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We calculate the energy of charge-carrier-induced canted ordering in conducting layered 
antiferromagnetic systetns with double ехсЬаngе. The quantum approach to the d-spins is used. 
In the jellium model the energy of the canted state is lower than the energies of both coliinear 
ferro- and antiferromagnetic states over а сеrШin rangе of charge carrier densities, beginning 
with arbitrarily smal1 densities. Nevertheless, the canted state cannot ье realized, Ьесаше it is 
unstable against charge-carrier densityfluctuations. The two-phase ferro-antiferromagnetic state 
сап play the role of ап alternative to canting. ТЬе case of ап intermediate electronic-impurity 
phase separation is investigated. 

1. INТRODUCTION 

As is well known, charge carriers in magnetic semiconductors tend to establish 
fetromagnetic ordering atwhich their energy is minimal. If the ordering in the undoped 
semiconductor is antiferromagnetic, then with increasing charge carrier density first а magnetic 
state intermediate between the ferromagnetic and antiferromagnetic states should арреас. At 
stiIl higher densities, the ordering in the crystal becomes completely ferromagnetic. There 
асе different points of view about the nature of the intermediate state at . moderate doping 
(underdoped samples). 

Ое Gennes [1] assumed canted antiferromagnetic ordering to ье ап intermediate state 
of degenerate antiferromagnetic semiconductors. Не found, treating the d-spins as classical 
vectors, that the canting angle should ье proportional to the charge carrier density. As 
ап altemative to canting, in Ref. 2 the electronic phase separatiQn model: was proposed, 
according to which а degenerate antiferromagnetic semiconductor with frozen impurities in 
its ground state is separated into ап insulating antiferromagnetic phase and high-conductivity 
ferromagnetic phases. Later the case offerro-antiferromagnetic phase separation was considered 
in systerns with mobile impurities and а high magnetic ordering temperature (e.g., oxygen in 
perovskites [3]). Тhеп not only the charge carriers but also the ionized donors or acceptors are 
concentrated in the ferromagnetic portion of the crystal (impurity phase separation). 

As for experimental verifi~ation of these theories, the electronic phase separation theory 
was confirmed Ьу electric, magnetic and magnetooptic data оп EuSe, ЕиТе, and so 'оп (see 
Ref. 4). Оп the other hand, De Gennes [1] interpreted data of neutron studies of the doped 
lanthanum manganites La1_.,Са.,МпОз ·(Ref. 5) as confirmation of canted antiferromagnetic 
ordering in them. This idea was accepted Ьу тапу investigators, еуеп those who are engaged in 
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neutron studies, and now it is customary to refer to the results of Ref. 5 as providing verification 
of canted ordering. 

In reality, this involvesa misunderstanding: Wollan and Koebler [5] arrived just to 
the opposite con'clusion. They pointed out that in principle the superposition of ferro­
and antiferromagnetic реш they observed at х = 0.18 сап ье related to both the canted 
antiferromagnetic ordering and mixture ofthe ferro- and antiferromagnetic regions. То choose 
between these two possibilities, they investigated the behavior of the peaks in the magnetic field. 
They found that а field ofabout 4 kOe halves the height of the ferromagnetic peaks but does 
not inf1uence the height of the antiferromagnetic peaks. 

But . in the case of canted ordering, the ferromagnetism vector is rigidly related to the 
antiferromagnetism vector, and the field should rotate these vectors simultaneously. Непсе, 
both the ferro- and antiferromagnetic peaks should vary in intensity simultaneously. In contrast, 
in case of the phase-separated state, the ferromagnetism and antiferromagnetism vectors are 
independent. This led Wollan and Koebler [5] to conclude (and this conclusion they expressed 
in plain words) that the phase separation, rather than canting, takes place in their samples. 
But the шiturе of the phase separation remains ,as yet unknown. 

Strictly speaking, а very small canting of the relativistic origin was discovered later [6] in 
the undoped LaМпОз but it has nothing in соmmоп with the. charge-carrier-induced canting 
proposed in Ref. 1. Its existence was confirmed in Refs. 7 and 8 Ьу neutron investigations of 
Lal-хSrхМпОз and Lal_хСахМпОз, respectively. For example, in the former at х = 0.04, 
the ferromagnetic and antiferromagnetic peaks appear simultaneously at the same temperature 
(136 К), which unequivocally confirms the canted structure. But at х = 0.125 the ferromagnetic 
peaks appear at 230 К and the antiferromagnetic peaks only at 150 К [7]. 

