэквивалентных катионных узлах. На основе анализа температурной зависимости амплитуды двухимпульсного фотонного эха на переходе ${}^{3}H_{4}(0)-{}^{3}P_{0}$ примесных ионов Pr^{3+} установлен новый для кристаллов механизм дефазировки, связанный с термостимулированными переходами иона Pr^{3+} между неэквивалентными состояниями в пределах узла локализации. В рамках использования модели многоямного адиабатического потенциала получены константы, характеризующие взаимодействие примесных ионов с фононами и двухуровневыми системами.

2. ТЕХНИКА ЭКСПЕРИМЕНТА

Оптические спектры поглощения и люминесценции кристалла YSO : Pr³⁺ исследовались на автоматизированном спектрофлуориметре, основу которого составлял решетчатый монохроматор МДР-23. Регистрация спектров осуществлялась ФЭУ-100, который работал в режиме счета фотонов. Управление шаговым двигателем монохроматора и счет однофотонных импульсов осуществлялся электронными модулями, выполненными в стандарте КАМАК. Крейт КАМАК сопрягался через интерфейс с персональным компьютером на базе процессора Intel 286.

Для получения низких температур использовался гелиевый оптический криостат P-118, в котором образцы находились в парах гелия.

Двухимпульсное фотонное эхо наблюдалось в коллинеарной геометрии, чтобы исключить влияние оптической анизотропии исследуемого кристалла. Экспериментальное оборудование, используемое для возбуждения эхо-сигнала и его регистрации, описано в [30, 31].

Кристаллы YSO : Pr^{3+} выращивались методом Чохральского. Загрузочная концентрация празеодима составляла 0.1 ат.%. Образцы для исследования представляли собой пластины толщиной $1 \div 5$ мм.

3. СПЕКТРОСКОПИЯ КРИСТАЛЛА YSO : Pr³⁺

Примесный ион Pr³⁺, внедренный в разные кристаллические матрицы, является, пожалуй, одним из наиболее изученных [4]. В базисе Рассела—Саундерса [32] электронная конфигурация $4f^2$ иона Pr^{3+} порождает четыре синглетных, ${}^{1}S_0$; ${}^{1}D_2$; ${}^{1}G_4$; ${}^{1}I_6$, и девять триплетных, ${}^{3}H_{4}$; ${}^{3}H_{5}$; ${}^{3}H_{6}$; ${}^{3}F_{2}$; ${}^{3}F_{3}$; ${}^{3}F_{4}$; ${}^{3}P_{0}$; ${}^{3}P_{1}$; ${}^{3}P_{2}$, термов. Их относительное расположение, а следовательно, и структура энергетических уровней иона Pr³⁺, в первую очередь, определяются кулоновским взаимодействием между 4f-электронами, а также спин-орбитальным взаимодействием [32, 33]. Тонкая структура энергетических уровней редкоземельного иона в кристалле определяется штарковским расшеплением термов, которое зависит от точечной группы симметрии узла локализации примесного иона [32, 33]. Так как в кристалле YSO оба неэквивалентных катионных узла обладают точечной симметрией C₁ [25], вырождение термов Pr³⁺ должно полностью сниматься. Энергетический масштаб штарковского расшепления термов редкоземельных ионов может изменяться от десятков до сотен см-1 [32, 33]. В первом приближении теории возмущений [32, 33] кристаллическое поле не сдвигает центр тяжести мультиплетов. Этот факт мы используем для интерпретации оптических спектров кристалла YSO : Pr³⁺ на основе данных по спектроскопии разных кристаллов, активированных ионами Рг³⁺ [4, 34–38].

Основному состоянию примесного иона соответствует терм ${}^{3}H_{4}$, что вытекает из правила Хунда [32, 33] и принципа Паули [32, 33], а также подтверждается имеющимися экспериментальными данными [4, 34–38]. Следующими в порядке возрастания энергии идут термы ${}^{3}H_{5}$; ${}^{3}H_{6}$; ${}^{3}F_{2}$; ${}^{3}F_{4}$ и ${}^{1}G_{4}$. Эта группа термов определяет энергетический спектр примесного иона \Pr^{3+} , включая ИК-диапазон [34–38]. Оптический спектр примесного иона \Pr^{3+} формируется в результате квантовых переходов между штарковскими компонентами термов ${}^{3}H_{4}$, ${}^{2}D_{1}$, ${}^{3}P_{0}$, ${}^{3}P_{1}$, ${}^{1}I_{6}$ и ${}^{3}P_{6}$ [4, 34–38]. Энергетический интервал между центрами тяжести термов ${}^{1}G_{4}$ и ${}^{1}D_{2}$ в среднем составляет

