ЖЭТФ, 1998, том 114, вып. 6(12), стр. 1993-2003

# ИССЛЕДОВАНИЯ ПО НЕПРЯМОМУ (РЕНТГЕНОВСКОМУ) ОБЛУЧЕНИЮ ВЫСОКОАСПЕКТНЫХ ОБОЛОЧЕЧНЫХ МИКРОМИШЕНЕЙ НА УСТАНОВКЕ ИСКРА-5

Ф. М. Абзаев<sup>а</sup>, С. А. Бельков<sup>а</sup>\*, А. В. Бессараб<sup>а</sup>, С. В. Бондаренко<sup>а</sup>, В. С. Бушуев<sup>b</sup>,
В. А. Гайдаш<sup>a</sup>, С. Г. Гаранин<sup>a</sup>, Г. В. Долголева<sup>a</sup>, В. М. Дороготовцев<sup>b</sup>, Н. В. Жидков<sup>a</sup>,
В. М. Изгородин<sup>a</sup>, Г. А. Кириллов<sup>a</sup>, Г. Г. Кочемасов<sup>a†</sup>, Д. Н. Литвин<sup>a</sup>,
С. П. Мартыненко<sup>a</sup>, Ю. А. Меркульев<sup>b</sup>, В. М. Муругов<sup>a</sup>, Л. С. Мхитарьян<sup>a</sup>,

А. В. Пинегин<sup>а</sup>, С. И. Петров<sup>а</sup>, А. В. Сеник<sup>а</sup>, Н. А. Суслов<sup>а</sup>

<sup>а</sup> Российский федеральный ядерный центр

Всероссийский научно-исследовательский институт экспериментальной физики 607190, Саров, Нижегородская обл., Россия <sup>b</sup> Физический институт им. П. Н. Лебедева Российской академии наук 117924, Москва, Россия

#### Поступила в редакцию 6 января 1998 г.

На лазерной установке Искра-5 впервые выполнены эксперименты по непрямому (рентгеновскому) облучению высокоаспектных капсул (с отношением диаметра к толщине  $\approx$  900), наполненных DT-газом. Показано, что все измеренные характеристики (нейтронный выход, температура ионов, время схождения оболочки и т.д.) хорошо воспроизводятся в расчетах по одномерной программе неравновесной радиационной газовой динамики СНДП (спектральная неравновесная диффузия поглощения). В расчетах находит объяснение и экспериментально зарегистрированный факт генерации меньшего количества нейтронов в опыте с более высоким измеренным значением ионной температуры DT-газа.

#### 1. ВВЕДЕНИЕ

Система непрямого облучения мишеней со сферическим боксом-конвертором, используемая в экспериментах на установке Искра-5, позволяет, как показывают расчеты и эксперименты [1], реализовать близкие к сферически-симметричным условия сжатия DT-топлива, находящегося внутри стеклянных микрооболочек. Из расчетов следует, что при отношении  $D/d \simeq 7$ , где D и d — соответственно диаметры кожуха и оболочки, характерная величина неоднородности облучения при учете разброса лазерной энергии по фокусируемым лучам составляет около 3%.

Представляют, однако, интерес эксперименты с оболочками относительно большого диаметра:  $D/d \approx 2-3$ . Несмотря на то что такие оболочки будут частично освещаться лазерным излучением и степень симметризации рентгеновского излучения при сравнительно малом зазоре между кожухом и оболочкой будет заметно меньше, чем при  $D/d \approx 7$ , можно пытаться реализовать близкое к сферически-симметричному сжатие DT-топлива, используя толщину оболочки заметно меньше той, которая прогревается за

\*E-mail: belkov@otd13.vniief.ru

<sup>&</sup>lt;sup>†</sup>E-mail: kochemasov@otd13.vniief.ru

время действия рентгеновского импульса. Как показали эксперименты [2], прогреваемая толщина стекла в боксе диаметром D = 2 мм, составляет величину  $\Delta_{defl} \simeq 5-7$  мкм.