The most natural explanation of this difference is that the ferromagnetism is not related 
to the antiferromagnetism as the corresponding regions are spatially separated. In other words, 
this result сап Ье considered to Ье consistent with conclusions of Ref. 5. But in Ref. 7 the 
hypothesis was advanced that as the temperature decreases first the ferromagnetic ordering is 
established, and then it is replaced Ьу canted antiferromagnetic ordering. Investigations in а 
magnetic field similar to those carried out in Ref. 5 might address the question of whether the 
hypothesis of Ref. 7 is adequate. 

In Ref. 8, short-range ferromagnetic correlations with а length of severa11attice constants 
were discovered, which were attributed to moving magnetic polarons (ferrons). This result is 
very impQrtant as it directly confirm~ phase separation: the appearance of ferromagnetic regions 
inside antiferromagnetic crystals. In our opinion, these correlations should ье attributed not 
to the moving magnetic polarons (ferrons) predicted in Ref. 2: their number is exponentially 
small, and they are unlikely to ье observed in neutron studies. But ferromagnetic correlations 
сап Ье attributed to ferrons boundto ionized acceptors [2]. Their number is several orders of 
magnitude larger than the number of free ferrons. 

Not оnlу neutron data, but also electric data оп manganites conf1ict with the Ое Gennes 
scenario of the appearance of canted antiferromagnetic ordering due to mobile holes. In fact, 
contrary to the Ое Gennes assumption, incompletely magnetized materials are not higbly 
conductive but insulating. In addition to Ref. 8, опе should also mention other investigations 
with larger acceptor contents (see Ref. 9). But this is not inconsistent with the properties of 
the phase-separated semiconductors: at modest charge carrier density they behave like the 
insulators [2-4]. 

In the present paper we describe а detailed investigation of the assumed canted layered 
antiferromagnetic ordering under the double exchange conditions typical of lanthanum 
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manganites. Unlike that of Ref. 1, ,our treatment of the rnagnetic system wil1 not Ье 
classical but quantum-mechanical. It will Ье shown that although in а certain charge-car­
rier density range the canted antiferromagnetic structure is more energetically favored than the 
coIlinear antiferromagnetic and ferromagnetic structures, it is nevertheless not stable against 
transforrnation to а nonuniform state. The instability of the uniform state is seen [сот the 
fact that the s-electron screening length diminishes with increasing charge carrier density, and 
formally becomes imaginary at moderate densities. 

А new type of ferro-;.antiferromagnetic phase separation will ье considered as а possible 
.altemative to canting. In particular, manganites usually contain not only immobile acceptors 
(Са, Sr, and so оп) but also mobile acceptors in the [оmi of excess oxygen. The situation 
intermediate between electronic and impurity phase separation will Ье considered: in the 
ferromagnetic portion of the crystal, holes of both immobile and mobile acceptors congregate 
with the mobile acceptors themselves. 

2. DOUBLE-EXCНANGE-INDUCED CANTED ANТIFERROМAGNEТIC ORDERING 

Canted antiferromagnetic ordering in а layered antiferromagnetic structure will Ье 

considered, as this is just the structure realized in lanthanum manganites. The crystaIline 
structure is assumed to ье simple сиЫс. 

The charge-carrier energy spectrum for double exchange will Ье found. It is commonly 
believed that this limiting caSe of extremely strong s-d coupling is realized in. lanthanum 
manganites, though some. experimental data point to inadequacy of the double exchange 
(see Ref. 9). Nevertheless, there are other data that support double-exchange scenario in 
these materials. For example, neutron studies suggest that the magnon spectrum of dвped 
lanthanum manganites corresponds to nearest neighbors, which is inconsistent with standard 
RKKY indirect exchange [10]. Оп the other hand [4,11], this is just the case for indirect 
exchange in double-exchange systems. We also take note of Ref. 12, in which it was found Ьу 
optical studies that the Мп еь band is the highest of the filled bands so that holes only appear 
in this band. ' 

The treatment is based оп the standard s-d model with the Hamiltonian 

where а;(71 ag(7 are the s -electron operators corresponding to conduction electrons or holes 
located at atom g with the spin projection (J', S is its spin operator, Sg is that of the d-spin 
of atom g, and А is the vector connecting nearest neighbors. The d-d exchange interaction in 
Eq. (1) is taken in the form ensuring the existence ofthe ferromagnetically ordered (001) planes 
with altemating moments. In particular, in the Jahn-Teller systems to which the lanthanum 
manganites belong, the in-plane d-d exchange сап Ье ferromagnetic, whereas the out-of-plane 
d-d exchange сап ье antiferromagnetic [13]. In this case the nearest-neighbor approximation 
is sufficient. 