706

Рис. 1. Упрощенная схема энергетических уровней иона Pr^{3+} в кристалле Y_2SiO_5 ; $\nu_1 = 16538.2$ (16483.7) см⁻¹, $\nu_2 = 20540.2$ (20742.6) см⁻¹, $\nu_3 = 20981.1$ (20867.2) см⁻¹ (цифры указывают положение штарковских компонент в см⁻¹; в скобках приведены данные для второго типа оптических центров Pr^{3+})

Рис. 2. Фрагменты спектров поглощения кристалла Y_2SiO_5 : Pr^{3+} при разной температуре (две группы линий, принадлежащих разным оптическим центрам Pr^{3+} , отмечены буквами без звездочки и с ней)

7000 см⁻¹ [4, 34–38]. Частоты электронных переходов с участием терма ${}^{1}S_{0}$ лежат в далеком УФ-диапазоне [4, 34–38]. Так как наиболее интересные с точки зрения эксперимента [4, 29, 30] термы ${}^{2}D_{1}$ и ${}^{3}P_{0}$ хорошо сепарированы по энергии от других, спектр оптических переходов между штарковскими компонентами термов ${}^{3}H_{4}$, ${}^{1}D_{2}$ и ${}^{3}P_{0}$ прост и легок в интерпретации. Мы полагаем, что качественно описанная энергетическая структура уровней иона \Pr^{3+} сохраняется в кристалле YSO, поэтому воспользуемся упрощенной схемой (рис. 1), с помощью которой будет проведена интерпретация оптических спектров кристалла YSO : \Pr^{3+} и найдено точное расположение термов ${}^{3}H_{4}$, ${}^{1}D_{2}$ и ${}^{3}P_{0}$ и параметры их штарковского расщепления.

Спектр поглощения кристалла YSO : Pr³⁺ (рис. 2) состоял из двух групп спектральных линий, которые можно было выделить по признаку их узости. Отношение ши-

707

11*

рин на полувысоте соответствующих спектральных линий в каждой из групп составляло 3:1. Анализ и интерпретацию спектра поглощения (рис. 2) мы начнем с группы более широких спектральных линий, отмеченных буквами. В соответствии с энергетическим масштабом штарковского расщепления термов редкоземельных ионов [4, 34-38] следует ожидать, что при T = 6.0 К из девяти штарковских компонент терма ³ H_4 (рис. 1) будет населена только низшая. Учитывая это и опираясь на результаты исследования оптических спектров иона Pr^{3+} в других кристаллах [4, 34–38], спектральные линии $\gamma_0, \gamma_1, \ldots, \gamma_4$ и β_0 (рис. 2) сопоставим с оптическими переходами с низшей штарковской компоненты δ_0 терма ${}^{3}H_4$ на пять штарковских компонент терма ${}^{1}D_2$ и терм ${}^{3}P_0$ (рис. 1). Справедливость такой интерпретации спектральных линий $\gamma_0, \gamma_1, \ldots, \gamma_4$ и β_0 (рис. 2) дополнительно подтверждается следующими экспериментальными фактами. При возбуждении люминесценции примесных ионов Pr^{3+} в любую из спектральных линий β_0 , α_0 , α_1 и α_2 (спектральные линии α_0 , α_1 и α_2 соответствуют оптическим переходам с участием штарковских компонент термов ${}^{3}P_{1}$ и ${}^{1}I_{6}$) формируется спектр, состоящий из двух идентичных участков (на рис. 3 приведен только один участок спектра), берущих начало от двух спектральных линий β_0 и γ_0 , резонансно совпадающих с одноименными линиями в спектре поглощения (рис. 2). Это согласуется с известным фактом [4, 34-38], что спектр свечения примесных ионов Pr³⁺ формируется в результате оптических переходов с двух метастабильных уровней β_0 и γ_0 (рис. 1). При повышении температуры исследуемого кристалла в спектре поглощения (рис. 26) возникают зависящие от температуры спектральные сателлиты, расположенные в низкочастотной области по отношению к каждой из анализируемых линий $\gamma_0, \gamma_1, \ldots, \gamma_4$ и β_0 . Наиболее интенсивные сателлиты наблюдаются вблизи линии β_0 (в масштабе рис. 26 спектральные сателлиты вблизи других линий просматриваются плохо). При T = 80 К вблизи линии β_0 (рис. 26) можно указать два таких спектральных сателлита — δ_1 и δ_2 . Частотные интервалы, определяюшие их положение по отношению к анализируемым спектральным линиям, в точности совпадают с таковыми, определяющими положение одноименных спектральных линий в спектре люминесценции (рис. 3). Следовательно, появление спектральных сателлитов δ_1 и δ_2 при T = 80 К (рис. 26) обусловлено поглощением с термически заселенных штарковских компонент δ_1 и δ_2 терма ${}^{3}H_4$ (рис. 1). Помимо δ_1 и δ_2 в спектре люминесценции (рис. 3) можно отметить семь оставшихся спектральных линий, соответствующих переходам с метастабильных уровней β_0 и γ_0 на девять штарковских компонент $\delta_0, \ldots, \delta_8$ терма ³Н₄ (рис. 1). Следовательно, одну из групп спектральных линий (рис. 2) можно «привязать» к принятой схеме энергетических уровней (рис. 1), а по экспериментальным спектрам (рис. 2 и рис. 3) найти точные энергетические параметры, которые задают относительное расположение термов ${}^{3}H_{4}$, ${}^{1}D_{2}$ и ${}^{3}P_{0}$ и их расщепление кристаллическим полем. Найденные таким образом энергетические параметры представлены на рис. 1.

