ЖЭТФ, 1998, том 114, вып. 6(12), стр. 2022-2033

ОСОБЕННОСТИ ДИНАМИКИ ДИРЕКТОРА ВБЛИЗИ ТОЧКИ ФАЗОВОГО ПЕРЕХОДА НЕМАТИК — СМЕКТИК А

С. В. Ульянов*

Санкт-Петербургский торгово-экономический институт 194018, Санкт-Петербург, Россия

Поступила в редакцию 25 марта 1998 г.

На основе модели Ландау-Де Жена для свободной энергии нематического жидкого кристалла в окрестности точки перехода в смектическую А-фазу определена частотная зависимость флуктуационных поправок к модулям Франка. Показано, что взаимодействие флуктуаций смектического параметра порядка с директором приводит к появлению поправок ко всем модулям Франка. В пределе низких частот ($\omega \rightarrow 0$) поправки к модулям К22 и К33 принимают максимальные значения и уменьшаются до нуля в пределе бесконечной частоты. Поправка к модулю K₁₁ имеет отрицательный знак и обращается в нуль в пределах низких и высоких частот. Абсолютная величина поправки к K₁₁ принимает наибольшее значение для частот мегагерцового диапазона. Показано, что в ориентированных нематиках взаимодействие смектических флуктуаций с директором препятствует отклонениям директора от направления преимущественный ориентации, вследствие чего должна наблюдаться релаксация как неоднородных так и однородных искажений поля директора. Показано, что это приводит к существованию диапазона частот в мегагерцовой области, в которой становятся распространяющимися сдвиговые волны в нематике. Скорость распространения этих волн примерно на два порядка меньше скорости звука и существенно зависит от направления распространения.

1. ВВЕДЕНИЕ

Нематические жидкие кристаллы (НЖК) в окрестности точки фазового перехода в смектическую A-фазу (N - A-переход) экспериментально и теоретически исследуются уже длительное время [1–5]. Начало феноменологическому описанию свойств НЖК в окрестности N - A-перехода положено работой Де Жена [6], в которой, в частности, на основе предложенного в работе выражения для свободной энергии, взаимодействием неоднородного поля директора с флуктуациями смектического параметра порядка объясняется критический рост модулей Франка K_{22} и K_{33} при приближении к точке N - A-перехода. В дальнейшем в формулы для K_{22} и K_{33} Янигом и Брошаром [7] был добавлен пропущенный множитель $1/\sqrt{2}$, далее эти формулы уточнялись исходя из модели Ландау—Де Жена [8] и на основе NAC-модели [9].

В этих работах рассмотрен наиболее простой и важный случай, а именно, найдены статические поправки к модулям Франка. В то же время хорошо известно, что взаимодействие гидродинамических переменных (к которым в НЖК относится, в частности, директор) с флуктуациями параметра порядка приводит к появлению частотной дисперсии коэффициентов в системе уравнений движения НЖК. В предпереходной области существенно меняются коэффициенты вязкости, что приводит к возникновению

*E-mail: mathem@list.spb.su

©1998

частотной дисперсии скорости и к аномальному росту поглощения звука [4]. Первые предсказания аномального роста некоторых коэффициентов вязкости, которые могли проявиться в анизотропии акустических свойств НЖК, были даны Янигом и Брошаром [7] и Макмилланом [10], рассмотревшими взаимодействие поля директора с полем флуктуаций параметра порядка. В дальнейшем было показано, что взаимодействие параметра порядка с плотностью [11, 12] и с неоднородным полем скорости [13–15] приводит к появлению намного больших вкладов в коэффициенты вязкости, что проявляется в аномальном росте изотропного поглощения звука [4, 16, 17] и в появлении заметной анизотропии дисперсии скорости и поглощения звука [11, 18]. Однако до сих пор нет не только удовлетворительного количественного описания экспериментальных данных, но также имеется рассогласованность данных различных экспериментов между собой. В первую очередь это касается анизотропии акустических свойств. Что касается частотной дисперсии модулей Франка, то она может проявиться в экспериментах, в которых НЖК находится под периодическим внешним воздействием. Это относится к акустооптическим эффектам, которые наблюдаются в НЖК, находящихся во внешнем поле звуковой волны, или к оптическим переходам Фредерикса при периодическом изменении интенсивности падающего света.

Целью настоящей работы является получение на основе модели Ландау—Де Жена для свободной энергии НЖК вблизи точки N - A-перехода некоторых результатов взаимодействия флуктуаций параметра порядка с полем директора. А именно, в разд. 2 находится частотная дисперсия всех модулей Франка, в разд. 3 показывается, что вблизи точки N - A-перехода появляется релаксационный механизм затухания искажений равновесного поля директора, который существенно влияет на характер распространения сдвиговых волн. В разд. 4 обсуждается возможность экспериментального наблюдения полученных результатов.

