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The temperature depe‘ldence of the surface tension 4(T') is treated theoretically and
experimentally. The theoretical model based on the Gibbs thermodynamics of a one-component
fluid relates 8-y/ T to the surface excess entropy density —AS. All specific surface effects, namely
ordering, capillary waves, and double layer influence the surface entropy, which in turn governs
the sign and the magnitude of 8+/8T. Experimental data collected at a free Hg surface in the
temperature range from 0° C to 30° C show that 8+/9T is negative. .

1. INTRODUCTION

The temperature dependence of the -surface tension of liquids is very important in
applications such as Marangoni convection and crystal growth. However, little is known about
the specific surface forces influencing this dependence in liquid metals.

Our previous work [1] was concerned with the surface tension of mercury as a function
of temperature, which was studied using quasielastic light scattering from capillary waves [2].
Although the experimental data show a decrease in surface tension with T, the theoretical
explanation of this fact seems to be non trivial. The recent discovery of surface layering in
liquid gallium and mercury indicates highly ordered metal structure perpendicular to the surface
which is about a few atomic diameters thick [3,4]. This ordering can drastically influence the
entropy density profile in the surface zone, reducing the entropy density at the surface compared
to the entropy density of the bulk. If this were the case then the surface excess entropy AS
defined by

'

AS = / dz [S(z) — Sp0(2)] ' (1)

would be negative [1]. Here 6(z) = 0 for z > 0 and 8(z) = 1 for z < 0; z = 0 denotes the
surface position and the integration is performed from the liquid bulk (z = —o0) to a vapor
phase (z = co). Insofar as the surface tension derivative of a one-component liquid is related
to AS by [5, 6]

AS = —9v/aT, )

the temperature dependence is expected to be an increasing function of 7', as demonstrated
at surfaces of normal alkanes over a certain 7T range [7]. However, the experimental data
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collected at a Hg-vapor interface contradict this expectation. In order to reconcile experiment
and theory, we suggested that a liquid metal surface is a two-component system comprising
quasi-free surface electrons and positive ions.. In this case 9-y/9T is not given by Eq. (2) but
depends on the chemical potential of electrons as well [1]. However, the ionic and electronic
profiles of any complicated shape should be approximated by the same right-angled profile
in order to preserve the electrical neutrality of metal as a whole. Thus, the two-component
model is inapplicable to a free metal surface, whose excess entropy should be evaluated in the
framework of a one-component model. It will be shown that the effect of surface ordering is
not a single contribution on the surface entropy. Other specific surface effects opposing layering
tend to increase the entropy of the interface.

2. THEORETICAL ANALYSIS

As noted in Ref. [6] the interface thickness of van der Waals liquids is determined by thermal
fluctuations, which take the form of thermally excited capillary waves. The r.m.s. amplitude of
these waves is usually slightly greater than an atomic diameter [2]. One would thus expect the
interface thickness at zero temperature to vanish, and the density profile to be a discontinuous
step function dropping from the bulk density p, to zero. In such a situation it is natural to
suppose that the location of the Gibbs surface coincides with the step profile at 0 K. The real
surface profile varies with 7" in such a way that the surface excess density given by

r, = / dz [p(z) — 0(z)ps] | 3)

remains zero for all 7.

Consider now a liquid metal comprising two components: free electrons and positive ions.
Free electrons behave as a quantum medium: even at zero temperature their energy is nonzero,
and is usually written in terms of the Fermi energy Es: E = EyN, where N is the number of
electrons. It is instructive to consider the profiles of both components, electronic and ionic, at
T = 0. Due to nonzero wavelength the electronic density profile has a nonzero width, which
leads to some redistribution of electrons between bulk and the surface. In other words, some
electrons are ejected from the bulk and concentrate on the vapor side of the interface. This
charge separation leads to a surface double layer with an electric field E = Qs/€o0, where Q)
is the surface charge density and ¢, is the dielectric constant. The existence of such a double
layer, suggested by Frenkel [8], leads to significant changes in the surface interactions. We
consider first the conditions that must be satisfied even in the presence of charge separation.
The first is electrical neutrality: the total electric charge of a metal must be zero,