Менее интенсивные, но более узкие спектральные линии, присутствующие в спектре поглощения кристалла YSO : Pr^{3+} (на рис. 2 отмечены буквой со звездочкой), по их количеству и спектральному положению не вписываются в схему уровней иона Pr^{3+} с найденными энергетическими параметрами (рис. 1). В [29] спектральные линии γ_0 и γ_0^* были связаны с поглощением на переходе ${}^{3}H_4(0)-{}^{1}D_2(0)$ примесных ионов Pr^{3+} , которые локализованы в неэквивалентных катионных узлах кристалла YSO [25]. Рассматривая более широкий набор «узких» спектральных линий β_0^* , γ_0^* , γ_2^* , ..., γ_4^* (по-видимому, линия γ_1^* случайно совпала с интенсивной линией γ_0 , рис. 2), мы полагаем, что их можно «привязать» к схеме энергетических уровней иона Pr^{3+} (рис. 1), но с другими энергетическими параметрами, и таким образом идентифицировать второй тип опти-

Рис. 3. Фрагмент спектра люминесценции кристалла Y₂SiO₅ : Pr³⁺ при температуре T = 6.0 К (спектр не зависит от возбуждения на любую из спектральных линий β_0 , α_0 , α_1 и α_2)

ческих центров \Pr^{3+} . В рамках этой интерпретации спектральные линии β_0^* , γ_0^* , ..., γ_4^* соответствуют поглощению оптических центров \Pr^{3+} второго типа, которое обусловлено переходами с низшей штарковской компоненты терма ${}^{3}H_4$ на штарковские компоненты термов ${}^{1}D_2$ и ${}^{3}P_0$. «Узкие» спектральные линии присутствуют и в области оптических переходов с участием штарковских компонент термов ${}^{3}P_1$ и ${}^{1}I_6$ (рис. 2). Однако, в силу того что штарковские компоненты термов ${}^{3}P_1$ и ${}^{1}I_6$ перемешиваются [34–38], их однозначная интерпретация затруднена и требует дополнительных исследований.

На микроскопическом уровне один из катионных узлов координирован шестью, а другой восемью атомами кислорода [25, 26]. Кроме того, катионные узлы существенно различаются средними расстояниями ион — лиганд и, следовательно, имеют разные средние объемы. Поэтому ионы Pr^{3+} занимают преимушественно катионную позицию с большим объемом, из-за того что их ионный радиус (1.06 Å) превышает ионный радиус Y^{3+} (0.92 Å) [39]. Следовательно, в силу того что «узкие» спектральные линии менее интенсивны (рис. 2) и расшепление термов кристаллическим полем несколько больше (рис. 2), эти линии принадлежат ионам Pr^{3+} , которые локализованы в более плотных катионных узлах. Селективное возбуждение оптических центров Pr^{3+} одного типа, например, на линию поглошения β_0 (рис. 2) при температуре T = 6.0 К приводило только к их люминесценции (рис. 3). Следовательно, примесные ионы Pr^{3+} населяют неэквивалентные катионные узлы в разных элементарных ячейках и между собой не взаимодействуют (среднее расстояние между разными катионными узлами Y^{3+} в пределах одной элементарной ячейки составляет величину порядка 3 Å [25, 26]).

