КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ СТРУКТУРЫ И ОПРЕДЕЛЕНИЕ МЕЖЧАСТИЧНЫХ ПАРНЫХ ПОТЕНЦИАЛОВ ЖИДКОГО ЦЕЗИЯ В ШИРОКОМ ИНТЕРВАЛЕ ТЕМПЕРАТУР

Д. К. Белащенко^{*}, А. С. Гинзбург[†]

Московский институт стали и сплавов (Технологический университет) 117936, Москва, Россия

Поступила в редакцию 5 июня 1998 г.

С использованием дифракционных данных по структуре жидкого цезия в широком интервале температур построены модели жидкого цезия и восстановлены эффективные парные межчастичные потенциалы с применением теории жидкостей. Применялась итерационная процедура, предложенная Л. Реатто. В интервале 323–1923 К парные потенциалы слабо зависят от температуры. Потенциалы, восстановленные по дифракционным данным, отличаются от рассчитанных с использованием псевдопотенциала Анималу—Хейне. Определены коэффициенты самодиффузии в жидком цезии. Их зависимость от температуры неплохо описывается степенной функцией.

1. ВВЕДЕНИЕ

В последнее время активно разрабатывается новое и интересное направление в физике некристаллических конденсированных систем — построение атомных моделей одно- и двухкомпонентных жидких или аморфных веществ по известным дифракционным данным о структуре (конкретно — по известным структурным факторам или парным корреляционным функциям). Такая задача может быть сформулирована как чисто геометрическая. В этом случае требуется расположить в пространстве точки (изображающие атомы компонентов) таким образом, чтобы парная корреляционная функция однокомпонентной системы или три независимые парциальные парные корреляционные функции двухкомпонентной системы для пар 11, 12 и 22 совпали с разумной точностью с соответствующими функциями, полученными для реального вещества с помощью дифракционных методов (рассеяния рентгеновских лучей или нейтронов). Если построенная таким образом модель является адекватной, то ее исследование позволяет получить дополнительные сведения о строении изучаемой системы. Такая методика анализа некристаллических структур, несомненно; имеет большое будущее.

Проблема адекватности связана непосредственно с вопросом об однозначности построения модели. Под однозначностью здесь подразумевается совпадение основных характеристик структуры с соответствующими характеристиками реального тела при условии совпадения парных корреляционных функций. Имеющиеся данные свидетельствуют, что в случае «плотных» структур типа простых жидкостей, жидких и аморфных металлов адекватность (в пределах точности исходных данных) в принципе достижима. В

^{*}E-mail: dkbel@bel.misa.ac.ru

[†]E-mail: postmaster@phch.misa.ac.ru

случае же рыхлых систем с низкими координационными числами (типа жидкого кремния, кремнезема и т. п.) согласие парных корреляционных функций модели и реального тела не гарантирует согласия трехчастичных корреляционных функций, распределений азимутальных углов, многогранников Вороного и т. д.

Однако следует учесть, что рассматриваемая задача не является чисто геометрической, поскольку равновесное расположение атомов при заданных температуре и плотности обусловлено формой потенциалов межчастичного взаимодействия. Поэтому при построении моделей можно использовать дополнительные соображения физического характера. Наиболее частым является предположение о том, что взаимодействие, ответственное за структуру, имеет парный характер, т. е. при построении моделей можно пренебречь трехчастичными и кооперативными вкладами в энергию и ввести при заданном объеме системы эффективные парные потенциалы межатомного взаимодействия. Такой подход применяется, например, для жидких и аморфных металлов.

Включение в схему построения модели потенциалов взаимодействия позволяет сформулировать и обратную задачу, а именно, задачу нахождения такого межчастичного потенциала, при котором структура построенной модели жидкости или аморфного вещества окажется достаточно близкой к структуре реального тела. Эта задача решается в настоящей работе на примере жидкого цезия. В отличие от предыдущих работ, где рассматривались отдельные состояния жидкости (см. ниже), мы провели построение серии моделей жидкого цезия по дифракционным данным, полученным в весьма широком диапазоне температур вплоть до 1923 К. Наличие определенной температурной зависимости восстановленных парных потенциалов, обусловленной заметным уменьшением плотности с возрастанием температуры, могло бы служить дополнительным критерием адекватности построенных моделей.