The double-exchange condition сап Ье formulated mathematically as а requirement that 
the s-electron band width W = 2zt ье small compared to AS, where S is the d spin magnitude 
and z is the coordination number. The s-d exchange integral А is assumed to Ье positive. The 
inequality W ~ IIIzS2 should also Ье met, as these quantities are ofthe first and second order 
in the small d-orbital overlap, respectively. 
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Unlike Ref. 1, where the d spins were considered as classical, here the d spins will 
Ье considered as quantum-mechanical, and the inequality 2В » 1 is not assumed. The 
quailtum approach is necessary to investigate the stability of the canted antiferromagnetic 
ordering induced Ьу double exchange. Thewave function of ап s electron in the completely 
antiferromagnetically otdered crystal is expanded in the eigenfunctions of the s-d exchange 
Hamiltonian (the second term in Eq. (1». Such а quantum-mechanical treatment was first 
carried out in Ref. 14 for а system of two atoms, and Ьу the present author for а system 
consisting of ап arbitrarily large number of atoms [15]. It is assumed that the tnomentsof the 
two sublattices (i = 1 or 2) make angles ±() with the total moment of the crystal. 

For апу atom, the z axis is aligned with the moment of the sublattice to which the atom 
belongs. The following eigenfunctions of the s-d exchange Hamiltonian will ье used as the 
basis for the wave function expansion: . 

Фо(g) = а;т 'О} П 8(St, В), 
r 

(2) 

where В- = ВХ - iSY , 8(n, т) = 1 for n = т and О otherwise, and 'О} is the s electron 
vacuUm function. 

То find the energy to first order in t, the wave function is represented Ьу the linear 
combination 

2 

'Р = I: I: [Х(gдФо(gд + У(gi)ФI(gд]. (3) 
i-I а. 

In fact, this is the Ritz variational procedure: in Eq. (3), terms are omitted that correspond 
to the d spins deviated [rom the moment of their sublattice in the absence of s electrons at 
them. These terms correspond to string-like motion ofthe charge carrier [16], which is ofvital 
importance at А < О and S = 1/2, but is not significant at А > О [4]. 

То proceed further, transformation rules for the ele.ctron operators froIl} опе reference 
frame to the other are necessary: 

a(g +.i, 19+.i) = cos () a(g +.i, 1а) + i exp(iQg)sin(} a(g +.i, i с), 

a(g +.i, i сн) = cos(} a(g +.i, i а) + i exp(iQg)sin(} a(g + .i, 1к), 
(4)· 

where Q ~s the antiferromagnetic wave vector, and the index of the spin projection points to the 
atom in whose reference frame this projection is measured. We put g = (r, z) and denote vectors 
connecting nearest neighbors in the plane and between the planes by.i and n, respectively., Тhеп 
with, allowance for the relationships t » 111 and Q = 11'(0, 0,1), опе obtains from Eqs. (1)-(4) 
for the s electron епещу Е• . 

( АВ)' ",' '" itsin(}eiQв '" Е• + -2 ХХ = -tсоslJ ~ ХК+П - t ~ Xg+.i - ~ ~ Ук+п, 
n '.i v 2В + 1 а 

( АВ) tcosIJ '" t '" itsin(}eiQg '" 
Е• + 2 У• = - 2В + 1 ~ УК+П - 2В t 1 ~ ~+.i - V2S+1 ~ хк+п • 

n .i D 

(5) 
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Putting Х& =Xeiqg , Уа = Yei(Q+Q)&, and omitting the constant AS/2 in Eq. (5), опе сап 
rewrite Eq. (5) in the form 

яр sin8 
(Е, + Н)Х = - Rpcos8 Х - .J2S+1 У, 

. 2S+ 1 

(Е +~) У = _ Rpcos8 y + R p sin{} Х 
• 2S + 1 2S + 1 V2S + 1 

(6) 

with q = (kx , ky,p), Н = 2t[cos(kxa) + cos(kya)], and Rp = 2tcos(pa). 
Опе obtains from Eqs. (6) the fol1owing expression for the electron energy: 