4. МИКРОСКОПИЧЕСКИЕ МЕХАНИЗМЫ ФАЗОВОЙ РЕЛАКСАЦИИ ЭЛЕКТРОННЫХ возбуждений примесных ионов в кристалле YSO : Pr³⁺

Фотонное эхо в кристалле YSO : Pr^{3+} исследовалось на одном типе оптических центров Pr^{3+} , которые в спектре поглощения (рис. 2) представлены более широкими спектральными линиями. Для получения максимальной амплитуды сигнала фотонного эха сканировалась лазерная линия (0.2 см⁻¹) в пределах спектральной линии β_0 (рис. 2). Было замечено, что интенсивность сигнала фотонного эха изменяется вдоль спектрального контура β_0 немонотонно. В соответствии с [29] это означает, что в процессе сканирования имела место перестройка по спектральным контурам, которые соответствуют неэквивалентным положениям примесного иона празеодима в пределах данного типа катионных узлов.

Для исследования температурных механизмов фазовой релаксации электронных возбуждений примесных центров в кристалле YSO : \Pr^{3+} использовалось двухимпульсное фотонное эхо [5], в силу того что изменение амплитуды эхо-сигнала, определяемое соотношением $I_{echo} \sim \exp(-2\gamma(T)\delta)$ (где $\gamma(T)$ — однородная, зависящая от температуры ширина спектральной линии, δ — временной интервал между возбуждающими лазерными импульсами, T — температура), позволяет непосредственно получить закон изменения $\gamma(T) = \pi/T_2(T)$ (где $T_2(T)$ — время фазовой релаксации электронных возбуждений).

Для того чтобы выделить особенности фазовой релаксации электронных возбуждений в кристалле YSO : Pr^{3+} , проведем сравнительный анализ полученных результатов с аналогичными для кристалла LaF₃ : Pr^{3+} [40]. Чтобы убедиться в правильности своего эксперимента [30], мы полностью воспроизвели результаты [40].

Температурная зависимость амплитуды фотонного эха в [40] была представлена на графике, по оси ординат которого отложен двойной логарифм интенсивности эхо-сигнала, а по оси абсцисс — обратная температура. В этом случае экспериментальные точки хорошо ложатся на прямую и такой их температурный ход был объяснен [40] процессом прямого поглощения и испускания фононов с участием штарковских компонент ближайших по энергии к резонансному оптическому переходу. Конкретно для кристалла LaF₃ : Pr^{3+} фазовую релаксацию электронных возбуждений на переходе ${}^{3}H_{4}(0)-{}^{3}P_{0}$ будет определять штарковская компонента ${}^{3}H_{4}(1)$, лежащая выше ${}^{3}H_{4}(0)$ на 57 см⁻¹ [4, 34]. Так как ближайшие к ${}^{3}P_{0}$ энергетические уровни термов ${}^{3}P_{1}$ и ${}^{1}I_{6}$ расположены достаточно высоко по энергии [4, 34–38], при гелиевой температуре их учитывать не надо. Поэтому температурный вклад в однородную ширину спектральной линии перехода ${}^{3}H_{4}(0)-{}^{3}P_{0}$ будет выражаться в виде [40]

$$\gamma_{ph}(T) = \alpha \exp\left(-\frac{\Delta\varepsilon}{kT}\right),\tag{1}$$

где α — ширина на полувысоте штарковской компоненты ${}^{3}H_{4}(1)$, $\Delta \varepsilon$ — энергетический зазор между штарковскими компонентами ${}^{3}H_{4}(0)$ и ${}^{3}H_{4}(1)$.