2. МЕТОДЫ ПОСТРОЕНИЯ МОДЕЛЕЙ ПО ДИФРАКЦИОННЫМ ДАННЫМ

Для расчета межчастичных потенциалов по известным дифракционным данным о структуре жидкости в предположении парного взаимодействия (которое в реальной жидкости может и не выполняться) было предложено несколько методов [1–10]. В [1] эта задача была поставлена впервые и решалась на основе приближенных уравнений Борна— Грина—Кирквуда и Перкуса—Йевика. Иной подход предложил Шоммерс [2, 3]. Он находил парный потенциал путем итерационной процедуры, использующей этап построения молекулярно-динамической модели жидкости с пробным потенциалом и последующее внесение поправок в этот потенциал. Поправка вычислялась по специальному алгоритму, учитывающему расхождение между парной корреляционной функцией модели и заданной парной корреляционной функцией («целевой») реальной жидкости. Шоммерс применил свой метод для построения модели жидкого Ga и одновременного нахождения парного межчастичного потенциала. Процедура требовала проведения серии итераций, в процессе которых и потенциал, и парная корреляционная функция q(r) сходились асимптотически к искомому решению.

Однако эта процедура оказалась недостаточно адекватной. При хорошей сходимости функции модели к целевой функции восстанавливаемый потенциал u(r) может приближаться к решению, не совпадающему с целевым. На это обратил внимание Реатто [4, 5]. Для вычисления поправки к пробному потенциалу он предложил использовать полное уравнение теории жидкостей, содержащее так называемую бридж-функ-

51

Д. К. Белащенко, А. С. Гинзбург

цию B(r):

$$\frac{u(r)}{kT} = g(r) - 1 - c(r) - \ln g(r) + B(r).$$
(1)

Здесь u(r) — парный потенциал, g(r) — парная корреляционная функция жидкости, c(r) — прямая корреляционная функция. Вид функции B(r) для произвольного потенциала неизвестен. Функции g(r) и c(r) связаны между собой уравнением Орнштейна— Цернике

$$h(r) = g(r) - 1 = c(r) + \frac{2\pi N}{Vr} \int_{0}^{\infty} c(s)s \, ds \int_{|r-s|}^{r+s} h(t)t \, dt,$$
(2)

где n = N/V — число частиц в единице объема. Если предположить, что функция B(r) слабо зависит от формы потенциала u(r), то тогда для двух последующих приближений для потенциалов u_1 и u_2 получается:

$$\frac{u_2(r)}{kT} = \frac{u_1(r)}{kT} + g(r) - g_0(r) - \ln \frac{g(r)}{g_0(r)} + c(r) - c_0(r).$$
(3)

Здесь g(r) и c(r) — корреляционные функции жидкости с потенциалом $u_1(r)$; $u_2(r)$ — следующее приближение для потенциала, а $g_0(r)$ и $c_0(r)$ — корреляционные функции целевой модели. Эта процедура обеспечила в [4, 5] сходимость потенциала к потенциалу Леннард—Джонса

$$u_0(r) = 4\varepsilon \left[(\sigma/r)^{12} - (\sigma/r)^6 \right], \tag{4}$$

использованному для построения целевой модели.

В [6] была предложена иная итерационная схема, использующая для восстановления межчастичного потенциала «гибридный алгоритм», который способен работать только при температуре абсолютного нуля и годится, следовательно, для аморфных систем. Гибридный алгоритм использовал условие механического равновесия для всех частиц и оказался пригодным для аморфного железа.

Наконец, в [7] предложен итерационный алгоритм, который использует для восстановления потенциала полное уравнение Борна—Грина—Боголюбова без включения суперпозиционного приближения Кирквуда. В этом методе на пробной модели жидкости рассчитывается трехчастичная корреляционная функция. Зная ее и парную корреляционную функцию модели, можно рассчитать пробный парный потенциал и затем использовать его для молекулярно-динамического построения следующей модели и т. д.

Методы работ [2,6,7] были распространены и на двойные системы. В [8] при помощи метода Шоммерса были рассчитаны парные потенциалы в жидком сплаве Ag-Ge. В [9, 10] метод уравнения Борна—Грина—Боголюбова был применен к жидким сплавам Ag-Ge и Fe₂Tb.