/ dz [pi(2) — pe(2)] = 0, ' )

where p; and p. are the ionic and electronic densities.
The second quantity that must be taken into account is the surface excess density. In
general this quantity is a relative one; it depends on the choice of the Gibbs surface. If this
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Fig. 1. Schematic variations of the electron
density (solid line) and positive ionic jellium
represented as a step function which coincides
with the Gibbs surface, denoted by G. Friedel
oscillations of small amplitude are shown in the
electron density profile. Surface double layer
comprises a negative electrode formed by the
area to the left to the step function (labeled
with Q _) and a positive electrode formed by the
area to the right of G labeled with Q+

/

surface coincides with the step ionic proﬁle the surface excess mass den31ty of electrons can
be written via Eq. (3):

= / dz [pe(2) — o(z)pb] .

From a comparison with Eq. (4) it is clear that I, = 0 in our choice of Gibbs surface.

We concentrate first on changes in the electronic density with 7" dictated by the surface
concentration of electrons in the double layer. This concentration is temperature dependent,
although this dependence can be different from the temperature dependence of the bulk electron
concentration.: This means that the area under the tail on the vapor side (to the left of the Gibbs
surface) would vary with T" (see Fig. 1). If we anticipate that the positive ions do not follow
these changes, then the ionic profile will have a shorter tail but a higher amplitude in order to
satisfy Eq. (4). However, an ionic density profile of any complicated shape is approximated by
a step function that drops from p; to zero at some z. If this step function deviates from the
step function that approximates the electronic distribution, electrical neutrality of the metal as
a whole will be violated. Although the electronic and ionic profiles do-not necessarily coincide,
they can be approximated by the same right-angled profile as the Gibbs surface in Fig. 1. We
have shown that the surface excess density of a metal surface should be zero, accordmg to
Egs. (4) and (3).

Unfortunately, no theory describing the surface tension of 11qu1d metals is well established.
Numerical simulations of the electronic and ionic density profiles [9] do not provide clear insight
into the different forces acting in the surface zone. Only one paper, to the author’s knowledge,
treats this problem analytically [10]. Due to its importance for the present context we repeat
the main results of this paper. - :

The electronic density p. at a metal surface varies upon an ionic jellium that approximates
the real profile of the ionic density. Following the ideas of Kirkwood and Buff-Bakker (see
Ref. [6] for example), the surface tension of any liquid can be expressed via the tensor of
anisotropic stresses (I 7 1) and results from the density gradient in the surface zone: ‘

)= / d=(n, -1y, | )
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where integration is taken from —oo to oo in order to take into account the effect of free.electrons
on the vapor side of the interface. The forces acting at the surface at 0 K are nothing more than
the quantum pressure of the electron gas and electrostatic force stemming from the potential
drop in the double layer. A detailed analysis done by Samojlovich ensures that the long-range
~ electrostatic force —p, V¢ leads to Maxwellian elastic stresses IT,, = —I1,, = ¢ E?/2 that
deform the ionic fluid. This deformation is impossible for the rigid ionic continuum suggested by
the jellium model. Therefore some external pressure P = ¢ E? /2 must be introduced in order to
provide the equilibrium of the whole system. This isotropic pressure acting on the topmost layer
makes the ions there over-compressed compared to the ions in the bulk. These consideration
confirm some increase of the ionic density in the surface layer, which was demonstrated recently
on the surface of liquid gallium and mercury. Unfortunately, this conclusion was not drawn by
Samojlovich, who used a simple monotonic profile to calculate the surface tension. However,
his analysis helps to understand surface layering, which is closely related to electrostatic pressure
due tg a surface double layer.

The temperature behavior of the surface tension of a liquid metal is a most intriguing
question. While the tension changes only by a few percent over 100 K, the temperature
derivative 9v/dT is extremely ‘sensitive to the density profile. Here Eq. (2) is considered to
be a basic thermodynamic equation relating the temperature derivative 9v/9T to the surface
excess entropy. It is plausible to suppose that the surface excess entropy comprises different
parts [6]: the first is responsible for surface ordering, and the second is pertinent to all fluids,
due to capillary waves. The third part is determined by the electric field in the double layer.