С учетом экспоненциальной зависимости амплитуды фотонного эха от $\gamma(T)$ [5, 40] и соотношения (1) становится ясным, что наклон экспериментальной кривой, представленной на графике в [40], непосредственно дает энергетический зазор между штарковскими компонентами ³ $H_4(0)$ и ³ $H_4(1)$. Определенный таким образом параметр $\Delta \varepsilon$ составил 49 см⁻¹ и отличался от величины 57 см⁻¹, непосредственно найденной из

Температурная зависимость од-Рис. 4. нородной ширины спектральной линии β_0 , соответствующей переходу ${}^{3}H_{4}(0) - {}^{3}P_{0}$ примесных ионов Pr³⁺ в кристалле Y₂SiO₅: звездочками обозначены экспериментальные точки, кривая 1 — аппроксимация экспериментальных точек по методу наименьших квадратов на основании соотношения (1) при $\Delta \varepsilon = 89 \text{ см}^{-1}$ и варьируемом параметре α , кривая 2 — аппроксимация экспериментальных точек по методу наименьших квадратов на основании совместного использования соотношений (1) и (3) при $\Delta \varepsilon = 89 \text{ см}^{-1}$, $\varepsilon = 0.25 \text{ см}^{-1}$ и варыируемых параметрах α и β

оптических спектров кристалла LaF₃ : Pr³⁺ [4, 34]. Несмотря на это расхождение, температурная зависимость амплитуды фотонного эха в кристалле LaF₃ : Pr³⁺ [40] удовлетворительно описывалась соотношением (1) при $\alpha = 2.4 \cdot 10^{11}$ с⁻¹ [40].

В отличие от LaF₃ : Pr³⁺ [40] температурная зависимость амплитуды сигнала фотонного эха в кристалле YSO : Pr^{3+} на том же электронном переходе ${}^{3}H_{4}(0) - {}^{3}P_{0}$ примесных ионов (спектральная линия β_0 на рис. 2*a*) имела два характерных участка с разными наклонами экспериментальных кривых [30], представленных на графике аналогичном [40]. Наклон экспериментальных кривых на высокотемпературном участке (T = 10 ÷ 19 K) практически совпадал с величиной штарковского расшепления компонент ${}^{3}H_{4}(0)$ и ${}^{3}H_{4}(1)$ терма ${}^{3}H_{4}$ в кристалле YSO (рис. 1). Использование соотношения (1) с варьируемым параметром α и $\Delta \varepsilon = 89$ см⁻¹ не позволило удовлетворительно описать поведение экспериментальных кривых в пределах всего температурного интервала изменения $\gamma(T)$ (рис. 4). При $\alpha = 1.4 \cdot 10^{10} \text{ c}^{-1}$ удовлетворительное описание достигалось только в интервале температур 10 ÷ 19 К (рис. 4). Описание экспериментальных результатов не улучшилось и при включении в рассмотрение более высокоэнергетических штарковских компонент терма ³H₄ (рис. 1). Мы рассмотрели также рамановский механизм рассеяния фононов примесным центром типа [1-4, 13], который дает вклад в однородную ширину спектральной линии ~ T^7 , хотя известно [4, 30, 40], что в интервале температур 6 ÷ 10 К он неактуален. Как и ожидалось, это также не привело к улучшению описания экспериментальных результатов (рис. 4). Другими словами, известные температурные механизмы [1-4, 13], определяющие однородное уширение спектральных линий примесных центров в кристаллах, не позволили удовлетворительно описать изменение $\gamma(T)$ для кристалла YSO : Pr³⁺ на протяжении всего температурного интервала (рис. 4).

Анализ структуры кристалла YSO : Pr³⁺ и его редкоземельных аналогов [25, 26], а также особенности вхождения примесных редкоземельных ионов в эти кристаллы [25, 26, 29] позволили нам предположить, что в YSO : Pr³⁺ может действовать ранее не встречающийся в кристаллах, но известный для стекол [11–14] механизм температурного уширения спектральных линий, обусловленный взаимодействием примесного центра с двухуровневыми системами его многоямного адиабатического потенциала. Ключевым