Е (kp) = _ (S+I)Pk MRp ± _1_ [S2P,2+(M2+2S+1)R2+2M(S+I)RR ]1/2 (7) 
s 2S+1 2S+1 2S+1 k р k р , 

where М = Scos8 is the magnetization per atom, and'a is the lattice constant. 
As сап ье seen from Eq. (7), the charge-carrier spectrum consists of two subbands. In 

complete ferromagnetic ordering, the lower and upper subbands correspond to the total spin 
projection of ап s-electron-Ioaded atom, equal to S + 1/2 or S - 1/2, respectively. At arbitrary 
magnetization, опе of the subbands remains well below the other. As the number of charge 
carriers is small compared to the number of magnetic atoms, only the low-energy electronic 
subband matters. If 2S ::» 1 and М2 ::» 2S, опе obtains from Eq. (7) the expre~ion for the 
s electron energy, which coincides with the result obtained in Ref. 1: 

For arbitrary М and S in the quadratic approximation, this energy сап ье written in the 
form (h = 1) 

k2 р2 
.. E(kp) = В + --+-, 

2mху 2mz 

В - 4(S + 1) + 2М + vгz 
- -t 2S + 1 ' 

-- = -- S + 1 + -----,=---
1 ta2 [ 482 + 2M(S + 1)] 

2mху 2S + 1 vГz' 
(9) 

_1_ = ~ [М +. 2(м2 + 28 + 1) + 4M(S + 1)] 
2mz 28 + 1 /z ' 

z = 1682 + 4(м2 + 282 + 1) + 16М(8 + 1). 

This result makes it possible to find the magnetizationthat minimizes the energy of the 
canted antiferromagnetic ordering. At this stage, keeping in mind that the number v of s 
electrons per atom is small, опе сап putthe total energy per atom equal to Et = V В ~ 1 8 2cos28, 
where В is given Ьу Eq. (9), and 1 is the interplane d-d exchange integral in the nearest-neighbor 
approximation. Minimizing E t with respect to М, опе obtains the equation for the equilibrium 
magnetization, which in the limit 28 -> 00 goes.over into the Ое Gennes result [1]: 

\ 

м =' 2vt [1 + 4(S + 1) + 2М] 
(28 + 1)111 vГz' 

(10) 
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In case considered, М is nonzero for all 1I. In particular, for large 3 the magnetization is 
proportional to 1I. From Eq. (10), one obtains the following expression for the relative electron 
density lIF at which complete ferromagnetic ordering is established: 

= III3(23 + 1) [1 + 1 ] -1 

lIF 4t 2(33 + 1) 
(11) 

Obviously, the inequality III32 « t should hold as the quantities I and t are of the second 
and first order in the small overlap of d orbitals of neighboring atoms, respectively. For this 
reason, the inequality lIF « 1 should also hold. 

It is interesting to compare results for the layered structure just obtained with the results 
obtained earlier for а staggered structure [17]. In the latter case, the effective hopping integral 
for the collinear antiferromagnetic structure is equal to t/v'23 + 1. Hence, it сап Ье rather 
large even at 23 » 1, keeping in mind that 23 ~ 5 for d shells. But for the layered structure, 
according to Eq. (9), it is equal to t / 43 for 23 » 1, i. е., it is really small. This justifies the 
De Gennes approach [1]. 

Another drastic difference between these two structures is the fact that for the staggered 
structure, canting is energetically favored starting not at ,some arbitrarily low charge-carrier 
density, but at some finite value. At lower densities, staggered antiferromagnetic collinear 
ordering is at least relatively stable, whereas layered collinear ordering is unstable at all densities. 

3. INSTAВILIТY OF ТНЕ CANТED ANТIFERROМAGNETIC ORDERING 

, . 
So far we have shown that а range of charge-carrier densities exists in which canted 

antiferromagnetic ordering is more energetically favored than the collinear antiferrornagnetic or 
ferromagnetic ordering. But this does not necessarily ensure the stability of а canted structure in 
magnetic systems with an isotropic exchange interaction. In what follows, it will Ье proved that 
in reality, the canted state is absolutely unstable against arbitrarily small f1uctuations of electric 
fields, if the charge carrier density is not too low. Hence, the results of the preceding section, 
which attest to the instability of the collinear antiferromagnetic' and ferromagnetic states in а 
certain 1I range, do not ensиre stability of the canted state in this range. 