Эксперименты с тонкими оболочками миллиметрового диаметра интересны также с точки зрения отработки новых методик и повышения точности средств диагностики плазмы. Так, например, увеличение времени схлопывания оболочки позволяет повысить относительную точность определения момента генерации нейтронов, что важно для проверки ряда тонкостей в программах расчета работы мишеней. Для проведения экспериментов на установке Искра-5 [3] в Физическом институте им. П. Н. Лебедева РАН были изготовлены две оболочки диаметром 0.8–0.9 мм с толщиной стенки ~ 1 мкм.

В данной статье представлены результаты двух экспериментов с этими оболочками, выполненных по схеме непрямого облучения на установке Искра-5 [3]. В одном из них диаметр золотого бокса-конвертора был равен D = 2 мм, в другом — D = 4 мм. Характерная интенсивность облучения внутренней поверхности кожуха лазерными лучами различалась в этих опытах примерно в четыре раза. Согласно имеющимся на сегодняшний день представлениям, в четырехмиллиметровом боксе ведущим является тормозное поглощение лазерного излучения. В двухмиллиметровом боксе действующая на поверхность кожуха интенсивность составляет  $I \simeq (5-7) \cdot 10^{14}$  Вт/см<sup>2</sup>. Поэтому параметр  $I\lambda^2$ , характеризующий нелинейность взаимодействия лазерного излучения с плазмой, достаточно велик ( $I\lambda^2 \simeq 10^{15}$  Вт/см<sup>2</sup> мкм<sup>2</sup>). В результате заметная часть энергии из лазерной короны уносится быстрыми ионами, имеющими скорость  $\simeq 5 \cdot 10^8$  см/с. Эти ионы могут передавать оболочке, как показали эксперименты с магниевым покрытием кожуха [4], энергию достаточную для генерации около 10<sup>9</sup> нейтронов за импульс. Поэтому варьирование диаметра кожуха позволяет пролить дополнительный свет на роль быстрых ионов.

В работе проводится также расчетный анализ результатов экспериментов и даются рекомендации по развитию данного направления исследований.

# 2. ПОСТАНОВКА ЭКСПЕРИМЕНТОВ, МЕТОДИКИ ИЗМЕРЕНИЙ И ОСНОВНЫЕ РЕЗУЛЬТАТЫ

#### 2.1. Параметры лазерного излучения

Суммарная энергия установки на выходе усилителей составила в первом опыте  $E_{\Sigma} \approx 9700 \ \text{Дж} \ (\langle E_{chan} \rangle = 810 \ \text{Дж}),$  во втором  $E_{\Sigma} \approx 10060 \ \text{Дж} \ (\langle E_{chan} \rangle = 840 \ \text{Дж}).$ Зарегистрированная форма отдельных импульсов близка к гауссовой.

Расходимость излучения в каналах близка к номинальной  $\theta_{0.8E} < 10^{-4}$  рад. Контраст излучения во всех каналах был достаточно высок:  $k_E \ge 10^6$ ,  $k_P \ge 10^6$ . Как показывает опыт многолетних исследований, при таком уровне контраста отсутствует самовозбуждение усилителей и до прихода основного импульса плазма на внутренней поверхности мишени не образуется. Точность поперечного наведения на мишень равна ±30 мкм, точность продольного согласования фокусов юстировочного и силового излучения — ±100 мкм. Диаметр перетяжек лазерных пучков составляет ~ 100 мкм.

Форма суммарного импульса излучения по всем каналам, полученная методом интегрирования отдельных импульсов с учетом энергии канала и разновременности прихода импульсов на мишень, приведена на рис. 1. Там же приведена кривая набора энергии, полученная интегрированием суммарного лазерного импульса.