В работе [11] итерационный метод Реатто был применен к жидкости с парным потенциалом (4) при иных, чем в работах [4, 5], условиях. Для этого состояния парная корреляционная функция была ранее рассчитана в работе Верле [12]. Мерой близости двух функций $f_1(r)$ и $f_2(r)$, заданных в виде таблиц, можно принять стандартное отклонение

$$R_f = \left\{ \frac{1}{n_2 - n_1 + 1} \sum_{n_1}^{n_2} \left[f_2(r_i) - f_1(r_i) \right]^2 \right\}^{1/2}.$$
 (5)

Здесь n_1 и n_2 — границы суммирования табличных данных. Величина отклонения R_f парной корреляционной функции модели M1 от парной корреляционной функции модели Верле равна 0.0074 (на участке $0.88 \le r \le 2.40$). Такая величина означает практическое совпадение функций. Хорошо согласовались и значения потенциальной энергии U и фактора pV/NkT (р — давление) (с поправкой на обрыв потенциала). Однако даже при значительном числе итераций (свыше 20) с использованием уравнения (3) не удалось восстановить целевой потенциал (4) в области притяжения, хотя ветвь отталкивания восстанавливалась неплохо. Увеличение длины молекулярно-динамических прогонов до 10000-15000 шагов позволяет снизить величину стандартного отклонения R_f до чрезвычайно малой величины (0.005–0.008 для парной корреляционной функции и 0.001-0.006 для структурного фактора), но не улучшает согласия восстановленного и целевого потенциалов. Более того, в процедуре Реатто, реализованной в работе [11], асимптотическое приближение к определенной функции u(r) не наблюдалось, поскольку даже в состояниях с наименьшими R_f потенциал продолжал изменяться от итерации к итерации. Это связано, видимо, с естественными флуктуациями парной корреляционной функции и с исключительно высокой реакцией на это прямой корреляционной функции в области первых пиков парной корреляционной функции.

Тем не менее из работ [4, 5, 11] видно, что применение процедуры Реатто к жидкостям позволяет построить почти идеальную модель в смысле согласия ее парной корреляционной функции и структурного фактора с целевыми. В связи с этим в настоящей работе указанная методика была применена для построения моделей и восстановления межчастичных потенциалов жидкого цезия, для которого имеются дифракционные данные по структуре при температурах 323–1923 К [13].

3. ОБРАБОТКА ДИФРАКЦИОННЫХ ДАННЫХ

Исходные структурные факторы жидкого цезия [13] любезно предоставил нам профессор Ф. Хензел (Марбург, ФРГ). Парная корреляционная функция жидкого цезия при различных плотностях и температурах были получены с помощью фурье-преобразования по формулам Филона. Обычно при этом наблюдаются ложные осцилляции парной корреляционной функции на малых расстояниях. Для улучшения качества фурьепреобразования применялась предложенная в [14] процедура корректировки исходного структурного фактора. С помощью метода наименыших квадратов искали такие минимальные поправки к структурному фактору, которые минимизировали бы одновременно амплитуду ложных осцилляций. В случае жидкого цезия удавалось уменьшить эту амплитуду примерно на порядок величины, вводя поправки к структурному фактору порядка 0.01. Полученные при этом парные корреляционные функции применялись в процедуре Реатто.

4. ПОСТРОЕНИЕ МОДЕЛЕЙ ЖИДКОГО ЦЕЗИЯ И ВОССТАНОВЛЕНИЕ МЕЖЧАСТИЧНЫХ ПОТЕНЦИАЛОВ

Все модели содержали по 1000 частиц в основном кубе. Затравочный потенциал процедуры Реатто рассчитывался, как в [4, 5]. Длина молекулярно-динамических прогонов составляла обычно 5000 шагов на начальных итерациях и 10000 шагов на последнем этапе. Использовался метод NVT-ансамбля, а размер основного куба устанавливался по фактической плотности металла. Парные корреляционные функции рассчитывались в молекулярно-динамическом прогоне до расстояния $\sim L/3$, где L — длина ребра основного куба, а затем удлинялись до расстояния 60 Å с помощью уравнения Орнштейна—Цернике аналогично работам [4, 5, 11]. При удлинении парной корреляционной функции на расстояниях свыше L/3 потенциал (и, следовательно, прямую корреляционную функцию — в соответствии с уравнением Перкуса—Йевика) полагали равным нулю.