The fact of its being energetically favored as compared with the collinear ferrornagnetic 
and antiferromagnetic states simply implies the absolute instability of the collinear states, but 
does not prove the stability of the canted state. 

The instability of the canted state mау Ье due to the fact that the band bottom position В 
depends оп the magnetization М and decreases with decreasing М (9). OQ. the other hand, the 
10ca1 magnetization increases with local charge-carrier density (10). Hence, if а local density 
f1uctuation lowers the local band bottom, а local potentia1 well for carriers arises at that location. 
The carriers tend to increase the local density still more. But there are two factors hindering an 
increase in the f1uctuations: а rise in the kinetic energy ofthe charge carriers, and the Coulomb 
interaction between them in the region of their enhanced density. Competition among all these 
factors determines whether the initial f1uctuation will continue to increase or it will begin to 
,decrease. In the former case, the uniform canted state will ье destroyed. 

Here, as is customary for degenerate semiconductors, the jellium model is used, which 
is 'applicable at J.t » e2n l / 3/f.o, where J.t is the Fermi energy, n = lIa3 is the charge-carrier 
density, and Ео is the diele~tric' constant. In the jellium model, instability,of the canted state 

2230 



ЖЭТФ, 1998, 114, 6Ыn. 6(12) Underdoped manganites . .. 

against f1uctuations should Ье manifested mathematicaIIy Ьу the screening length becoming 
imaginary. It means that апу arbitrarily sПiаII electric field makes the uniform state unstable. 
This field сап Ье caused Ьу а f1uctuation of the charge-carrier density, i. е., опе тау speak 
of instability against the density f1uctuations. This points to the tendency for the system to go 
оуег into а nonuniform state, i. е., to а рЬме separation. Certainly, ап imaginary screening 
length is а sufficient but not а necessary condition [ог instability of the uniform state. 

ТЬе screening length for the canted state will Ье calculated in the Bom-Oppenheimer 
approximation. This means that the magnetization М(г) and the band bottom position В(г) 
аге smoothly varying functions of the coordinates. This is justified Ьу the fact that the typical 
length over which they change is the screening length 1/"" which greatly exceeds the lattice 
constant а in degenerate semiconductors. As both these quantities depend оп r via n(г), опе 
тау put 

dB dM 
В(г) = В + dM dn бn(г), 

(12) 

n(r) = n + бn(г), бn(г) = 2:= n(q)eiqr , 

where В and n аге the average values of the corresponding quantities. 
ТЬе п~quiгеmепt of constant electrochemical potential in the presence of ап extemal 

electrostatic field with potential Ф(q), 

J.L(r) + В(г) + еф(г) = const, 

after Iinearization with respect to бn(г) takes the form 

dJ.L +еф(q) + B(q) = О, 
dn 

ф( ) = Ф(q) 
q f(q) , 

where the Fermi energy /-L is measured [roт the bottom of the band. 

(13) 

(14) 

Using Eq. (12), опе obtains the relationship between the intemal field ф(q) and the 
corresponding f1uctuation of the electron density: 

n(q) = _ dn еф(q), 
dJ.L 1- Г 

where the rnagnetoelectric constant Г is introduced: 

dB dM dn 
г=----. 

dM dn dJ.L 

(15) 

(16) 

In what follows, the standard pattem for calculating the screened potenial is used. Опе 

introduces the field бф(q) created Ьу the s electrons polarized Ьу the extemal field: 

Ф(q) [ f(q)] бф(q) = ф(q) - - = 1 - -. ф(q). 
100 100 

With allowance for Eq. (15), the Poisson equation takes the form 

q2бф(q) = _",2ф(q), 
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where 

2 41Ге2 dn 
'" = -. Ео(1 - Г) dJL. 

As сап ье seen from Eqs. (17) and (18), the quantity 1/", is just the screening length. 
Obviously, with increasing Г, the screening length decreases and becomes imaginary when the 
magnetoelectric constant Г exceeds unity. For the jellium model used when the compensating 
charge of ionized impurity is assumed, to Ье distributed uniform1y, the condition Г = 1 сап ье 
considered necessary for the stability of the canted structure. Hence, the problem consists in 
obtaining an explicit expression for this quantity in the canted structure. 