Рис. 1. Форма импульса лазерного излучения и интегральный импульс: *a* — опыт № 1,  $\tau_{0.5} = 0.38$  нс; *б* — опыт № 2,  $\tau_{0.5} = 0.37$  нс

## 2.2. Особенности конструкции мишени

Мишень состояла из медного тонкостенного сферического корпуса (кожуха), внутренняя поверхность которого покрыта слоем золота толщиной ~ 1 мкм, а внешняя висмутом толщиной 0.1–0.3 мкм. Диаметр отверстий ввода лазерного излучения составлял 0.6 мм в боксе диаметром D = 2 мм и 0.7 мм в боксе диаметром D = 4 мм. В центре располагалась стеклянная микросфера диаметром 0.8–0.9 мм с толщиной стенки около 1 мкм, наполненная газообразной DT-смесью с давлением  $P_{\text{DT}} \approx 3.5$  атм. Микросферы были изготовлены в Физическом институте им. П. Н. Лебедева РАН, корпуса — во Всероссийском научно-исследовательском институте экспериментальной физики.

### 2.3. Диагностика параметров воздействия лазерного излучения на мишень

Комплекс диагностической аппаратуры установки Искра-5 подробно описан в работе [5]. Ниже приводятся основные результаты экспериментов, при необходимости дополненные особенностями измерительных методик. Основные результаты экспериментов приведены в табл. 1.

Для регистрации изображений мишени в собственном рентгеновском излучении использовался набор камер-обскур: обзорные для наблюдения за состоянием всех шести отверстий для ввода излучения, камера-обскура для наблюдения состояния центральной микромишени. На рис. 2 приведены рентгеновские изображения сжатой области центральной капсулы, наблюдаемые через отверстие для ввода лазерного излучения. Видно, что в обоих экспериментах рентгеновское свечение сжатой области имеет кольцеобразную форму с провалом интенсивности в центре. Диаметр кольца по максимуму интенсивности свечения составляет 250–260 мкм в опыте № 1 и 225–235 мкм в опыте № 2. В опыте № 1 распределение интенсивности по периметру кольца заметно неоднородно. В опыте № 2 кольцо имеет заметно меньшую ширину, а распределение интенсивности по периметру более однородно.

Время схождения оболочек регистрировалось с помощью временной развертки рентгеновского изображения области расположения центральной капсулы в диапазо-

Таблица 1

| №<br>опыта | $D_{box}/D_h,$ mm | D <sub>sh</sub> ,<br>мкм | $\Delta R_{sh},$ мкм | Р <sub>DT</sub> ,<br>атм | <i>Е</i> <sub>L</sub> ,<br>Дж | $	au_{\gamma\gamma},$ HC | $	au_{\gamma n},$<br>HC | N,<br>10 <sup>9</sup> | Т <sub>DT</sub><br>кэВ |
|------------|-------------------|--------------------------|----------------------|--------------------------|-------------------------------|--------------------------|-------------------------|-----------------------|------------------------|
| 1          | 2/0.6             | 811                      | 0.9                  | 3.5                      | 7300                          | 1 ± 0.15                 | $0.83 \pm 0.05$         | 5.5                   | 1                      |
| 2          | 4/0.7             | 907                      | 1.1                  | 3.5                      | 7500                          | $1.45 \pm 0.05$          | $1.10 \pm 0.05$         | 0.6                   | 3.2                    |

Основные результаты экспериментов

Обозначения:  $D_{box}/D_h$  — диаметры кожуха-конвертора и отверстий ввода лазерного излучения;  $D_{sh}$ ,  $\Delta R_{sh}$  — диаметр стеклянной микросферы и ее толщина соответственно;  $P_{DT}$  — давление DT-газа;  $E_L$  — энергия лазерного излучения, введенная в камеру взаимодействия;  $\tau_{\gamma\gamma}$  — задержка начала генерации рентгеновского излучения от сжатого ядра относительно начала генерации рентгеновского излучения на стенке конвертора,  $\tau_{\gamma n}$  — задержка начала генерации рентгеновского излучения и стенке конвертора,  $\tau_{\gamma n}$  — задержка начала генерации рентгеновского излучения на стенке конвертора,  $N_{-}$  — интегральный нейтронный выход;  $T_{DT}$  — температура DT-топлива, определенная по времяпролетной методике.