В качестве примера в табл. 1 приведены данные по итерационной процедуре построения моделей жидкого цезия при 573 К. После проведения 20 итераций удалось достичь довольно малых R_g для парной корреляционной функции (около 0.008), структурного фактора (R_a меньше 0.007) и несколько большей величины R_c для прямой корреляционной функции (около 0.037). При более высоких температурах в общем требовалось меньше итераций для достижения приемлемой величины R_g для парной корреляционной функции. Как показано в [11], при моделировании прогонами по 10000 шагов естественным пределом точности (из-за флуктуаций самой функции) является величина $R_g = 0.003$ –0.004, а при прогонах по 15000 шагов — $R_g \simeq 0.0025$. Поэтому при восстановлении потенциала по дифракционным данным логическим концом итерационной процедуры (в случае ее сходимости) являлось бы достижение отклонения модельной функции от целевой около 0.003–0.005. Примерно такие значения и были достигнуты для моделей цезия при температурах выше 573 К.

Как и в [11], прямая корреляционная функция оказалась очень чувствительной к небольшим различиям между двумя парными корреляционными функциями. Не оправдывается и предположение о малой изменяемости бридж-функции в процессе восстановления потенциала. В качестве примера в табл. 2 приведены значения бридж-функции B(r) на 21–23 итерациях при моделировании цезия при 1923 К. Из этих данных видно, что бридж-функция колеблется от итерации к итерации в пределах нескольких сотых, т.е. сильнее, чем меняется при этом сама парная корреляционная функция. В соответствии с уравнением (1) это приводит к колебаниям расчетного потенциала порядка 0.01kT, т.е. на несколько мэВ при глубине минимума потенциала всего в ~ 56 мэВ.

Отсюда следует, что уравнение (3) неточно и восстанавливаемый парный потенциал не обязан стремиться к определенной предельной функции. Действительно, форма восстановленного парного потенциала в итерационном процессе непрерывно изменялась. Только в случае температуры 1923 К, где было проведено 24 итерации, заметно существенное уменьшение скорости изменения глубины минимума расчетного потенциала. В остальных случаях это не так, хотя значения R_g уже находились на пределе устойчивого молекулярно-динамического определения при длине прогонов в 10000 шагов. В сущности, итерационный процесс можно было бы продолжать и дальше, причем с неопределенным результатом в отношении потенциала. Правда, изменения глубины минимума потенциала от итерации к итерации невелики. Таким образом, задача о восстановлении потенциала по структуре жидкости решается неоднозначно, если задан некоторый нижний уровень величины стандартного отклонения для парной корреляционной функции (определяемый размером моделей и длиной молекулярно-динамических прогонов). Этот результат расходится с выводами работ [4, 5], где удалось получить асимптотическое решение для потенциала при конечном числе итераций Реатто.

Парные корреляционные функции наших моделей показаны на рис. 1, 2. При до-

54

Таблица 1

										Address of the local division of the local d	
N	R_{g}	R_{c}	Ra	$R_u \cdot 1000$	$r_m, Å$	<i>U</i> _m , эВ	r_{min} ,Å	$r_1, \mathbf{\dot{A}}$	$G(r_1)$	C_0	H_0
0	0	0.8781	0.5520	49.4	5.7	-0.074	3.5	5.5	1.978	0	0
2	0.0596	0.1279	0.0619	0.8765	5.7	-0.073	3.3	5.5	2.161	-19.14	-0.8804
4	0.0458	0.0936	0.0501	0.5818	5.7	-0.072	3.3	5.5	2.118	-18.16	-0.8806
5	0.0378	0.0805	0.0394	0.4787	5.8	-0.072	3.3	5.5	2.082	-17.74	-0.8718
6	0.0354	0.0796	0.0376	0.4679	5.8	-0.071	3.3	5.5	2.090	-17.60	-0.8743
7	0.0303	0.0754	0.0320	0.3983	5.8	-0.071	3.3	5.5	2.055	-17.35	-0.8600
8	0.0258	0.0705	0.0260	0.3562	5.8	-0.071	3.3	5.5	2.059	-17.09	-0.8730
9	Ó.0230	0.0680	0.0231	0.3707	5.8	-0.071	3.3	5.5	2.035	-16.85	-0.8807
10	0.0187	0.0507	0.0196	0.2544	5.8	-0.071	3.3	5.5	2.038	-16.72	-0.8671
11	0.0151	0.0645	0.0143	0.2903	5.8	-0.071	3.3	5.5	2.027	-16.55	-0.8682
12	0.0138	0.0435	0.0119	0.2155	5.8	-0.071	3.3	5.5	2.010	-16.50	-0.8842
20	0.0081	0.0372	0.0069	0.1776	5.8	-0.072	3.3	5.5	2.002	-16.15	-0.8585