First, the quantity dn/dJL will ье found. We introduce the effective mass of the density 
of states, mdos, according to the standard procedure for semiconductors with an anisotropic 
effective mass, as in Бq. (9). То obtain an expression for mdos, the following equation for the 
density of states is used: 

(19) 

This expression сап Ье obtained from the expression for the density ofstates when 1Г2/2mzа2 > 
> М. If the inequality does not hold, one should considel' the s electron motion to ье two-di­
mensional. But this «ultraclassical» case emerges on1y when 28 - 00, and for this reason 
it is purely of academic interest as 28 ~ 5 for d-shells, and hence at fairy low densities the 
condition just. mentioned is satisfied. ' 

As follows from Eq. (19), the Fermi energy .isgiven Ьу 

(61Г2n)2/3 
м= 

2mdos ' 

where according to Eq. (9), the quantity mdos is а function of М, and thus of n. 

(20) 

То make suЬsequiщt ca1culations more transparent, we first consider the c~e in which 
Eq. (8) is valid (м2 ~ 28 + 1 ~ 1). Then 

(8) 1/3 

mdos =т, М ' 

2tM 
B=-4t--

8 ' 

and one obtains from Eqs. (16) and (21) , 

1 _ =ta2 

-2т ' 

. 4vt 8v 
М = (28 + 1)1/1 - -vp 

2 
Г=-----:-;-:-

(61Г2)2/3v~3 . 

(21) 

(22) 

As сап ье seen from Eq. (22), the magnetoelectric constant Г exceeds unity at Vp < 0.05. 
Hence, the canted antiferromagnetic ordering at м2 ~ 28 + 1 is absolutely unstable for such 
vp. But this is not the case for 0.05 < Vp « 1 . 

. In the opposite limiting case, 28 ~ 1 and м « 28, one finds Ьу а similar ca1culation 

3vl / 3 
Г = (23) 

(61Г2)2/3vр ' 
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We see from Eq. (23) that when v -+ О, canted ordering remains at least relatively stable: 
Similar qualitative conclusions were drawn in Ref. 9 about stability ofthe canted structure 

in а staggered апtifепоrnagпеt, although the case of уесу low v is meaningless for them: at 
such densities colIinear апtifепоmagпеtiс ordering is ~nergetically more favorable than canted 
ordering. But in case of staggered ordering, а more reaJistic model with randornly distributed 
point impurities сап ье used instead of the jellium model to investigate the stability of the canted 
structure [9]. 

In this model one takes into account that а charge carrier is attracted to the ionized impurity 
not only Ьу the Coulomb force but also Ьу the force related to the magnetization-dependent 
location of the bottom of the band (the expression for which is simi1ar {о Eq. (9) for В). This 
force arises because in the vicinity of an impurity the charge-carrierdensity is higher than its 
average value. Hence, according {о an expression for М similar to Eq. (10), the same is true for 
the magnetization. As the total force attracting the charge carrier to the impurity exceeds the 
Coulomb force, the condition for Mott delocalization of the donor electrons is more stringent 
in the case of canted ordering, than in case of colIinear ordering. 

For this reason, canting сап ье unstable against localization of the charge camers. But 
canted апtifепоmаgпеtic ordering was obtained under the assumption of delocalized charge 
carriers, which means that this assumption is invaJid. Hence, the uniform canted ordering is 
unstable. Mathematical1y, the condition of Mott delocaJization leads to the stability condition 
Г < 1, instead of г = 1 as in the je1Jium model. 

Unfortunately, а феоry ofMott delocalization in anisotropic systems is lacking at present, 
so it is impossible to use this approach for а layered structure. One must merely ье aware that 
Г = 1 is а sufficient (and not а necessary),condition. for instability of the canted structure. 
Nevertheless, as seen from Eq. (22), in typical cases the margin of stability is уесу large. 

4. MIXED ELECfRONIC-IМРURIТУ PНASE SEPARATION 

We now study phase separation as an altem<;ltive to canting. As electronic and impurity 
phase separation were already investigated in Refs. 2 and 3, here we study а special situation that 
is likely {о ье typical of manganites. It will ье assumed that two types of acceptors (donors) are 
present in the crystal: immobile (Са, Sr, etc.) and mobile Joxygen). Mixed impurity-electronic 
fепо-апtifепоmаgпеtic phase separation should then occur. It is characterized Ьу the fact that 
the fепоmаgпеtiс phase becomes the places where holes of·the immobile acceptors and holes 
of the тоЫlе acceptors congregate with these ionized тоЫlе acceptors. ТЬе holes and mobiJe 
acceptors are absent from the апtifепоmаgпеtic portion of {Ье crystal. 