2. ЧАСТОТНАЯ ДИСПЕРСИЯ МОДУЛЕЙ ФРАНКА

Полагая, что равновесная ориентация вектора директора \mathbf{n}_0 задана условиями на границах образца, которые считаются удаленными на бесконечное расстояние от интересующего нас выделенного объема, свободную энергию деформированного НЖК можно представить в виде

$$F = F_0 + F_{F_T},\tag{1}$$

где F_0 — свободная энергия недеформированного образца, а F_{Fr} — свободная энергия деформации Франка:

$$F_{F_{\tau}} = \frac{1}{2} \int d\mathbf{r} \left[K_{11} (\operatorname{div} \mathbf{n})^2 + K_{22} (\mathbf{n} \operatorname{rot} \mathbf{n})^2 + K_{33} [\mathbf{n} \operatorname{rot} \mathbf{n}]^2 \right],$$
(2)

где локальный директор:

$$\mathbf{n}(\mathbf{r},t) = \mathbf{n}_0 + \delta \mathbf{n}(\mathbf{r},t). \tag{3}$$

Следуя [7, 19], введем молекулярное поле \mathbf{h}_{Fr} , стремящееся «выпрямить» искаженное поле директора. В системе координат, в которой ось *z* совпадает по направлению с \mathbf{n}_0 , молекулярное поле, связанное с энергией Франка, имеет вид [7]

$$h_{x Fr}(q,\omega) = -\left(K_{11}q_x^2 + K_{22}q_y^2 + K_{33}q_z^2\right)\delta n_x(q,\omega) + (K_{22} - K_{11})q_xq_y\delta n_y(q,\omega), \quad (4)$$

С. В. Ульянов

где использовано разложение Фурье

$$\mathbf{n}(\mathbf{r},t) = \frac{1}{\sqrt{V}} \sum_{\mathbf{q}} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \mathbf{n}(\mathbf{q},\omega) \exp(i\mathbf{q}\mathbf{r} - i\omega t).$$
(5)

В НЖК, находящемся вблизи точки N - A-перехода, становятся существенными флуктуации смектического параметра порядка Ψ [1–3, 6, 7], в связи с чем в свободную энергию необходимо добавить член F_{Ψ} , связанный с флуктуационно возникающей смектической упорядоченностью. В модели Ландау—Де Жена имеем [1–3, 6, 7]:

 $F = F_0 + F_{Fr} + F_{\Psi},\tag{6}$

где

$$F_{\Psi} = \int d\mathbf{r} \left[A |\Psi|^2 + \frac{1}{2M_T} \left| (\nabla_{\perp} - iq_s \delta \mathbf{n}) \Psi \right|^2 + \frac{1}{2M_V} |\nabla_{\parallel} \Psi|^2 \right], \tag{7}$$
$$\nabla_{\perp} = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y}, \quad \nabla_{\parallel} = \frac{\partial}{\partial z}.$$

Коэффициент A обращается в нуль при температуре фазового перехода T_{NA} , и обычно полагают $A = a_0(T - T_{NA})^{\gamma}$, где $\gamma = 3/4$ при использовании гелиевой аналогии или $\gamma = 1$ в приближении среднего поля, $q_s = 2\pi/d$, где d — расстояние между смектическими слоями в низкотемпературной фазе.

Как было найдено ранее [6–8], наличие в (7) члена с зацеплением $\delta \mathbf{n}$ и Ψ приводит к возникновению аномальных добавок к модулям Франка K_{22} и K_{33} , которые были найдены в статическом случае ($\omega = 0$). При наличии флуктуаций смектической упорядоченности молекулярное поле складывается из двух слагаемых [7]:

$$\mathbf{h} = \mathbf{h}_{Fr} + \langle \mathbf{h}_{\Psi} \rangle, \tag{8}$$

где

$$\mathbf{h}_{\Psi} = -\frac{iq_s}{2M_T} \left(\Psi^* \nabla_{\perp} \Psi - \Psi \nabla_{\perp} \Psi^* \right) - \frac{q_s^2}{M_T} \Psi^* \Psi \delta \mathbf{n}, \tag{9}$$

а статистическое усреднение проводится по всем реализациям флуктуаций параметра порядка. В фурье-представлении имеем

$$\langle \mathbf{h}_{\Psi} \rangle = \langle \mathbf{h}^{(1)} \rangle + \langle \mathbf{h}^{(2)} \rangle, \tag{10}$$

где

$$\langle \mathbf{h}^{(1)}(\mathbf{q},\omega) \rangle = \frac{q_s}{2M_T \sqrt{V}} \sum_{\mathbf{q}'} \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} (\mathbf{q}_{\perp} - 2\mathbf{q}'_{\perp}) \langle \Psi^*(\mathbf{q}',\omega')\Psi(\mathbf{q}-\mathbf{q}',\omega-\omega') \rangle, \quad (11)$$

$$\langle \mathbf{h}^{(2)}(\mathbf{q},\omega)\rangle = -\frac{q_s^2}{M_T V} \sum_{\mathbf{q}',\mathbf{q}''-\infty} \int_{-\infty}^{\infty} \frac{d\omega' d\omega''}{(2\pi)^2} \langle \Psi^*(\mathbf{q}',\omega')\Psi(\mathbf{q}'',\omega'')\rangle \delta\mathbf{n}(\mathbf{q}-\mathbf{q}'-\mathbf{q}'',\omega-\omega'-\omega'').$$
(12)

Для вычисления флуктуационного вклада в молекулярное поле воспользуемся предложенным Леванюком [20] методом, который неоднократно применялся для нахождения флуктуационных поправок к коэффициентам вязкости в окрестностях точек фазовых переходов в жидких кристаллах [15, 21, 22]. В рамках данного метода флуктуации смектического параметра порядка Ψ, развивающиеся в деформированном НЖК, описываются уравнением Ланжевена:

$$\frac{\partial \Psi}{\partial t} = -b \left[A\Psi - \frac{1}{2M_T} (\nabla_\perp - iq_s \delta \mathbf{n})^2 \Psi - \frac{1}{2M_V} \nabla_\parallel^2 \Psi \right] + f, \tag{13}$$