We first concentrate on the orientational part. The recent discovery of surface layering in
Jliquid gallium and mercury shows that surface atoms are more ordered than bulk atoms (along
the surface normal) [3,4]. Hence the orientational part of the entropy in the surface zone might
be less than that part of the bulk entropy If the surface atoms exhibit long-range order in the
surface plane. Only order along the surface normal was reported at the Hg surface; in-plane
surface order has not been confirmed experimentally [3,4]. Therefore we cannot make any
definitive predictions about the orientational part of the entropy in the surface zone.

As we already noted, the surface excess entropy should split into different parts; the
orientational part describing the effect of surface layering remains beyond our simplified
approach. The other surface effect that can be treated quantitatively is the effect of capillary
waves. Following Frenkel’s ideas, the surface free energy due to thermal motion in the form
of capillary waves is given by [8]

kT

Fs :Fs() n kBTlrl
ho.

(©6)

where n, is the number of atoms per unit area, Fy is the surface free energy at 0 K, and 7 is
Planck’s constant; w is the mean frequency of capillary waves, defined as

9mazx

|

. = — 2 .

o= 2 T raint
0

Using the usual thermodynamic relation S = —9F /9T, we find the part of the surface entropy
associated with capillary waves [8]

kT
ha.

)

Seap = nakpln
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The surface excess entropy density is given by the difference between the densities at the surface
S, and inthe bulk Sp: AS ~ [S(2)—S,162. The part of the bulk entropy associated with thermal
motion is defined by the number of modes of sound waves (or phonons) propagating in the bulk
atany T # 0:

Sb = nka In kB_T,
haop

where @, is the mean frequency of bulk phonons [5]. Combining the last two equations, we
obtain for the surface excess entropy

AS =nkpIn 22 ®)
(4 .
We see that AS is governed by the ratio of two mean frequencies surface and bulk.

This theory can be applied only to relatively long surface waves whose frequencies are much
less than the inverse relaxation time 7, typical of each liquid [8]. If the frequency of capillary
waves is such that w > 1/7, then vibrations in the liquid propagate as in a solid body. Hence
capillary waves should be replaced by Rayleigh surface waves, which propagate at the surface
of a liquid or solid body with a velocity us = 0.94/G/p, where G is the shear modulus and
p is the density. The high-frequency part (with w > 1/7) makes the main contribution to the
spectrum of surface waves [8]. Therefore the question of the number of modes at the liquid
surface reduces to a calculation of these modes at a solid surface. The situation is complicated
by the influence of surface waves on the bulk modes [8]. A thorough analysis by Frenkel shows
that the surface excess entropy is

As =3 <3w> /
s T\ A 2/3?
PN e [+ aTrn]

where Y is Young’s modulus and u; and u, are the velocities of longitudinal and transverse
sound waves, respectively. The surface tension derivative evaluated using this model is negative,
and is in good agreement with the tabulated 9y/0T for mercury.

The second mechanism contributing to the surface excess entropy is the electric field in the
surface double layer. The impact of this field on the surface free energy is given by F, €0 E%62.
However this term appears in the free surface energy with a negative sign, due to the specific
distribution of electric stresses in the double layer. As we discussed above, the effect of electric
fields is expressed via the Maxwell stress tensor S;;, with components —S,, = S;, = «E?/2.
The change in the surface free energy due to the electric field is [8]

kgns

®

F= / dz(S,,; — Sze) = — / dzegF?. © o (10)
0 0

It is clear that the surface excess entropy should have a term stemming from electrostatic energy
that is specific solely to the surface zone and is zero in the bulk metal. The standard expression
S = —90F/aT vyields for the entropy

96z
2_
E or’
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where the derivative is taken at constant surface charge Q,. This electric part of the surface
excess entropy is positive, as the thickness of the surface zone increases with T'. To the author’s
knowledge, no analytical predictions exist about the temperature dependence of the intrinsic
length scale for the surface electrostatic interactions in liquid metals. Therefore the amplitude
of capillary waves will be used as an approximate width of the interface. The r.m.s value of
the interface thickness can be found from the theory of capillary waves [2]:

§z= | ¥BT |y Gmin (12)
21y max _

The upper cutoff of capillary waves can be estimated in terms of a molecular size a: gna- = 1/a.
The minimum wavenumber is usually related to the capillary length: . = \//(pg). Bearing
this in mind, the part of the surface excess entropy due to the double layer can be written

ol (N [ kg L ,
, as EE"(E), Pr vt 13

Simple estimates based on the values 6z ~ 1 A and ¢ ~1V,e=10""1Q%(Nm?), . ~ 1 mm
yield AS = 10=%,/In(10~3/10~19) = 0.4 mN/(m-K). Note that Eq. (13) describes a nonlinear
dependence of AS(T’) and consequently of 9y/AT(T). It should be stressed that near 0 K the
interface thickness in Eq. (11) cannot be given by the r.m.s. amplitude of capillary waves but
is equal to the wavelength of quasi-free surface electrons possessing the Fermi energy. Our
Eq. (13) does not contain a term « (kg7 /E f)2 typical of the T'-dependence of the energy of
a free electron fluid. This is possibly due to our phenomenological approach to the electric
field of the double layer. '
‘ These estimates are based on the assumption that capillary waves survive up to the upper
‘cutoff of ¢, i.e., on an atomic scale. From the discussion above we know that at higher
frequencies liquid surfaces are similar to solid ones, so capillary waves must be replaced by
Rayleigh waves propagating along the surface without dispersion. The surface elastic energy
per unit area associated with this mode is

F, = / dz%G(V,'u)2, (14)
, ,

where G is the elastic (or shear modulus), u is the displacement and V, is the differential
operator in the surface plane. Then the squared wave amplitude in the g-domain can be written
analogously to that of capillary waves [2], :

kT
2= 25
{xa) AG,q*’ (15)

where A is the surface area. In order to calculate the r.m.s. displacement of the surface using
Eq. (12) one should replace ~ with the shear modulus G; whose magnitude can be estimated
using data on the bulk modulus: G, = G,6z = 10! . 10~% = 10> dyn/cm. The surface excess
entropy density of the Hg surface calculated using Egs. (15) and (11) is 0.7 times lower than
AS estimated from Eq. (12).
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3. EXPERIMENTAL METHODS

A liquid mercury surface was prepared by distillation in vacuum (about 10~* Torr) from
a batch of 10 ml Hg (99.998%, Merck). The quartz glass distillation apparatus consisted of a
compartment filled with Hg in the open air and a condenser (water cooled) connected by a
U-tube to a stainless steel capillary mounted in the wall of the working chamber. The chamber
had - a vacuum flange and an optical window for laser access. Mercury dropped through the-
capillary to the working chamber and formed a layer about 2 mm deep. The working trough was
rectangular with dimensions of 60 x 60 mm?, and was machined from stainless steel. Prior to
the experiment, the working trough and capillary were cleaned with chromic acid and carefully
rinsed in double-distilled water. Distillation was carried out at 200°C and about 2 hours were
necessary to complete the continuous layer. While no efforts were made to achieve wetting,
the Hg surface was relatively flat, as confirmed by the minimal divergence of a reflected beam.
Heating or cooling was carried out from below through a copper plate. This plate was heated
with a resistive heater or cooled using liquid nitrogen. The temperature was measured with a
thermocouple glued to the thin bottom of the working chamber.,

Our light scattering technique is described in detail elsewhere [2, 11, 12]. In brief, a beam
from a S mW He-Ne laser (TEMy,, A = 632 nm) fell on the liquid surface. Small-angle
scattered light was optically mixed (on a photodetector) with a portion of the original beam,
providing all the necessary conditions for optical heterodyning. The output of an avalanche
photodiode was modulated at the propagation frequency of a capillary wave with the selected
wavenumber ¢. The spectral representation of the signal was recorded in the frequency domain

_with a spectrum analyzer. The whole apparatus was placed on an optical table, vibration

isolation being provided by four pressurized air cylinders in  the legs.

Capillary waves, preserit on all liquid surfaces up to the critical point, scatter light mainly
at small angles about the reflected beam. The spectrum of the scattered light is the power
spectrum of capillary waves, which is approximately Lorentzian [2]. The data were fitted with
a theoretical function that incorporates the effects of instrumental broadening [13, 14]. The
latter arises from illumination of the detector by light scattered by more than one wave-vector
q on the surface. The spread 6q in the wave numbers gives a corresponding broadening Aw in
the spectrum. For the Gaussian beam the instrumental function is also a Gaussian [13, 14].
The convolution of an ideal Lorentzian and the Gaussian instrumental function of width 3
yields [14]

_ oo (r/B) exp [—(w - w’)z/ﬂz]

2+ (W' —wp)?