Рис. 2. Рентгеновские изображения сжатой области: *а* — опыт № 1, фильтр — 10 мкм ППК + 5 мкм Ті; *б* — опыт № 2, фильтр — 10 мкм С<sub>6</sub>H<sub>8</sub>Cl<sub>4</sub>

не энергии квантов  $h\nu \sim 4$  кэВ на рентгеновском хронографе [6]. На рис. 3 приведены результаты такой регистрации, полученные в данных экспериментах. На временной развертке свечения капсулы отчетливо наблюдаются два максимума. Первый отвечает рентгеновскому свечению кожуха-конвертора, а второй возникает в результате сжатия топлива и его нагрева. Временной интервал между этими импульсами характеризует время сжатия  $\tau_{\gamma\gamma}$ , которое приведено в табл. 1. Значения  $\tau_{\gamma\gamma}$  получены методом ли-



Рис. 3. Результаты обработки хронограмм рентгеновского свечения центральной капсулы: *a* — опыт № 1; *б* — опыт № 2



Рис. 4. Оцифровка осциллограмм, полученных с помощью времяпролетной методики на расстоянии 16.7 м, для опытов № 1 (*a*) и № 2 (*б*) (сплошные кривые), а также расчетный сигнал с учетом переходной функции детектора (штриховые кривые) для оптимальной температуры ионов DT-газа

нейной аппроксимации передних фронтов импульсов до пересечения с осью времени и вычисления по этим точкам соответствующей задержки. Значительная изрезанность переднего фронта импульса при сжатии топлива в первом опыте приводит к заметному увеличению погрешности измерения  $\tau_{\gamma\gamma}$ . Во втором опыте величина  $\tau_{\gamma\gamma}$  несколько больше, что согласуется с уменьшением подводимой к капсуле энергии из-за увеличения диаметра кожуха.

Интегральный нейтронный выход измерялся с помощью комплекса методик, описанного в [5]. Измеренные значения нейтронного выхода в проведенных опытах приведены также в табл. 1.

На рис. 4 представлены результаты регистрации нейтронного импульса (времяпролетная методика) с помощью детектора, расположенного на расстоянии 16.7 м. Здесь



Рис. 5. Осциллограмма с выхода регистратора момента генерации нейтронного излучения (опыт № 1): 1 — репер, 2 — импульс жесткого рентгеновского излучения, 3 — нейтронный импульс

же приведены расчетные сигналы для заданной температуры ионов. Видно, что в опыте № 2 при меньшем выходе нейтронов ионная температура выше.

Для определения задержки между началом генерации рентгеновского излучения и моментом рождения термоядерных нейтронов  $\tau_{\gamma n}$  использовался детектор нейтронного излучения на основе кремниевого полупроводникового *p-и-n*-диода типа СППД11-02 [7]. Для повышения эффективности регистрации нейтронов на передней поверхности диода устанавливался конвертор из полиэтилена. Детектор размещался в защитном свинцовом кожухе и располагался на расстоянии примерно 15 см от мишени. При близком расположении детектора от мишени время нарастания переходной характеристики диода типа СППД11-02 не позволяет непосредственно измерить форму нейтронного импульса, а также отделить его от рентгеновского. Поэтому свинцовая защита датчика подбиралась таким образом, чтобы практически полностью подавить жесткое рентгеновское излучение, а в качестве временной метки использовался сигнал с выхода вакуумного рентгеновского диода, регистрирующего рентгеновское излучение с энергией квантов вблизи  $h\nu \sim 1.5$  кэВ. Сигналы с вакуумного рентгеновского диода и *p*-*i*-*n*-диода регистрировались на одном луче осциллографа типа СРГ-7. Для определения величины  $au_{\gamma n}$  из измеренного по осциллограмме временного интервала  $t_{\gamma n}$  между импульсами рентгеновского и нейтронного излучений вычитались временная задержка схемы регистрации  $t_{scheme}$  и разница времен прохождения фотонами и нейтронами расстояния от мишени до регистратора  $t_R$ :