где f — случайная сила. Уравнение для Ψ^* получается комплексным сопряжением (13). Учитывая взаимодействие в низшем порядке, оставим в (13) лишь члены, линейные по $\delta \mathbf{n}$, и перейдем к фурье-представлению:

$$\Psi(\mathbf{q},\omega) = G^{0}(\mathbf{q},\omega) \times \left[f(\mathbf{q},\omega) + \frac{bq_{s}}{2M_{T}\sqrt{V}} \sum_{\mathbf{q}'} \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \left((2\mathbf{q}_{\perp} - \mathbf{q}_{\perp}')\delta\mathbf{n}(\mathbf{q}',\omega') \right) \Psi(\mathbf{q} - \mathbf{q}',\omega - \omega') \right], \quad (14)$$

где

$$G^{0}(\mathbf{q},\omega) = \left[-i\omega + b\chi^{-1}(\mathbf{q})\right]^{-1},$$
(15)

$$\chi^{-1}(\mathbf{q}) = A + \frac{q_{\perp}^2}{2M_T} + \frac{q_z^2}{2M_V}.$$
 (16)

Уравнение для $\Psi^*(\mathbf{q}, \omega)$ отличается от (14) лишь заменой $\Psi \to \Psi^*$; $f \to f^*$ и плюса на минус перед интегральным членом в правой части. Формальное решение уравнения (14) можно находить с помощью итераций в виде ряда по степеням $\delta \mathbf{n}$. После второй итерации получаем

$$\Psi(\mathbf{q},\omega) = G^{0}(\mathbf{q},\omega)f(\mathbf{q},\omega) + \frac{bq_{s}}{2M_{T}\sqrt{V}} \sum_{\mathbf{q}'} \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \left((2\mathbf{q}_{\perp} - \mathbf{q}_{\perp}')\delta\mathbf{n}(\mathbf{q}',\omega') \right) \times G^{0}(\mathbf{q},\omega)G^{0}(\mathbf{q} - \mathbf{q}',\omega - \omega')f(\mathbf{q} - \mathbf{q}',\omega - \omega').$$
(17)

Далее формальное решение (17) и аналогичное выражение для $\Psi^*(\mathbf{q}, \omega)$ подставляются в выражения (11) и (12) для вкладов в молекулярное поле, после чего проводится статистическое усреднение с учетом некоррелированности случайной силы f в пространстве и во времени:

$$\langle f(\mathbf{q},\omega)f^*(\mathbf{q}',\omega')\rangle = \frac{2bk_BT(2\pi)^4}{V}\,\delta(\mathbf{q}+\mathbf{q}')\delta(\omega+\omega').\tag{18}$$

После интегрирования б-функций и интегрирования по частотам получаем

$$\langle \mathbf{h}^{(1)}(\mathbf{q},\omega) \rangle = \frac{bk_B T q_s^2}{4(2\pi)^3 M_T^2} \int d\mathbf{q}' \frac{(\mathbf{q}_\perp - 2\mathbf{q}'_\perp) \left((\mathbf{q}_\perp - 2\mathbf{q}'_\perp) \delta \mathbf{n}(\mathbf{q},\omega) \right)}{-i\omega + b \left(\chi^{-1}(\mathbf{q}') + \chi^{-1}(\mathbf{q} - \mathbf{q}') \right)} \left(\chi(\mathbf{q}') + \chi(\mathbf{q} - \mathbf{q}') \right),$$
(19)

$$\langle \mathbf{h}^{(2)}(\mathbf{q},\omega)\rangle = -\frac{k_B T q_s^2}{(2\pi)^3 M_T} \int \frac{d\mathbf{q}'}{\chi^{-1}(\mathbf{q}')} \,\delta\mathbf{n}(\mathbf{q},\omega). \tag{20}$$

В выражениях (19) и (20) суммирование по волновым векторам заменено интегрированием:

$$\sum_{\mathbf{q}'} \to \frac{V}{(2\pi)^3} \int d\mathbf{q}'.$$

Для получения поправок к модулям Франка в выражении для $\langle \mathbf{h}_{\Psi} \rangle$ достаточно оставить лишь члены $\propto q^2$. Пропуская промежуточные вычисления, которые приведены в Приложении, для флуктуационного вклада в молекулярное поле $\langle \mathbf{h}_{\Psi}(\mathbf{q},\omega) \rangle$ получаем выражение, совпадающее по структуре с формулой (4). Можно считать, что взаимодействие директора с флуктуациями смектической упорядоченности привело к появлению комплексных добавок к модулям Франка. Таким образом, получаем

$$K_{11}(\omega) = K_{11}^0 + \frac{k_B T q_s^2 \xi_{\perp}^2}{24\pi \xi_{\parallel}} \left[F_1(\tilde{\omega}) + iG_1(\tilde{\omega}) \right], \tag{21}$$

$$K_{22}(\omega) = K_{22}^0 + \frac{k_B T q_s^2 \xi_\perp^2}{24\pi\xi_\parallel} \left[1 + F_2(\tilde{\omega}) + iG_2(\tilde{\omega})\right],\tag{22}$$

$$K_{33}(\omega) = K_{33}^0 + \frac{k_B T q_s^2 \xi_{\parallel}}{24\pi} \left[1 + F_2(\tilde{\omega}) + iG_2(\tilde{\omega}) \right].$$
(23)