E 1

моментом в принятии такого предположения явилось наличие в кристалле YSO : Pr³⁺ ряда неэквивалентных положений примесных ионов. Положения, связанные с замещением неэквивалентных катионных узлов [25-27], интереса не представляют, так как переход примесного иона из одного положения в другое невозможен. Поэтому интерес представляют неэквивалентные состояния примесных ионов Pr³⁺ в пределах узла локализации [29, 30], которые могут быть представлены в модели многоямного адиабатического потенциала. Хотя на микроскопическом уровне остается неясным, какая обобщенная ядерная координата порождает такой адиабатический потенциал. Фактически, для одного типа катионных узлов этот потенциал будет иметь четыре минимума [29], а для другого — два [29]. В основном состоянии примесного иона населенности минимумов адиабатического потенциала близки, так как γ_0 формируется четырьмя, а γ_0^* — двумя спектральными линиями практически равной интенсивности [29]. Исходя из ширины спектральных линий γ_0 и γ_0^* можно оценить разность энергий между низшими уровнями (энергия активации двухуровневых систем) в каждом из минимумов адиабатического потенциала. Для этого необходимо разделить полную ширину на. полувысоте линий γ_0 и γ_0^* на число соответствующих им неэквивалентных состояний примесного иона. Так как согласно [29] полная ширина на полувысоте линии γ_0 равна 1 см $^{-1}$, а линии γ_0^* — 0.3 см $^{-1}$, искомая разность энергий соответственно равна 0.25 см⁻¹ и 0.15 см⁻¹. Такая небольшая разность энергий может возникнуть и в результате туннельного расщепления уровней [20, 22, 33], и в результате асимметрии многоямного адиабатического потенциала [20, 22, 33]. Если для упрощения рассматривать только два минимума, то для примесного иона Pr³⁺ в кристалле YSO могут реализовываться адиабатические потенциалы, представленные на рис. 5. В симметричном двухъямном адиабатическом потенциале может иметь место не зависящее от температуры квантовое туннелирование с частотой

$$\omega = \varpi_0 \exp\left(-\frac{|q_1 - q_2|}{\hbar}\sqrt{2mV}\right)$$

(где m — масса туннелирующей системы, ϖ — средняя частота колебаний вблизи одного из минимумов адиабатического потенциала) [17, 18, 20, 22], а также зависящее от температуры туннелирование с участием фононов [17, 18, 20, 22]. Для асимметрично-го потенциала (рис. 56) оба процесса будут ослабляться по мере возрастания асимметрии [17, 18, 20, 22].

Обсуждаемые неэквивалентные состояния иона Pr^{3+} в кристалле YSO не связаны с проявлением эффекта Яна—Тейлора [32, 41] в пределе «медленного вращения» [41], так как вырождение термов иона Pr^{3+} по полному угловому моменту снимается. Это однозначно подтверждают оптические спектры (рис. 2), а энергетический масштаб штар-ковского расшепления термов (рис. 1) также не позволяет говорить о возможности про-явления псевдоэффекта Яна—Тейлора [41].

Влияние двухуровневых систем на однородную ширину спектральных линий примесных центров, которые взаимодействуют с этими системами, последовательно проанализировано применительно к стеклам [13, 14]. В нашем случае задача существенно упрощается, так как по нашему предположению примесный ион Pr³⁺ взаимодействует только с одной двухуровневой системой. Следовательно, для описания экспериментальных результатов, представленных на рис. 4, мы должны просуммировать аддитивные вклады в однородную ширину спектральной линии, которые образуются в результате взаимодействия примесного центра с фононами и с двухуровневой системой. По

Рис. 5. Модели симметричного *a* и асимметричного (*б*) двухъямных адиабатических потенциалов; (Δ = ε₁ - ε₂ — энергия активации двухуровневых систем, V — высота барьера, *q* — обобщенная ангармоническая координата)

аналогии с фононами [1, 3, 13], вклад в однородную ширину спектральной линии при взаимодействии примесного центра с одной двухуровневой системой определяется изменением структуры адиабатического потенциала, которое выражается в виде разности гамильтонианов основного H_a и возбужденного H_e состояний [13, 14]:

$$H_e - H_g = \varepsilon a^+ a + \beta (a^+ + a)q - \frac{\varepsilon}{2},$$
(2)

где $\varepsilon = (\Delta_e - \Delta_g)$ — разность энергий активации двухуровневых систем в возбужденном и основном состояниях примесного центра, $\beta = (\beta_e - \beta_g)/2$ — разность констант связи с фононами в возбужденном и основном состояниях примесного центра, a^+ и a — операторы рождения и уничтожения туннелона, q — обобщенная координата.

В рамках динамического приближения [13, 14] первый член из соотношения (2) дает вклад в однородную ширину спектральной линии, который обладает эффектом насыщения [14] при возрастании температуры. Его рассматривать не будем, так как он не улучшает описание экспериментальных результатов. Второй член в соотношении (2), связанный с фононной стимуляцией переходов между минимумами адиабатического потенциала, дает вклад в однородную ширину с температурной зависимостью, заданной в виде [13, 14]

$$\gamma_{TLS}(T) = \lambda \operatorname{sh}^{-1}\left(\frac{\Delta}{kT}\right),\tag{3}$$

где λ — параметр, зависящий от β и спектральной функции фононов [13, 14], $\Delta = \Delta_e \approx \Delta_g$.