Итерационная процедура построения моделей жидкого цезия при 573 К

Примечания. N — номер итерации, R_g , R_c и R_a — величины стандартных отклонений соответственно для парной корреляционной функции, C(r) и структурного фактора, R_u — величина стандартного отклонения парных потенциалов на предыдущей и данной итерациях, r_m координата минимума потенциала, U_m — значение парного потенциала в минимуме, r_{min} координата точки обращения парной корреляционной функции в нуль, r_1 — координата первого пика этой функции, $G(r_1)$ — высота этого пика, C_0 — значение прямой корреляционной функции при r = 0, H_0 — значение функции h(K) = a(K) - 1 при $K \to 0$.

стигнутых в работе значениях R_g различие между «целевыми» и модельными функциями очень невелико. Другие характеристики построенных моделей приведены в табл. 3. При не слишком высоких температурах нулевой предел структурного фактора a(0), полученный в процедуре удлинения парной корреляционной функции по уравнению Орнштейна—Цернике, оказался выше фактического [13] (см. табл. 3). Учитывая связь a(0) с изотермической сжимаемостью жидкости β и ее плотностью (N — число атомов в объеме V):

$$a(0) = \frac{N}{V}\beta kT,\tag{6}$$

можно заключить, что вдали от критической точки сжимаемость реального цезия в 1.3–5.8 раз меньше сжимаемости модельного металла с парным межчастичным взаимодействием. Расхождение убывает с ростом температуры. Этот эффект обусловлен, видимо, отрицательным вкладом электронного газа в сжимаемость и обсуждался ранее теоретически в работе [15]. С помощью уравнения (6) можно рассчитать модули

Tabarna	ູ
1 аолица	1 2

Расстояние, Å	3.0	3.2	3.4	3.6	3.8	4.0	4.2	4.4	4.6
<i>i</i> = 21	0.528	0.242	0.148	0.092	0.063	0.063	0.052	0.034	0.028
<i>i</i> = 22	0.458	0.239	0.124	0.088	0.066	0.058	0.047	0.049	0.048
<i>i</i> = 23	0.487	0.207	0.109	0.076	0.025	0.034	0.039	0.016	0.012

Значения бридж-функции на 21–23 итерациях при моделировании цезия при 1923 К

Рис. 1. Парные корреляционные функции жидкого цезия при 323 К: 1 — парная корреляционная функция модели, 2 — дифракционная парная корреляционная функция

всестороннего сжатия $K = 1/\beta$. В табл. 4 дано сравнение фактических модулей K_{exp} жидкого цезия с расчетными K_{theor} , обусловленными парным взаимодействием; модули K_{theor} вычислены с учетом нулевых пределов a(0), приведенных в табл. 3. Разность $\Delta K = K_{exp} - K_{theor}$ обусловлена вкладом электронного газа. Несмотря на не очень высокую точность вычислений, видно, что величина ΔK быстро убывает при расширении металла (примерно пропорционально V^{-12}). Модель свободных электронов при T = 0 дает гораздо более слабую зависимость $\Delta K \sim V^{-5/3}$. При 1923 К разность между K_{theor} и K_{exp} становится меньше ошибки определения K_{exp} , так что при этой температуре электронный газ уже не дает заметного вклада в сжимаемость. Электропроводность при расширении металла также быстро убывает; при 1900 К и давлении 86 бар она составляет 0.016 от проводимости при температуре плавления [16].

В табл. 3 приведены различные характеристики моделей цезия: давление, а также полная, *E*, и потенциальная, *U*, энергии, обусловленные эффективным парным взаимодействием. Поскольку они вычислены без учета объемных электронных вкладов в энергию, то их значения нельзя непосредственно сравнивать с фактическими.