Здесь K_{ii}^0 (i = 1, 2, 3) — «затравочные» значения модулей Франка, в которых не учтено взаимодействие директора с флуктуациями параметра порядка. Для корреляционных длин используются обычные обозначения:

$$\xi_{\perp} = (2AM_T)^{-1/2},\tag{24}$$

$$\xi_{\parallel} = (2AM_V)^{-1/2}.$$
 (25)

Зависимость модулей Франка от приведенной частоты $\tilde{\omega}$, где

$$\tilde{\omega} = \omega \tau_{\Psi} = \omega \frac{1}{2bA},\tag{26}$$

определяется функциями:

$$F_{1}(\tilde{\omega}) = \frac{24}{5\tilde{\omega}^{3}} \left[-\frac{5}{2}\tilde{\omega} + \tilde{\omega}\sqrt{2\sqrt{1+\tilde{\omega}^{2}+2}} + \left(\frac{1}{2} - \frac{3}{16}\tilde{\omega}^{2}\right)\sqrt{2\sqrt{1+\tilde{\omega}^{2}-2}} \right],$$
 (27)

$$G_{1}(\tilde{\omega}) = \frac{24}{5\tilde{\omega}^{3}} \left[-1 + \frac{5}{4}\tilde{\omega}^{2} + \left(\frac{1}{2} - \frac{3}{16}\tilde{\omega}^{2}\right)\sqrt{2\sqrt{1 + \tilde{\omega}^{2}} + 2} - \tilde{\omega}\sqrt{2\sqrt{1 + \tilde{\omega}^{2}} - 2} \right], \quad (28)$$

$$F_2(\tilde{\omega}) = \frac{8}{5\tilde{\omega}^3} \left[-\frac{5}{2}\tilde{\omega} + \tilde{\omega}\sqrt{2\sqrt{1+\tilde{\omega}^2}+2} + \left(\frac{1}{2} + \frac{7}{16}\tilde{\omega}^2\right)\sqrt{2\sqrt{1+\tilde{\omega}^2}-2} \right] - 1,$$
(29)

$$G_{2}(\tilde{\omega}) = \frac{8}{5\tilde{\omega}^{3}} \left[-1 + \left(\frac{1}{2} + \frac{7}{16}\tilde{\omega}^{2}\right) \sqrt{2\sqrt{1 + \tilde{\omega}^{2}} + 2} - \tilde{\omega}\sqrt{2\sqrt{1 + \tilde{\omega}^{2}} - 2} \right].$$
 (30)

Из (27)–(30) вытекает, что в пределе $\omega \to 0$ выполнены равенства:

$$F_1(0) = G_1(0) = F_2(0) = G_2(0) = 0,$$
 (31)

поэтому в статическом случае получаем известный результат [6-9]:

$$K_{11}(\omega = 0) = K_{11}^0, \tag{32}$$

$$K_{22}(\omega=0) = K_{22}^0 + k_B T q_s^2 \xi_{\perp}^2 / 24\pi \xi_{\parallel}, \tag{33}$$

$$K_{33}(\omega=0) = K_{33}^0 + k_B T q_s^2 \xi_{\parallel} / 24\pi.$$
(34)

На бесконечной частоте ($\omega \to \infty$) флуктуационные поправки исчезают:

$$F_1 + iG_1 \rightarrow 0, \quad 1 + F_2 + iG_2 \rightarrow 0.$$

На рис. 1, 2 приведены зависимости функций F_1 , F_2 , G_1 , G_2 от приведенной частоты $\tilde{\omega}$, определяющие закон частотной дисперсии модулей Франка. Упругие постоянные заметно меняются при изменении приведенной частоты в диапазоне $1 \leq \tilde{\omega} \leq 100$. В НЖК вблизи точки N - A-перехода это соответствует изменению частоты в мегагерцовом диапазоне. При более низких частотах можно пользоваться статическими поправками к модулям Франка.

Отсутствие флуктуационной поправки к модулю K_{11} в статическом случае является следствием инвариантности свободной энергии (7) по отношению к одинаковому повороту директора и перпендикулярных ему смектических слоев. Появление частотной дисперсии у модуля Франка K_{11} связано с тем, что на частотах, имеющих порядок обратного времени релаксации смектического параметра порядка, флуктуационно образующаяся смектическая структура не успевает перестраиваться перпендикулярно быстро меняющемуся локальному директору, что и приводит в динамике к потере вращательной инвариантности свободной энергии и к возникновению флуктуационной поправки к модулю K_{11} .

3. РАСПРОСТРАНЕНИЕ СДВИГОВЫХ ВОЛН В ОРИЕНТИРОВАННЫХ НЕМАТИЧЕСКИХ ЖИДКИХ КРИСТАЛЛАХ

Следует ожидать, что при достаточно быстрых малых отклонениях локального директора от среднего направления преимущественной ориентации, когда характерная

С. В. Ульянов

частота изменения директора по порядку величины совпадает с обратным временем релаксации смектического параметра порядка или превышает его, флуктуационно образующиеся смектические слои будут перпендикулярны среднему направлению директора, поскольку они не будут успевать перестраиваться в соответствии с изменениями локального директора. При подобных деформациях поля директора свободная энергия (7) не будет оставаться неизменной, даже если изменения директора будут пространственно однородны. Вследствие этого возникает возвращающая сила, которая будет препятствовать в том числе и пространственно-однородным отклонениям поля директора от направления n_0 . Появление подобного релаксационного механизма может существенно отразиться на спектре собственных мод нематиков, в первую очередь, на характере распространения сдвиговых волн на ультразвуковых частотах.