Именно соотношение (3) обладает необходимым для нас свойством. А именно, при $kT \ge \Delta$ оно дает близкую к линейной зависимость однородной ширины спектральной линии от температуры и поэтому будет использоваться совместно с (1) для описания изменения $\gamma(T)$ (рис. 4). Для достижения наилучшей аппроксимации экспериментальных точек по методу наименьших квадратов параметры α и λ в соотношениях (1) и (3) варьировались независимо. При этом в соотношении (1) принималось $\Delta \varepsilon = 89 \text{ см}^{-1}$ (рис. 1), а Δ в соотношении (3) могло иметь два значения. Одно из них равно 0.25 см⁻¹,

что следует из оценки по ширине спектральной линии γ_0 . А другое равно найденному в [30] энергетическому зазору между спектральной линией β_0 и ее высокочастотным сателлитом, который составляет 8.1 см⁻¹. Именно последнее значение рассматривалось в предварительном анализе [30] как энергия активации между неэквивалентными состояниями примесного иона празеодима. В обоих случаях экспериментальные точки (рис. 4) исключительно хорошо описываются соотношениями (1) и (3), а значения варьируемых параметров при этом составляют: для $\Delta = 0.25$ см⁻¹ $\alpha = 1.04 \cdot 10^{10}$ с⁻¹ и $\lambda = 1.1 \cdot 10^5$ с⁻¹, а для $\Delta = 8.1$ см⁻¹ $\alpha = 1.01 \cdot 10^{10}$ с⁻¹ и $\lambda = 3.9 \cdot 10^6$ с⁻¹.

5. ЗАКЛЮЧЕНИЕ

Таким образом, в работе показано, что известные для кристаллов температурные механизмы уширения линий в оптическом спектре примесных центров не позволяют последовательно описать температурное изменение однородной ширины $\gamma(T)$ спектральной линии, соответствующей переходу ³H₄(0)-³P₀ примесных ионов в кристалле Y₂SiO₅: Pr³⁺. Низкотемпературные спектры и данные по спектроскопии сверхвысокого разрешения позволили обнаружить в кристалле Y_2SiO_5 : Pr^{3+} два типа неэквивалентных состояний примесных ионов, различающихся по энергии. Один тип таких состояний связан с замещением примесными ионами двух неэквивалентных катионных узлов в кристаллической решетке Y₂SiO₅. Разность энергий между одноименными штарковскими компонентами примесных ионов, находящихся в неэквивалентных катионных узлах, зависит от типа терма и колеблется в пределах от десятков до сотен cm^{-1} . Структурная кристаллографическая природа различий двух неэквивалентных катионных узлов в решетке YSO означает, что примесные ионы, их замещающие, ведут себя как независимые ансамбли примесных частиц. Другой тип неэквивалентных состояний в кристаллической решетке YSO реализуется в пределах узла локализации примесного иона. Разность энергии между такими состояниями невелика и по данным эксперимента может составлять от десятых долей до единиц см $^{-1}$. В работе сделано предположение, что в области низких температур под действием фононов примесные ионы в кристалле Y_2SiO_5 : Pr^{3+} могут совершать переходы с одного неэквивалентного состояния на другое в пределах узла локализации. На формальном уровне такие переходы примесного иона представлены в модели многоямного адиабатического потенциала. На основании использования дополнительного механизма взаимодействия примесного иона с двухуровневой системой его многоямного адиабатического потенциала исключительно удачно описано температурное уширение спектральной линии перехода ${}^{3}H_{4}(0) - {}^{3}P_{0}$ примесных ионов в кристалле Y₂SiO₅ Конкретизация причины появления многоямного адиабатического потенциала у примесного иона Pr³⁺ в кристалле YSO позволит в будущем реализовать немыслимый для стекол эксперимент — исследование на микроскопическом уровне квантовых движений примесных центров в кристаллах.

Литература

Спектроскопия и динамика возбуждений в конденсированных молекулярных системах, под ред. В. М. Аграновича, Р. М. Хохшграссера, Наука, Москва (1987).