P(w) dw'. ' (16)

)
—o0

This integral can be evaluated .in terms of the complementary error function of the complex

argument [13, 15]:
S(Q)=ARe ex _<"_r+w“"")2 erfc [;i(f+“"°’°>] +B (17)
| A AR 58 ’

where A is the sCaljng amplitude and B the background. Thus, five properties were extracted
from the fit of experimental spectra: frequency wy, damping constant I', instrumental width
3, amplitude A, and background B. In the present context we concentrate only on peak
frequencies wy.
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4. RESULTS

The temperature behavior of peak frequencies w, of capillary waves at the free Hg surface
is shown in Fig. 2. To first order, the roots of the dispersion relation describing the propagation
of a capillary wave with a particular wavenumber ¢ are [2]

wy = V’70q3/P, (18)

T =2n¢*/p, (19

where vy, 1, and p are the surface tension, bulk viscosity, and density, respectively.
Equation (18) serves as a good basis for evaluation of the tension. The data in Fig. 2 are
fit by assuming a linear temperature dependence of the surface tension, vy = C|(T —Tp) + C»,
where IT‘) is the melting point:

(@) =VIOT -T) +Cd/p. ‘ 0)

The best-fit estimate of the slope' C) of the temperature dependence is: dy/dT = Cy = —0.27+
+0.07 mN/(m-K). The best estimate of C, corresponding to the tension at the melting point
(—39°C) is Cy, = 526 £ 7 mN/m, which is slightly greater than the tension (497 mN/m)
extrapolated to the melting point using the tabulated slope dy/dT = —0.2 mN/(m-K) [16, 17].

The light scattering experiment does not directly yields the surface tension; only the
peak frequency is directly measurable. In order to obtain additional information on the sign
of 0v/0T, the following experiment was carried out. A temperature gradient was imposed
along the bottom of our cell. In this case a liquid metal flow (usually called thermocapillary
convection) driven by the gradient of the surface tension is expected. The surface tension
gradient is indirectly related to the liquid velocity v, via the boundary condition at the free
surface, which for the tangential stress is [18]:

Ql Ovg
oT 0z

Thermocapillary convection usually couples to buoyancy-driven convection. However,
thermocapillary flow dominates buoyancy convection for a 2-mm deep Hg layer (see Ref. [1]).
The direction of flow on the liquid surface is expected to be from hot to cold if the temperature
derivative of the tension is negative. In the opposite case, the surface flow should be directed
toward the hot end. The flow was made visible by means of light scattered from the beam
footprint on the surface. We observed the surface flow always to be directed from hot to cold
in the middle of the trough, with a characteristic velocity of a few mm/s, which ensures a
decreasing dependence ~(T').

VT =nq

Q1)

@y, Hz ‘ ,
14800 T T — T

Fig. 2. Temperature variations of peak

frequencies of capillary waves of wave number

g = 619 cm™! at the free surface of mercury.

The errors in wp are less than the size of

the data points. . The solid line is the best-fit .
solution in the form of Eq. (20)
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5. CONCLUSIONS

Surface light scattering from a free mercury surface exhibits the temperature-dependent
behavior w(T") that corresponds to a decrease in surface tension upon heating. This phenomenon
clearly indicates that the surface excess entropy is positive, as it should be in a one-component
fluid. ‘The present theoretical treatment ensures that a liquid metal surface is a one-component
substance, despite its comprising two components: positive ions and delocalized free electrons.
The surface excess entropy AS splits into three parts, describing surface layering, capillary
waves, and a surface double layer. Since the capillary waves contribution is proportional to -
kT, it is expected that this effect is smallest near the melting point. Since surface layering is
most pronounced there, AS might become negative in some T'-range. Unfortunately, it is not
possible to estimate the contribution of surface layering to AS in the framework of our simple
model. However, we hope that surface light scattering is sensitive enough to detect a possible
change in the temperature dependence of the surface tension.
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