Прежде чем оценить величину этой возвращающей силы, отметим, что рассматривается диапазон изменения температуры, в котором флуктуации относительно малы. А именно, потребуем, чтобы флуктуационная поправка к теплоемкости [11],

$$\Delta C_{fl} = \frac{k_B T^2 M_T \sqrt{M_V}}{4\sqrt{2}\pi\sqrt{A}} \left(\frac{\partial A}{\partial T}\right)^2,\tag{35}$$

была мала по сравнению с ее скачком в точке перехода [23]:

$$\Delta C_{N-A} = \frac{T}{2B} \left(\frac{\partial A}{\partial T}\right)^2,\tag{36}$$

где B — коэффициент при $|\Psi|^4$ в разложении (7). Таким образом, в приближении среднего поля диапазон рассматриваемых температур определяется условием

$$\frac{k_B^2 T^2 M_T^2 M_V B^2}{8\pi^2 a_0} \ll \frac{T - T_{N-A}}{T_{N-A}} \ll 1.$$
(37)

Как отмечалось в [24], такой интервал температур существует и он расширяется по мере приближения к трикритической точке вдоль линии N - A-переходов.

Оценим возвращающую силу, действующую на директор, при его малых быстрых пространственно однородных отклонениях от направления \mathbf{n}_0 . Для этого рассмотрим неисчезающий в пределе q = 0 вклад $\langle \mathbf{h}_{\Psi 0} \rangle$ в усредненное по флуктуациям молекулярное поле:

$$\langle \mathbf{h}_{\Psi 0}(\mathbf{q},\omega) \rangle = -\frac{\gamma}{\tau_0} \, \delta \mathbf{n}(\mathbf{q},\omega),$$
 (38)

где γ — вращательная вязкость, а τ_0 имеет смысл времени релаксации директора к направлению **n**₀:

$$\tau_0^{-1} = \frac{k_B T q_s^2}{(2\pi)^3 \gamma M_T} \left(\int \frac{d\mathbf{q}'}{\chi^{-1}(\mathbf{q}')} - \frac{2b}{M_T} \int \frac{d\mathbf{q}'(\mathbf{q}'_x)^2}{\chi^{-1}(\mathbf{q}')(-i\omega + 2b\chi^{-1}(\mathbf{q}'))} \right).$$
(39)

Прежде всего отметим, что величина τ_0^{-1} слабо зависит от частоты и имеет один и тот же порядок на нулевой и бесконечной частотах. При оценке τ_0^{-1} по порядку величины положим для простоты $\omega = 0$ и пренебрежем различием между ξ_{\parallel} и ξ_{\perp} . Кроме того, следует отметить отсутствие у τ_0^{-1} критической зависимости от температуры. Как видно из (39), приближения Орнштейна—Цернике для корреляционной функции недостаточно

для сходимости интегралов в (39), поэтому, пользуясь тем, что в рассматриваемой системе есть естественный характерный размер — межслоевое расстояние в смектической *A*-фазе, — выполним интегрирование в (39) до верхнего предела q_m , считая $q_m \sim q_s$. Тогда получаем следующую оценку для τ_0^{-1} :

$$\tau_0^{-1} = \frac{k_B T q_s^2 q_m}{3\pi^2 \gamma} \left(1 - \frac{1}{1 + q_m^2 \xi_\perp^2} \right).$$
(40)

Как следует из (40), вблизи точки N - A-перехода становится конечным время релаксации однородных искажений поля директора. Используя типичные для жидких кристаллов значения параметров [15, 25–27]:

$$\xi_{\perp} \sim 2 \cdot 10^{-8} \left[\frac{T - T_{NA}}{T_{NA}} \right]^{-0.5} \, \mathrm{cm}, \quad \tau_{\Psi} \sim 10^{-9} \left[\frac{T - T_{NA}}{T_{NA}} \right]^{-1} \, \mathrm{c}, \quad q_m \sim q_s \sim 2 \cdot 10^7 \, \mathrm{cm},$$

получаем оценку $\tau_0 \sim 10^{-(7+8)}$ с. Для частоты изменения директора должно выполняться условие $\omega \geq \tau_{\Psi}^{-1}$.

Найдем изменения в спектре сдвиговых мод НЖК. Если ввести обозначения v_t и n_t соответственно для компонент скорости и директора, лежащих в плоскости xy и перпендикулярных волновому вектору **q**, а v_l и n_l — для компонент, одновременно лежащих в плоскости xy и в плоскости векторов **n**₀, **q**, то уравнения для v_t и n_t отделятся от остальных уравнений системы уравнений движения НЖК [28]. Выпишем их в линейном приближении с учетом члена (38):

$$\left[\omega + i\left(\frac{K_t q^2}{\gamma} + \frac{1}{\tau_0}\right)\right] n_t + \frac{\lambda + 1}{2} q_z v_t = 0, \tag{41}$$

$$\left(\omega + i\frac{\eta_t q^2}{\rho}\right)v_t + \frac{(\lambda+1)\gamma}{2\rho}\left(\frac{K_t q^2}{\gamma} + \frac{1}{\tau_0}\right)q_z n_t = 0.$$
(42)

В этих уравнениях используются те же обозначения для материальных постоянных НЖК, что и в [28, 29], а K_t и η_t определяются соотношениями

$$K_t = K_{22} \frac{q_\perp^2}{q^2} + K_{33} \frac{q_z^2}{q^2},$$
(43)

$$\eta_t = \eta_1 \frac{q_\perp^2}{q^2} + \frac{\eta_3}{2} \frac{q_z^2}{q^2}.$$
(44)

Рассмотрим тот случай, когда молекулярное поле в основном определяется релаксационным членом, т. е.

$$\frac{1}{\tau_0} \gg \frac{K_t q^2}{\gamma}.$$
(45)

Используя типичные для НЖК значения параметров: $K_t \sim 10^{-6}$ дин, $\gamma \sim (0.1 \div 1)$ Пз, $\tau_0 \sim (10^{-8} \div 10^{-7})$ с, получаем следующую оценку для длины волны неоднородности:

$$l \gg 2 \cdot 10^{-5}$$
 см.