$$\tau_{\gamma n} = t_{\gamma n} - t_{scheme} - t_R.$$

На рис. 5 показана зарегистрированная в опыте № 1 осциллограмма. Как видно на рис. 5, полупроводниковым детектором помимо нейтронного зарегистрировано также жесткое рентгеновское излучение, частично прошедшее через защиту датчика. Во втором эксперименте выход жесткого рентгеновского излучения, по-видимому, снизился настолько, что оказался ниже порога регистрации и на осциллограмме не наблюдался. Амплитуда нейтронного импульса уменьшилась в опыте № 2 примерно в 10 раз. Зарегистрированное время задержки генерации нейтронного излучения относительно рентгеновского излучения составило  $\tau_{\gamma n} = 0.83 \pm 0.05$  нс в эксперименте № 1 и  $\tau_{\gamma n} = 1.10 \pm 0.05$  нс в эксперименте № 2.

# 3. ОБСУЖДЕНИЕ И РАСЧЕТНО-ТЕОРЕТИЧЕСКИЙ АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

#### 3.1. Однородность рентгеновского облучения

Обсуждение начнем с оценок неоднородности рентгеновского облучения центральной капсулы, содержащей DT-газ. Расчет поглощения лазерного излучения проводился методом Монте-Карло. При этом учитывались: реальная трехмерная геометрия лазерных пучков и отверстий ввода лазерного излучения, поглощение, многократное переотражение лазерного излучения внутри полости-конвертора мишени. Считалось, что лазерное излучение поглощается по тормозному механизму с коэффициентом поглощения  $k_n = k_0 \cos^3 \gamma$  ( $\gamma$  — угол падения излучения на поверхность) с  $k_0 = 0.5$ . Расчеты проводились в предположении о неизменности формы отражающей поверхности за время действия лазерного импульса и для идеализированного случая отсутствия дисбаланса энергии лазерного излучения по различным каналам.

В опыте № 1 из-за большого относительного (по отношению к диаметру полости) диаметра поверхность капсулы с DT-газом оказалась частично на пути распространения лазерного излучения. Распределение лазерного поглощения на поверхности капсулы, полученное в расчете, показано на рис. 6*а*.

Как видно на приведенном рисунке, основная доля лазерного поглощения на поверхности капсулы приходится на области, в которых лазерные пучки касались поверхности капсулы. Суммарная величина поглощения лазерного излучения поверхностью капсулы составила в этом опыте 2.9% от введенной в полость мишени лазерной энергии (сравнительно невысокая величина поглощенной капсулой доли энергии излучения объясняется большими характерными величинами  $\gamma$  углов падения излучения на поверхность капсулы и, следовательно, малыми величинами коэффициента тормозного поглощения в расчетах).

Для геометрии ввода лазерного излучения внутрь кожуха-конвертора, соответству-



Рис. 6. Нормированные распределения лазерного поглощения (a) и поля рентгеновского излучения (b) на поверхности центральной капсулы ющей эксперименту, были выполнены оценки неоднородности рентгеновского облучения центральной капсулы с DT-газом. Плотность потока рентгеновского излучения на поверхности полости-конвертора определялась по распределению поглощенной лазерной энергии на внутренней поверхности кожуха исходя из соотношений энергетического баланса и записывалась в виде