This type of phase separation is of special interest for the following reason. ТЬе main 
difference between electronic and impurity phase separation lies in the fact that the 10саl clcctric 
charge is nonzero in the former case and zero in the latter. Indeed, in electronic рЬме separation 
the positions of the impurity atoms are frozen. For this reason, the concentration of charge 
carriers in а certain phase leads to its becoming charged, and to the opposite charge of the 
other phase, due to the remaining ionized impurity atorns. Coulomb forces tend to mix both 
phases, but surface forces limit the mixing. If the crystal is isotropic, the phase of the smaller 
volume (<<minor phase») consists of small droplets several nanometers in size embedded in the 
host (<<major phase») [2, 4]. 

As for impurity phase separation, Ьесе there are по Coulomb forces, since the local charges 
of the nonuniformly distributed electrons (holes) are balanced everywhere Ьу the charge of 
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ionized donors (acceptors). Nevertheless, the tendency to phase mixing exists here too: it 
reduces elastic forces resulting from the difference in the elastic moduli ofthe two phases. As а 
re$ult, the minimum energy corresponds to а plane-parallel geometry (alternating layers of the 
two phases), but under typical conditions their size is several orders of magnitude larger than 
the radius of the droplets in the electronic phase separation [9]. As the Coulomb forces are 
much stronger than the elastic forces, in mixed phase separation the former should determine 
the geometry of the system as well. 

То calculate the energy of the phase-separated state, а variational procedure will Ье used. 
It generalizes the procedиre developed in Ref. 2. It is assumed that the minor phase consists 
of spheres of radius R arranged periodically inside the major phase. The second variational 
parameter is the ratio of volumes of the antiferromagnetic and ferromagnetic phases: w = 
= VA/Vp. If the minor phase is highly conductive, the electronic part of the wave function at 
т = о is taken in the form of the antisymmetrized product of the single-electron wave functions 
ф(г) corresponding to the free motion of ап electron inside а spherical region of radius R, 

1 
'I' = VNJ Det [Фk(R; - гnд] , (24) 

where R; is the location of the center of the ith sphere, г ni is the location of the nth electron 
inside the ith sphere, and N e is the totalnumber of electrons. In the ground state the indices 
k of the single-electron states correspond to the single-electron energies E k below the Реrrпi 
energy f.L. 

Dirichlet boundary conditions are used for each sphere. This is justified еуеп for fairly 
shallow potential wells if J2m(U - Ek)R » 1, where И is the potential-well depth and m is 
the electron effective mass. The wave function (24) is accиrate at radii less than the screening 
length in ferromagnetic ordering. At larger R, it gives the upper bound оп the energy of the 
phase-separated state. 

If J2mf.L R » 1, the Born-Oppenheimer approximation сап Ье used to calculate the 
electron kinetic energy Е к. In this approximation, а memory of the spatial quantization of 
the electron motion remains in the form of the surface electron energy Es, which Ье added 
to the bulk energy Ев, 

Ек =Ev +Es, (25) 

(26) 

( 1Г)I/З 5Ev 
Es =!З "6. 16n1/З(1 + w)l/З R' (27) 

where n = ПА + ПО is the теап hole (or electron) density. It is composed of the densities 
ПА and по associated with immobile acceptor ions, and excess oxygen, respectively. Further, 
n(1 + w) is the charge-carrier density inside the ferromagnetic phase, V is the total volume of 
the sample, !З = 3 if the ferromagnetic phase is the minor опе, with volume V / (1 + w). 