Приравнивая нулю определитель системы (41), (42), получаем уравнение для собственных частот:

$$\omega^2 + i\left(\frac{1}{\tau_0} + \frac{\eta_t q^2}{\rho}\right)\omega - \frac{1}{\tau_0}\left(\frac{\eta_t q^2}{\rho} + \frac{(\lambda+1)^2 \gamma q_z^2}{4\rho}\right) = 0.$$
 (46)

Из (46) следует, что при соблюдении условия

$$\frac{1}{\tau_0} \approx \frac{\eta_t q^2}{\rho},\tag{47}$$

т. е. для $l \sim 10^{-4}$ см, решение дисперсионного уравнения (46) имеет вид

$$\omega_{1,2} = \pm c_t q - i \frac{1}{\tau_0},\tag{48}$$

где

$$c_t = \sqrt{\frac{\gamma}{\rho \tau_0}} \frac{\lambda + 1}{2} |\cos \theta|, \qquad (49)$$

а θ — угол между направлением распространения сдвиговой волны **q** и вектором **n**₀. Из (48) и (49) вытекают оценки скорости и коэффициента затухания первой пары сдвиговых волн: $c_t \sim 3 \cdot 10^3$ см/с, $1/\tau_0 \sim 10^7$ с⁻¹. При длине волны $l \sim 2\pi \sqrt{\eta_t \tau_0/\rho} \sim 10^{-4}$ см в НЖК с не очень большой вращательной вязкостью ($\gamma \sim 0.1$ Пз), что соответствует $1/\tau_0 \sim 10^7$ с⁻¹, сдвиговая волна может распространяться, так как ее амплитуда за один период изменится в $\exp(-l/c_t\tau_0) \approx 0.7$ раз.

Из уравнений для компонент v_z , v_l , n_l при выполнении условия поперечности колебаний, $q_z v_z + q_\perp v_l = 0$, нетрудно аналогично получить дисперсионное уравнение для еще одной пары сдвиговых мод:

$$\omega^2 + i\left(\frac{1}{\tau_0} + \frac{\eta_l q^2}{\rho}\right)\omega - \frac{1}{\tau_0}\left(\frac{\eta_l q^2}{\rho} + \frac{\Lambda_l^2 \gamma q^2}{\rho}\right) = 0,$$
(50)

где

$$\eta_l = (\eta_1 + \eta_2 - 2\eta_4 + \eta_5) \frac{q_z^2 q_\perp^2}{q^4} + \frac{\eta_3}{2} \frac{(q_z^2 - q_\perp^2)^2}{q^4},$$
(51)

$$\Lambda_l = \frac{\lambda + 1}{2} \frac{q_z^2}{q^2} + \frac{1 - \lambda}{2} \frac{q_{\perp}^2}{q^2}.$$
 (52)

Отсюда следует, что при выполнении условия:

$$1/\tau_0 \approx \eta_l q^2 / \rho, \tag{53}$$

возможно рещение дисперсионного уравнения, соответствующее распространяющейся сдвиговой волне:

$$\omega_{3,4} = \pm c_l q - i \frac{1}{\tau_0},\tag{54}$$

где

$$c_l = \sqrt{\frac{\gamma}{\rho \tau_0}} \, \frac{\lambda \cos(2\theta) + 1}{2}.$$
(55)

Скорости распространения сдвиговых волн c_t и c_l существенно зависят от направления распространения, причем при $\lambda = 1$, т. е. для НЖК, состоящих из стержнеобразных молекул, эти скорости почти совпадают. Сдвиговые моды, становящиеся вблизи точки N - A-перехода распространяющимися, являются своего рода предвестниками второго звука, существующего в смектиках A.

4. ЗАКЛЮЧЕНИЕ

В заключение обсудим возможность экспериментального наблюдения полученных результатов. В обычно используемых геометриях опытов по наблюдению акустооптического эффекта оптическое пропускание зависит от величины модуля Франка K_{33} [4]. Как следует из (23), вблизи точки N - A-перехода K_{33} существенно зависит от частоты ультразвука и, меняя ее, можно обнаружить связанные с этой зависимостью изменения оптического пропускания и размеров темных и светлых полос или колец. Как следует из выражения (21), наиболее интересную частотную зависимость имеет модуль Франка K_{11} . На низких и высоких частотах величина K_{11} не зависит от близости к точке фазового перехода, однако на ультразвуковых частотах должно наблюдаться заметное уменьшение этого модуля Франка. Пока, к сожалению, не удалось найти экспериментальные данные, чувствительные по отношению к изменению K_{11} на ультразвуковых частотах.