Рис. 2. Парные корреляционные функции жидкого цезия при 1923 К: 1 — парная корреляционная функция модели, 2 — дифракционная парная корреляционная функция

Таблица 3

Характеристики моделей жидкого цезия, построенных по дифракционным данным. Размер моделей — 1000 частиц. Число итераций — от 8 до 20

<i>т</i> , к	V/N, <u>cm³</u>	L,Å	R_g R_c R_s a)) <i>Р</i> , МПа		Е, кДж	<i>U</i> , кДж	$D \cdot 10^5$, <u>cm²</u>			
	моль [13]					Расчет	Опыт [13]	Расчет	Опыт [13]	моль	моль	C .
323	72.6	49.406	0.0188	0.1177	0.0498	0.087	0.015	98.3	0.3	-16.9	-20.9	2.84
573	79.1	50.835	0.0081	0.0372	0.0069	0.142	0.048	262	0.3	-11.7	-18.8	9.58
773	84.6	51.996	0.0055	0.0365	0.0075	0.102	0.08	461	0.3	16.1	6.38	18.6
1073	95.6	54.149	0.0068	0.0253	0.0078	0.194	0.18	333	0.6	12.8	-0.534	31.2
1173	99.9	54.952	0.0063	0.0157	0.0139	0.372	0.29	146	0.3	3.70	-10.9	42.7
1373	109.9	56.727	0.0064	0.0203	0.0058	0.434	0.52	173	2.0	5.98	-11.1	54.6
1673	139.0	61.345	0.0057	0.0122	0.0638	0.814	1.10	105	5.3	9.20	-11.7	96.6
1923	225.3	72.052	0.0140	0.0164	0.0209	2.28	2.54	21.3	96	15.0	8.96	1 96

Примечание. V/N — мольный объем, L — длина ребра основного куба, a(0) — нулевой предел структурного фактора, E — полная энергия, U — потенциальная энергия, D — коэффициент самодиффузии.

57

	T	аб.	้านเ	ua	4
--	---	-----	------	----	---

т, к	323	573	773	1073	1173	1923
V/N , см 3 /моль	72.6	79.1	84.6	95.6	<u>99.9</u>	225.3
$10^{-8} \cdot K_{exp}$, Па	24.6	12.5	9.49	5.18	3.36	0.279
$10^{-8} \cdot K_{theor}$, Па	4.25	4.24	7.44	4.81	2.62	0.311
$10^{-8} \cdot \Delta K$, Па	20.4	8.26	2.05	0.37	0.74	~ 0

Сравнение фактических модулей K_{exp} жидкого цезия с расчетными K_{theor} , обусловленными парным взаимодействием

Рис. 3. Межчастичные потенциалы цезия при различных температурах: 1 — 323 К, 2 — 573 К, 3 — 773 К

На рис. 3, 4 показаны расчетные парные межчастичные потенциалы цезия при различных температурах. Они быстро убывают по абсолютной величине с ростом расстояния и при r > 8 Å не превышают нескольких мэВ, а при r > 10 Å меньше 1 мэВ. Монотонного изменения потенциалов с ростом температуры не наблюдается. В области отталкивания потенциал возрастает при нагревании до 773 K, а при дальнейшем повышении температуры снова убывает. Причина этого заключается, видимо, в высокой чувствительности расчетных потенциалов к форме парной корреляционной функции; сравнительно небольшие погрешности расчетных функций приводят к таким изменениям потенциалов, которые существенно превышают закономерные изменения их с ростом температуры.

В работах [17, 18] был рассчитан эффективный межионный потенциал жидкого цезия вблизи температуры плавления с использованием псевдопотенциала Анималу—

Рис. 4. Межчастичные потенциалы цезия при различных температурах: 1 — 1073 K, 2 — 1173 K, 3 — 1973 K

Хейне и экранированием по Гелдарту—Воско. Он отличается от найденного по дифракционным данным. Например, первый узел нашего потенциала расположен при 4.7 Å, а псевдопотенциального — при 4.9 Å; вторые узлы расположены соответственно при 9.1 и 7.4 Å. Дифракционный потенциал возрастает на малых расстояниях менее круто, чем псевдопотенциальный (например, на расстоянии 4.5 Å дифракционный потенциал равен ~ 24 мэВ, а теоретический 53 мэВ). Глубина минимума дифракционного потенциала при 5.7 Å равна –55.6 мэВ, а у расчетного потенциала минимум расположен там же, но имеет глубину –26 мэВ.