The Coulomb energy is calculated using elementary electrostatics. For ferromagnetic 
spheres опе obtains 

i 

Ее = 27гn~ е2 R 2 f(w)V, 
5€o 

f(w) = 2w + 3 - 3(1 + w)2/З. 
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In this case, in which the major phase is ferromagnetic and antiferromagnetic droplets are 
embedded in the host, the surface energy is given Ьу Eq. (27) with /3 == 3w and the Coulomb 
energy is given Ьу Eq. (28), in which the function f(w) must Ье replaced Ьу the function 

g(w) == w [2+ 3w - 3w 1/\1 + w)2/3] . (29) 

In the same nearest-neighbor approximation as before, the d-d exchange energy is 

[D - НВ H 2S 2w] 
E dd = (1 +w)v - 4Dv(1 +w) , (30) 

where v == а3 is the unit сеВ volume and Н is the extemal magnetic field. The first term in 
Eq. (30) represents an increase in d-d exchange energy due to replacement of antiferromagnetic 
ordering Ьу ferromagnetic; the second term is the energy of the antiferromagnetic phase in the 
field. 

Finally, we present the s electron energy ditference Еu between the ferromagnetic and 
antiferromagnetic state, which one easily obtains from Eq. (7): 

Еu = -2(t - tA)nV, 2В ( tA == t 2S + 1 
2В + 1 ) 1+4"52-1 . (31) 

We now minimize the total energy 

E t = E v + E s + Ее + Edd + Еu· 

As seen from Eqs. (25)-(31), only the surface energy Es and Coulomb energy Ее depend оп 
R. This makes it possibIe to minimize the total energy with respect to R in explicit form. In 
ferromagnetic droplets, the optimized energy and radius are 

( _ ) (9т2) 1/3 e2/3n2/3p,4/3(n)fl/3(w)(1+w)2/9 
E R == (Es+ Ее )opt = 2 2/3+21/3 16071" (~/3 ' (32) 

R3 = 13571"2(0(\ + W)1/3 

opt 32m2e2p,(n)f(w) , (33) 

where the etfective dielectric constant corresponding to the mixed phase separation is 

(о == ЕО ( 1 + ::) 2 (34) 

Energy minimization with respect to w must Ье carried out numerically. But ifthe energy 
Е R is 10W, it only weakly influences the optimum value of w, which is determined mainly Ьу 
Ev and Edd in this case. One then obtains for Н « D 

VF _ 1 _ [ 3p,(1/v) ] 3/5 

V - 1 + w - 5(D _ НВ) nv. (35) 

As seen from Eqs. (33)-(35), at fixed total charge-carrier density n, the volume offerromagnetic 
droplet increases quadratically with the relative weight ofthe impurity phase separation ПО/ПА 
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(Eq. (34». Непсе, here the size offerromagnetic droplets сап ье considerably larger than in 
pure electronic phase separation. Thus, these droplets сап ье manifested not Ьу small-angle 
neutron scattering but Ьу well-formed ferromagnetic реш. As such peaks were observed in 
Ref. 5, опе of the possible reasons for their appearance might ье mixed phase separation. 

According to Eq. (33), tM droplet size decre~s with increasing w. Непсе, according 
to Eq. (35), the volume of the ferromagnetic part of the crystal also increases with the field. 
For this reason, beginning with а certain field strength, droplets shouldbegin to make contact 
with опе another, and the charge carriers acquire the аЫШу to move freely from опе droplet 

. to another. This means tha:t the magnetic-field-induced transition from the insulating state 
to the high-conductivity state occurs in the sample as а whole, and сап ье considered as а 
manifestation of the giant magnetoresistance. 

. We note here some other recent publications оп phase separation in manganites. First, Ref. 
18 is а continuation of Ref. 19. In these papers а simplified treatment is carried out as compared 
with Ref. 2 and the present рарег. the СоиlотЬ interaction arid interphase surface energy are 
not taken into account (the authorS of Refs. 18 and 19 are likely not to ье acquainted with 
Ref. 2 and subsequent publications of the present author). Calculations inRef. 18 are carried 
out only for the ground state, assuming double exchange. Different dimensionalities are treated, 
beginning with ап one-dimensional system and proceeding to ап infinite-dimensional system. 

One сап also consider the appearance of charge-ordered stripes iпLat_жСажМпОз with 
х > 0.5 as а special sort ofphase separation. This pattem ofphase separation takes the form of 
extremely stabIe pairs of М пз+ 06 stripes separated periodically Ьу stripes of undistorted Мп4+ 06 
octahedra [20]. Some comments оп this' subject are given inRef. 21, but they do not pretend 
to ье а theory of this interesting and complicated phenomenon. 

The author is grateful to D. 1. Кhomskii and М. Уи. Кagan for valuable discussions. 
This investigation was partially supported Ьу the Russian Foundation for Basic Research 
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