Что касается сдвиговых волн в окрестности точки N - A-перехода, то скорость их примерно на порядок меньше скорости второго звука в смектической A-фазе. Причем в нематической фазе могут распространяться и поперечные волны со смещениями в направлении, перпендикулярном плоскости векторов \mathbf{n}_0 и \mathbf{q} . Следует отметить, что в соответствии с (47) и (53) эти волны являются распространяющимися лишь в достаточно узком диапазоне длин волн. В смектической A-фазе такие волны являются чисто затухающими. Частоты этих волн попадают в мегагерцовый диапазон, поэтому из-за пренебрежения частотной зависимостью в выражении (39) формулы (49) и (55) для скоростей сдвиговых волн следует рассматривать в качестве оценочных. Точный учет частотной зависимости в (39) приводит при тех же качественных выводах к слишком громоздким выражениям, которые здесь не приводятся.

В заключение хочу поблагодарить А. Ю. Валькова и В. П. Романова за интерес к работе и полезные обсуждения.

ПРИЛОЖЕНИЕ

В формуле (19) для $\langle \mathbf{h}^{(1)}(\mathbf{q},\omega) \rangle$ оставим лишь члены, содержащие множители $\sim q^2$. Обозначим их вклад в усредненное молекулярное поле через $\langle \delta \mathbf{h}_{\Psi} \rangle$, тогда

$$\left\langle \delta \mathbf{h}_{\Psi} \right\rangle = \frac{bk_B T q_s^2}{M_T^2 (2\pi)^3} \int d\mathbf{q}' \frac{\mathbf{q}_{\perp}' \left(\mathbf{q}_{\perp}' \delta \mathbf{n}(\mathbf{q}, \omega) \right)}{\left[-i\omega + 2b\chi^{-1}(\mathbf{q}') \right] \chi^{-1}(\mathbf{q}')} \times$$

С. В. Ульянов

$$\times \left\{ -\left(\frac{\chi(\mathbf{q}')}{2} + b\left[-i\omega + 2b\chi^{-1}(\mathbf{q}')\right]^{-1}\right) \left(\frac{q_{\perp}^2}{2M_T} + \frac{q_z^2}{2M_V}\right) + 2\chi^2(\mathbf{q}')\left[\frac{\mathbf{q}_{\perp}\mathbf{q}'_{\perp}}{2M_T} + \frac{q_z q_z'}{2M_V}\right]^2 \right\}. \quad (\Pi.1)$$

Заменяя переменную интегрирования,

$$\frac{\mathbf{q}'_{\perp}}{\sqrt{2M_T A}} = \mathbf{k}_{\perp}, \quad \frac{q'_z}{\sqrt{2M_V A}} = k_z, \tag{\Pi.2}$$

получаем

.

$$\langle \delta \mathbf{h}_{\Psi} \rangle = \frac{k_B T q_s^2}{(2\pi)^3} \sqrt{\frac{2M_V}{A}} \left\{ -\left(\frac{q_{\perp}^2}{2M_T} + \frac{q_z^2}{2M_V}\right) \int d\mathbf{k} \frac{\mathbf{k}_{\perp} (\mathbf{k}_{\perp} \delta \mathbf{n}(\mathbf{q}, \omega))}{(k^2 + 1 - i\tilde{\omega}) (k^2 + 1)} \left(\frac{1}{k^2 + 1 - i\tilde{\omega}} + \frac{1}{k^2 + 1}\right) + \right. \\ \left. + \int d\mathbf{k} \frac{\mathbf{k}_{\perp} (\mathbf{k}_{\perp} \delta \mathbf{n}(\mathbf{q}, \omega))}{(k^2 + 1 - i\tilde{\omega}) (k^2 + 1)^3} \left[\frac{2}{M_T} (\mathbf{q}_{\perp} \mathbf{k}_{\perp})^2 + \frac{2}{M_V} (q_z k_z)^2\right] \right\}.$$
(II.3)

Отсюда для компоненты флуктуационного вклада в молекулярное поле получаем

$$\begin{split} \left\langle \delta h_{\Psi x}(\mathbf{q},\omega) \right\rangle &= -\frac{k_B T q_s^2}{\pi^2} \sqrt{\frac{2M_V}{A}} \left[\left(\frac{I_1\left(\tilde{\omega}\right) + I_2\left(\tilde{\omega}\right)}{12M_T} - \frac{I_3\left(\tilde{\omega}\right)}{5M_T} \right) \left(q_x^2 + q_y^2 \right) + \right. \\ &+ \left(\frac{I_1\left(\tilde{\omega}\right) + I_2\left(\tilde{\omega}\right)}{12M_T} - \frac{I_3\left(\tilde{\omega}\right)}{15M_V} \right) q_z^2 \right] \delta n_x(\mathbf{q},\omega) + \\ &+ \frac{k_B T q_s^2}{\pi^2} \sqrt{\frac{2M_V}{A}} \frac{2I_3\left(\tilde{\omega}\right)}{15M_T} q_x q_y \delta n_y(\mathbf{q},\omega), \quad (\Pi.4) \end{split}$$