$$S_r(\theta,\varphi) = A_1 Q_L(\theta,\varphi) + A_2 \overline{Q}_L,$$

где  $Q_L(\theta, \varphi)$  — поглощенная интенсивность лазерного излучения в данной точке на внутренней поверхности полости мишени,  $\overline{Q}_L$  — средняя поглощенная интенсивность лазерного излучения, а коэффициенты  $A_1$  и  $A_2$  выражаются через альбедо рентгеновского излучения  $\alpha$ , коэффициент конверсии лазерного излучения в первичное рентгеновское  $\eta$ , относительную площадь отверстий для ввода лазерного излучения  $\beta$  и равны

$$A_1 = 0.5(1+\alpha)\eta, \quad A_2 = \alpha\eta(1-\beta)\left[0.5 + \frac{\alpha(1-0.5\beta)}{1-\alpha(1-\beta)}\right].$$

Влиянием центральной капсулы на формирование рентгеновского излучения на стенках кожуха пренебрегалось. Степень этого влияния можно оценить характерной величиной телесного угла, под которым центральная капсула видна с поверхности кожуха, т.е. величиной ~  $(D_{sh}/D_{box})^2$ . Результаты расчета неоднородности поля рентгеновского излучения на поверхности центральной капсулы приведены на рис. 66.

Полученные величины максимальной ( $\varepsilon_{max} = |I_{max} - I_{min}|/2\overline{I}$ ) и среднеквадратичной неоднородности (а также величины потерь энергии лазерного излучения в отверстия за счет многократного внутреннего отражения) приведены в табл. 2. Здесь же приведены амплитуды  $\tilde{\gamma}_l = \sqrt{\overline{\alpha}_{lm}} \tilde{\alpha}_{lm}^*$  гармоник с данным орбитальным моментом lв разложении нормированного распределения  $\tilde{I}_x = I/||I||$  падающего на поверхность капсулы рентгеновского излучения.

Таблица 2

| № опыта | E <sub>h</sub> , % | Esh, % | $\varepsilon_{max}, \%$ | $\varepsilon_{msd}, \%$ | $	ilde{\gamma}_1$      | $	ilde{\gamma}_2$   | $	ilde{\gamma}_3$   | $	ilde{\gamma}_4$   | $	ilde{\gamma}_{S}$ |
|---------|--------------------|--------|-------------------------|-------------------------|------------------------|---------------------|---------------------|---------------------|---------------------|
| 1       | 41                 | 2.9    | 10                      | 5.0                     | 1.5 · 10 <sup>-4</sup> | $1.2 \cdot 10^{-2}$ | $3.7 \cdot 10^{-2}$ | $3.1 \cdot 10^{-2}$ | $3.4 \cdot 10^{-3}$ |
| 2       | 21                 | 0.028  | 5.2                     | 2.9                     | $1.4 \cdot 10^{-3}$    | $1.7 \cdot 10^{-2}$ | $2.3 \cdot 10^{-2}$ | $3.6 \cdot 10^{-3}$ | $1.5 \cdot 10^{-3}$ |

Неоднородности рентгеновского облучения центральной капсулы

Обозначения:  $E_h$ ,  $E_{sh}$  — доли энергии лазерного излучения, вышедшей в отверстия ввода и поглощенной капсулой (в % от введенной в мишень),  $\varepsilon_{max}$  — максимальная неоднородность,  $\varepsilon_{msd}$  — среднеквадратичная неоднородность,  $\tilde{\gamma}_l$  — амплитуды разложения нормированного распределения поля рентгеновского излучения на поверхности центральной капсулы по сферическим гармоникам.

### 3.2. Расчеты работы мишени

Расчетный анализ проводился при использовании одномерной программы радиационной газовой динамики СНДП (спектральная неравновесная диффузия поглощения) [8]. Параметры мишеней и лазерного импульса, задаваемые в расчетах, соответствовали экспериментальным.