В последнем столбце табл. 3 приведены величины коэффициентов самодиффузии, которые были найдены по зависимости среднего квадрата смещения атомов цезия от времени молекулярно-динамической релаксации. На интервале 323–1923 К коэффициент самодиффузии увеличивается в ~ 70 раз. Температурная зависимость неплохо описывается степенным выражением:

$$D = 6.69 \cdot 10^{-11} T^{2.228} \text{ cm}^2/\text{c}.$$
 (7)

Экспоненциальная формула типа Аррениуса $D = 3.35 \cdot 10^{-3} \exp(-12636 \text{ Дж}/RT)$ описывает результаты гораздо хуже. Степенные выражения для зависимости D(T) предлагались ранее [19, 20], с учетом того что в жидком металле механизм диффузии не является активационным.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Итак, судя по нашим данным, при заданных температуре и давлении может существовать целое семейство расчетных парных потенциалов, обеспечивающих хорошее согласие с целевой парной корреляционной функцией в пределах разумного значения

Д. К. Белащенко, А. С. Гинзбург

стандартного отклонения. Поэтому процедура восстановления потенциала с использованием уравнений теории жидкостей, в принципе, может быть неустойчивой, так что при достаточно большом числе итераций будут последовательно появляться разные члены этого семейства. Возможно, успех работ [4, 5] по восстановлению потенциала Леннард—Джонса связан с удачным выбором начальных условий и затравочного потенциала. Однако нет гарантии, что при дальнейшем продолжении итерационного процесса не произойдет переход к другому потенциалу.

Этот вывод неприятен с точки зрения восстановления потенциала реальных жидкостей, когда неизвестно, какие начальные условия оптимальны. Что же касается адекватности восстановления структуры жидкости, то для плотных систем хорошее согласие фактической и модельной парных корреляционных функций, видимо, гарантирует согласие других структурных характеристик, в частности, угловых корреляций, распределений многогранников Вороного и т. п. [7, 10]. С полученным парным потенциалом можно рассчитывать такие свойства жидкости, как вибрационный спектр, коэффициент самодиффузии и вязкость. В случае топологически рыхлых систем с низкими координационными числами (типа жидкого кремния) это уже не так, поскольку может быть получено идеальное согласие парных корреляционных функций двух состояний с совершенно разными трехчастичными корреляционными функциями [21].

Литература

- 1. M. D. Johnson, P. Hutchinson, and N. H. March, Proc. Roy. Soc. Lond. A 282, 283 (1964).
- 2. W. Schommers, Phys. Rev. A 28, 3599 (1983).
- 3. W. Schommers, J. Non-crystalline Solids 61-62 (Part 1), 571 (1984).
- 4. L. Reatto, D. Levesque, and J. J. Weis, Phys. Rev. A 33 (5), 3451 (1986).
- 5. L. Reatto, Phil. Mag. 58 (1), 37 (1988).
- 6. М. И. Менделев, Д. К. Белащенко, Расплавы № 4, 60 (1992).
- 7. Д. К. Белащенко, М. И. Менделев, Металлы № 5, 80 (1993).
- 8. Д. К. Белащенко, М. П. Момчев, Изв. вузов., Черная металлургия № 7, 72 (1992).
- 9. М. И. Менделев, Д. К. Белащенко, Неорган. материалы 31 (2), 215 (1995).
- 10. М. И. Менделев, Д. К. Белащенко, Неорган. материалы 30 (3), 379 (1994).
- 11. Д. К. Белащенко, Металлы № 4, 101 (1998).
- 12. L. Verlet, Phys. Rev. 165 (1), 201 (1968).
- 13. R. Winter, F. Hensel, T. Bodensteiner, and W. Glaser, Ber. Bunsenges. Phys. Chem. 91, 1327 (1987).
- 14. Д. К. Белащенко, Кристаллография 48 (3), 400 (1998).
- 15. M. Hasegava and W. H. Young, J. Phys. F: Metal Phys. 8 (4), L81 (1978).
- 16. F. Hensel, S. Jungst, F. Noll, and R. Winter, in: Localization and Metal-Insulator Transition, ed. by D. Adler and H. Fritzsche, Plenum Press, N. Y. (1985), p. 109.
- 17. А. М. Братковский, В. Г. Вакс, С. П. Кравчук, А. В. Трефилов, Препринт ИАЭ им. И. В. Курчатова ИАЭ-3392/9, Москва (1981).
- 18. A. M. Bratkovsky, V. G. Vaks, S. P. Kravchuk, and A. V. Trefilov, J. Phys.: Metal Phys. 12 (7), 1293 (1982).
- 19. R. A. Swalin, Acta Met. 7, 736 (1959).
- 20. R. A. Swalin, Acta Met. 9, 379 (1961).
- 21. В. В. Аленков, Д. К. Белащенко, Г. Д. Кузнецов, Расплавы № 4, 65 (1989).