где введены обозначения:

$$I_{1}(\tilde{\omega}) = \int_{0}^{\infty} \frac{k^{4} dk}{\left(k^{2} + 1 - i\tilde{\omega}\right)\left(k^{2} + 1\right)^{2}} =$$
$$= \frac{\pi}{2\tilde{\omega}^{2}} \left[1 + \tilde{\omega}H_{1}(\tilde{\omega}) - H_{2}(\tilde{\omega})\right] + i\frac{\pi}{2\tilde{\omega}^{2}} \left[H_{1}(\tilde{\omega}) + \tilde{\omega}H_{2}(\tilde{\omega}) - \frac{3}{2}\tilde{\omega}\right], \quad (\Pi.5)$$

$$I_{2}(\tilde{\omega}) = \int_{0}^{\infty} \frac{k^{4} dk}{(k^{2} + 1 - i\tilde{\omega})^{2} (k^{2} + 1)} = \frac{\pi}{2\tilde{\omega}^{2}} \left[-1 + \frac{1}{2} \tilde{\omega} H_{1}(\tilde{\omega}) + H_{2}(\tilde{\omega}) \right] + i \frac{\pi}{2\tilde{\omega}^{2}} \left[-H_{1}(\tilde{\omega}) + \frac{1}{2} \tilde{\omega} H_{2}(\tilde{\omega}) \right], \quad (\Pi.6)$$

$$I_{3}(\tilde{\omega}) = \int_{0}^{\infty} \frac{k^{6} dk}{(k^{2} + 1 - i\tilde{\omega})(k^{2} + 1)^{3}} =$$

= $\frac{\pi}{2\tilde{\omega}^{3}} \left[\frac{5}{2} \tilde{\omega} - (1 - \tilde{\omega}^{2}) H_{1}(\tilde{\omega}) - 2\tilde{\omega}H_{2}(\tilde{\omega}) \right] +$
+ $i \frac{\pi}{2\tilde{\omega}^{3}} \left[1 - \frac{15}{8} \tilde{\omega}^{2} + 2\tilde{\omega}H_{1}(\tilde{\omega}) - (1 - \tilde{\omega}^{2}) H_{2}(\tilde{\omega}) \right], \qquad (\Pi.7)$

$$H_1(\tilde{\omega}) = \frac{1}{\sqrt{2}} \sqrt{\sqrt{1 + \tilde{\omega}^2} - 1},$$
 (II.8)

$$H_2(\tilde{\omega}) = \frac{1}{\sqrt{2}} \sqrt{\sqrt{1 + \tilde{\omega}^2 + 1}},$$
 (П.9)

а приведенная частота $\tilde{\omega}$ определяется формулой (26). Сравнивая выражение (П.4) с формулой (4), находим вклады (21)–(23).

Литература

- 1. П. Ж. Де Жен, Физика жидких кристаллов, Мир, Москва (1977).
- 2. С. Чандрасекар, Жидкие кристаллы, Мир, Москва (1980).
- 3. T. C. Lubensky, J. Chim. Phys. 80, 31 (1983).
- 4. А. П. Капустин, О. А. Капустина, Акустика жидких кристаллов, Наука, Москва (1986).
- 5. А. Ю. Вальков, В. П. Романов, А. Н. Шалагинов, УФН 164, 149 (1994).
- 6. P. G. de Gennes, Sol. St. Commun. 10, 753 (1972).
- 7. F. Jahnig and F. Brochard, J. de Phys. 35, 301 (1974).
- 8. B. S. Andereck and B. R. Patton, Phys. Rev. E 49, 1393 (1994).
- 9. J.-H. Chen and T. C. Lubensky, Phys. Rev. A 14, 1202 (1976).
- 10. W. L. McMillan, Phys. Rev. A 9, 1720 (1974).
- 11. F. Kiry and P. Martinoty, J. de Phys. 39, 1019 (1978).
- 12. J. Swift and B. Mulvaney, J. de Phys. Lett. 40, 287 (1979).
- 13. Kh. A. Hossain, J. Swift, J.-H. Chen, and T. C. Lubensky, Phys. Rev. B 19, 432 (1972).
- 14. J. Swift and B. Mulvaney, Phys. Rev. B 22, 4523 (1980).
- 15. V. P. Romanov and S. V. Ul'yanov, Phys. Rev. E 55, 5623 (1997).
- 16. S. Bhattacharya, B. K. Sarma, and J. B. Ketterson, Phys. Rev. Lett. 40, 1582 (1978).
- 17. S. Bhattacharya, B. K. Sarma, and J. B. Ketterson, Phys. Rev. B 23, 2397 (1981).
- 18. С. В. Пасечник, В. А. Баландин, ЖЭТФ 83, 195 (1982).
- 19. Orsay Liquid Crystal Group, J. Chem. Phys. 51, 816 (1969).
- 20. А. П. Леванюк, ЖЭТФ 49, 1304 (1965).
- 21. B. S. Andereck and J. Swift, Phys. Rev. A 25, 1084 (1982).
- 22. В. П. Романов, С. В. Ульянов, Акуст. журн. 37, 386 (1991).
- 23. Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, ч. 1, Наука, Москва (1976).
- 24. М. А. Анисимов, Критические явления в жидкостях и жидких кристаллах, Наука, Москва (1987).
- 25. I. Haller, H. Huggins, H. R. Liliental, and T. R. McGuire, J. Chem. Phys. 77, 950 (1973).
- 26. E. Kuss, Mol. Cryst. Liq. Cryst. 47, 71 (1978).
- 27. Н. И. Алексеев, В. П. Романов, С. В. Ульянов, Акуст. журн. 34, 398 (1988).
- 28. Е. И. Кац, В. В. Лебедев, Динамика жидких кристаллов, Наука, Москва (1988).
- 29. Л. Д. Ландау, Е. М. Лифшиц, Теория упругости, Наука, Москва (1987).