Рис. 7. Расчетные *R*-*t*-диаграммы движения границы между газом и стеклом, лазерный (1) и нейтронные (2) импульсы в опытах №1 (сплошные кривые) и №2 (пунктир)

Рис. 8. Расчетные профили ионной температуры в DT-газе на момент генерации максимального нейтронного потока для опытов № 1 (сплошная кривая) и № 2 (пунктир)

В расчетах учитывались следующие физические процессы: тормозное поглощение лазерного излучения на внутренней поверхности кожуха-конвертора, его переотражение и выход в отверстия для ввода лазерного излучения; неравновесная, нестационарная кинетика ионизации многозарядной плазмы в приближении среднего иона [9]; генерация, поглощение и перенос рентгеновского излучения (с учетом выхода его части в отверстия для ввода лазерного излучения (с учетом выхода его части в отверстия для ввода лазерного излучения) в приближении спектральной диффузии; электронная и ионная теплопроводности; электрон-ионная релаксация; генерация нейтронов. Все расчеты проводились без учета влияния «быстрых» ионов, ускоряемых в лазерной короне, на динамику сжатия центральной мишени, т.е. считалось, что сжатие стеклянной микромишени осуществлялось под воздействием рентгеновского излучения, прилетающей к центру бокса.

Основные результаты расчетов приведены в табл. 3. На рис. 7 показаны R-t-диаграммы движения границы между газом и стеклом, лазерный и нейтронные импульсы, полученные в расчетах. Обращает на себя внимание тот факт, что генерация нейтронов в опыте № 2 происходит задолго до достижения максимального сжатия DT-газа. На рис. 8 показаны расчетные распределения ионной температуры газа на моменты времени, соответствующие генерации половины нейтронного выхода. Видно, что для расчета опыта № 1 температура газа практически выровнена по объему, в то время как для опыта № 2 распределение крайне неоднородно. Анализ результатов расчета показал, что в случае опыта № 1 аналогичное распределение температуры возникает на момент времени близкий к моменту фокусировки первой ударной волны в центре капсулы. При этом генерируется около 10<sup>8</sup> нейтронов. Однако затем происходит дожатие газа, в процессе которого температура в центре уменьшается. Но так как генерация нейтронов происходит практически во всем объеме, полное число нейтронов увеличивается более чем в 10 раз. Существенно, что в стадии дожатия участвует и золотая плазма, препятствующая разлету сжатой капсулы и увеличивающая время удержания горячего DT-газа. В расчете для опыта №2 золотая плазма не успевает долететь до капсулы, температура газа быстро понижается, и при дожатии практически не происходит дополнительной

генерации нейтронов. В целом наблюдается удовлетворительное согласие между расчетными и-экспериментальными результатами по абсолютному нейтронному выходу, времени его генерации и температуре газа.

Таблица З

| №<br>опыта | $E_{abs},$ кДж | kabs | <i>Т</i> γ,<br>эВ | $E_{\gamma},$ кДж | t <sub>N</sub> ,<br>нс | $\delta_N$ | $\delta_{max}$ | N,<br>10 <sup>9</sup> | T <sub>DT</sub> ,<br>кэВ |
|------------|----------------|------|-------------------|-------------------|------------------------|------------|----------------|-----------------------|--------------------------|
| 1          | 4.62           | 0.63 | 195               | 1.79              | 0.89(0.85)             | 30         | 40             | 3.8(5.0)              | 1.5(1.0)                 |
| 2          | 5.86           | 0.78 | 144               | 0.74              | 1.05(1.1)              | 14         | 26             | 0.58(0.50)            | 2.5(3.0)                 |

#### Результаты расчетов работы мишени

Обозначения:  $E_{abs}$  — энергия лазерного излучения, поглощенная внутри бокса-конвертора,  $k_{abs}$  — коэффициент поглощения,  $T_{\gamma}$  — максимальная эффективная температура излучения внутри бокса-конвертора,  $E_{\gamma}$  — энергия рентгеновского излучения, вышедшего в отверстия для ввода лазерного излучения,  $t_N$  — время генерации нейтронного импульса относительно максимума лазерного импульса,  $\delta_N$  — степень сжатия DT-газа на момент генерации нейтронного импульса,  $\delta_{max}$  — максимальная степень сжатия. В таблице в скобках приведены также экспериментальные значения  $t_N$ , N и  $T_{DT}$ .