- 2. De Bree P. and D. A. Wiersma, J. Chem. Phys. 70, 790 (1979).
- 3. И. С. Осадько, УФН 128, 31 (1979).
- 4. Spectroscopy of Solids Containing Rare Earth Ions, ed. by A. A. Kaplyanskii and R. M. Macfarlane, North-Holland, Amsterdam (1987).
- 5. Э. А. Маныкин, В. В. Самарцев, Оптическая эхо-спектроскопия, Наука, Москва (1984).
- 6. K. M. Macfarlane, J. Luminescence 45, 1 (1990).
- 7. J. L. Skinner, B. B. Laird, and L. Koot, J. Luminescence 45, 6 (1990).
- 8. Э. В. Шпольский, УФН 71, 215 (1960).
- 9. Р. И. Персонов, Б. И. Альшиц, Л. А. Быковская, ЖЭТФ 65, 1825 (1973).
- 10. M. Stoneham, Rev. Mod. Phys. 41, 82 (1969).
- 11. R. Jankowiak and G. J. Small, Science 237, 618 (1987).
- 12. H. C. Meijers and D. A. Wiersma, J. Chem. Phys. 101, 6927 (1994).
- 13. I. S. Osad'ko, Phys. Rep. 206, 43 (1991).
- 14. I. S. Osad'ko, Advances in Polymer Science 114, 123 (1994).
- 15. R. Flach, D. S. Hamilton, P. S. Selzer et al., Phys. Rev. Lett. 35, 1034 (1975).
- 16. P. S. Selzer, D. S. Hamilton, and W. M. Yen, Phys. Rev. Lett. 38, 858 (1977).
- 17. P. W. Anderson, B. I. Halperin, and C. M. Varma, Phil. Mag. 25, 1 (1972).
- 18. W. A. Phillips, J. Low Temp. Phys. 7, 351, (1972).
- 19. A. J. Horsewill, P. J. McDonald, and D. Vijayaraghavan, J. Chem. Phys. 100, 1889 (1994).
- 20. J. L. Skinner and H. P. Trommsdorff, J. Chem. Phys. 89, 897 (1988).
- 21. A. M. Alsanoosi and A. J. Horsewill, Chemical Physics 160, 25 (1992).
- 22. J. P. Sethna, Phys. Rev. B 24, 698 (1981).
- 23. C. P. Flynn and A. M. Stoneham, Phys. Rev. B 1, 3966 (1970).
- 24. M. Neumann, M. R. Johnson, and H. P. Trommsdorff, J. Luminescence 66& 67, 146 (1996).
- 25. Б. А. Максимов, В. В. Илюхин, Ю. А. Харитонов и др., Кристаллография 15, 926 (1970).
- 26. А. М. Ткачук, А. К. Пржевусский, Л. Г. Морозова и др., Опт. и спектр. 60, 288 (1986).
- 27. M. Mitsunaga, T. Takagahara, K. Yano et al., Phys. Rev. Lett. 68, 3216 (1992).
- 28. Н. В. Кулешов, В. П. Михайлов, С. А. Радкевич и др., Опт. и спектр. 77, 244 (1994).
- 29. K. Holliday, M. Croci, E. Vanthey et al., Phys. Rev. B 47, 14741 (1993).
- 30. Ю. В. Малюкин, Н. Л. Погребняк, В. П. Семиноженко и др., ЖЭТФ 81, 260 (1995).
- 31. П. Н. Жмурин, Н. Л. Погребняк, В. П. Семиноженко и др., УФЖ 39, 791 (1994).
- И. Б. Берсукер, Электронное строение и свойства координационных соединений, Химия, Ленинград (1986).
- 33. У. Флайгер, Строение и динамика молекул, т. 1, Мир, Москва (1982).
- 34. W. N Yen, W. C. Scot, and A. L. Schawlow, Phys. Rev. A 136, 271 (1964).
- 35. C. A. Morrison and R. P. Leavit, J. Chem. Phys. 71(6), 2366 (1979).
- 36. H. H. Caspers, H. E. Rast, and R. A. Buchanan, J. Chem. Phys. 43(6), 2124 (1965).
- 37. S. Matthies and D. Welsch, Phys. Stat. Sol. (b) 6S, 125 (1975).
- 38. B. R. Reddy and L. E. Erickson, Phys. Rev. B 27(9), 5217 (1983).
- 39. Е. С. Макаров, Изоморфизм атомов в кристаллах, Атомиздат, Москва (1973).
- 40. N. Takeuchi, J. Luminescence 12/13, 743 (1978).
- 41. А. М. Стоуихэм, Теория дефектов в твердых телах, т. 1. Мир, Москва (1978).