Исходя из приведенных расчетных данных можно сделать вывод о том, что, несмотря на снижение на порядок нейтронного выхода в эксперименте № 2 по сравнению с экспериментом № 1 (см. табл. 1) температура газа, измеренная по спектру нейтронов, зарегистрированному по времяпролетной методике, может быть существенно более высокой. Это связано с тем, что генерация нейтронов во втором опыте происходит в малой части DT-топлива. Таким образом, можно понять «противоречие», наблюдаемое в табл. 1, когда более низкий нейтронный выход в опыте № 2 отвечает более высокой ионной температуре. Столь хорошее соответствие экспериментальных и расчетных данных представляется естественным для опыта № 2, в котором средняя интенсивность падающего на кожух излучения составляет  $I_0 = E_L/\pi D^2 \tau \simeq 4 \cdot 10^{13}$  BT/см<sup>2</sup> и поэтому роль нелинейных эффектов в плазме пренебрежимо мала. Для опыта № 1  $I_0 \simeq 1.6 \cdot 10^{14}$  BT/см<sup>2</sup>, а «действующая» внутри полости интенсивность  $I \simeq 5 \cdot 10^{14}$  BT/см<sup>2</sup>. Как отмечалось выше, для этих условий влияние «быстрых» ионов при их взаимодействии с центральной мишенью может быть не мало. Для выяснения возникающих здесь вопросов требуются дополнительные экспериментальные и расчетные исследования.

Работа выполнена при финансовой поддержке Госкомитета Российской Федерации по науке и технологиям на лазерной термоядерной установке Искра-5 (регистрационный номер 01-50), а также Российского фонда фундаментальных исследований (грант № 96-01-00046).

# Литература

<sup>1.</sup> G. G. Kochemasov, in Proc. of the 23rd European Conference (St. John's College, Oxford, 19-23 September 1994), Institute of Physics Conference Series Number 140, 17 (1995).

- S. A. Bel'kov, A. V. Bessarab, V. A. Gaydash et al., in Advances in Laser Interaction with Matter and Inertial Fusion (Madrid, Spain), ed. by G. Velarde, J. M. Martinez-Val, World Sci. Publ., Singapore (1997), p. 469.
- 3. Ф. М. Абзаев, В. И. Анненков, В. Г. Безуглов и др., Письма в ЖЭТФ 58, 28 (1993).
- S. A. Bel'kov, A. V. Bessarab, V. A. Gaydash et al., in Advances in Laser Interaction with Matter and Inertial Fusion (Madrid, Spain), ed. by G. Velarde, J. M. Martinez-Val, World Sci. Publ., Singapore (1997), p. 437.
- Ф. М. Абзаев, А. В. Бессараб, Г. Г. Кириллов и др., ВАНТ, сер. Математическое моделирование физических процессов, вып. 4, 68 (1992).
- 6. В. П. Лазарчук, В. М. Муругов, С. И. Петров, А. В. Сеник, Физика плазмы 20, 101 (1994).
- 7. А. В. Бессараб, С. Г. Гаранин, Г. А. Кириллов и др., в сб. Тез. Докл. 9-го совещания по диагностике высокотемпературной плазмы, (С.-Петербург, Россия, 2-4 июня 1997).
- С. А. Бельков, Г. В. Долголева, ВАНТ, сер. Математическое моделирование физических процессов, вып. 1, 59 (1992).
- 9. С. А. Бельков, П. Д. Гаспарян, Ю. К. Кочубей, Е. И. Митрофанов, ЖЭТФ 111, 496 (1997).