«НЕОБЫЧНЫЕ» ДОМЕННЫЕ СТЕНКИ В МУЛЬТИСЛОЯХ ФЕРРОМАГНЕТИК-СЛОИСТЫЙ АНТИФЕРРОМАГНЕТИК

В. Д. Левченко^а, А. И. Морозов^b, А. С. Сигов^b, Ю. С. Сигов^a

^а Институт прикладной математики им. М. В. Келдыша Российской академии наук , Москва, Россия

^b Московский государственный институт радиотехники, электроники и автоматики (технический университет)

117454, Москва, Россия

Поступила в редакцию 6 апреля 1998 г.

Методами численного моделирования исследована структура и условия возникновения нового типа доменных стенок в слоистых структурах ферромагнетик-слоистый антиферромагнетик. Доменные стенки возникают вследствие фрустраций, порождаемых шероховатостью границ раздела, т. е. наличием на них атомных ступеней. Изучены доменные стенки как в пленке ферромагнетика на подложке из слоистого антиферромагнетика, так и в многослойных структурах. Показано, что доменная стенка расширяется по мере удаления от границы раздела, что обусловливает нетривиальную зависимость ее энергии от толщины слоя. Структура доменных стенок в многослойных структурах ферромагнетикслоистый антиферромагнетик кардинальным образом изменяется в зависимости от отношения энергий межслойного и внутрислойного обменных взаимодействий между соседними спинами.

1. ВВЕДЕНИЕ

Открытие явления гигантского магнитосопротивления привлекло внимание к многослойным структурам, состоящим из чередующихся ферромагнитных (Fe, Co) и немагнитных (Cr, Cu, Ag) металлических слоев.

Взаимодействие между магнитными слоями описывается осциллирующим по координате потенциалом РККИ. Осциллирующий характер взаимодействия при определенной толщине немагнитной прослойки приводит к антиферромагнитной ориентации намагниченностей соседних слоев. При приложении внешнего магнитного поля ориентация изменяется на ферромагнитную, это сопровождается уменьшением электросопротивления на единицы-десятки процентов (отсюда и название «гигантское»).

Но границы раздела слоев не являются абсолютно гладкими, и на них существуют атомные ступени. При определенных условиях изменение толщины прослойки на один моноатомный слой ведет к изменению знака обменного взаимодействия между слоями. Если характерное расстояние между ступенями на поверхности раздела превышает некоторое критическое значение, то энергетически выгодным становится разбиение магнитных слоев на домены с параллельной и антипараллельной ориентациями намагниченностей соседних магнитных слоев [1]. Ширина возникающих доменных стенок δ определяется конкуренцией обменных взаимодействий внутри слоев J_{\parallel} и между магнитными слоями J_{\perp} :

$$\delta \sim b \sqrt{J_{\parallel} l / J_{\perp} b},$$

1817

(1)

\odot	0	\odot	\odot	\odot	\odot	0		0	\odot	\odot	0	⊕	Ф	⊕	Ф
\odot	\odot	\odot	\odot	\odot	\odot	\odot		\odot	\odot	\odot	\odot	Ð	\oplus	\oplus	\oplus
O	\odot	Ο	\odot	\odot	\odot	\odot		\odot	\odot	\odot	\odot	Ф	₽	\oplus	Ð
O,	\odot	• 💿	\odot	\odot	\mathbf{O}	\odot		\odot	\odot	\odot	0	\oplus	\oplus	\oplus	\oplus
\odot	\odot	\odot	\odot	0	\odot	0	•	0	0	0	0	Ð	Ð	Ð	Ð
⊕	\oplus	Ð	\oplus	\oplus	⊕	Ð		\oplus	\oplus	⊕	\oplus	\oplus	\oplus	\oplus	\oplus
\odot	\odot	\odot	\odot	\odot	\odot	\odot		\odot	\odot	\odot	\odot	\odot	$\mathbf{O}_{\mathbf{I}}$	\odot	\odot
Ð	⊕	⊕	⊕	⊕	⊕	\oplus		⊕	\oplus	⊕	\oplus	⊕	\oplus	\oplus	\oplus
\odot	\odot	\odot	0	\odot	O	\odot		\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot
a							б								
	$\odot \odot \odot \odot \odot \odot \oplus \odot \oplus \odot$	$\begin{array}{c} \bigcirc & \bigcirc \\ \bigcirc & \oplus \\ \bigcirc & \oplus \\ \bigcirc \\ \bigcirc & \oplus \\ \bigcirc \\ \bigcirc \\ \bigcirc \\ \hline \end{array}$	Image: Constraint of the state of the s	 ○ ○	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \odot \ \odot $	$ \begin{array}{c} \odot \ \odot $				

Рис. 1. Ориентация спинов вблизи границы ферромагнетик-слоистый антиферромагнетик в случае однородного распределения параметров порядка (*a*) и в случае наличия доменной стенки (б)

где b — межатомное расстояние, а l — толщина магнитного слоя. Величина δ может быть существенно меньше, чем ширины обычных доменных стенок в ферромагнетике, но в силу того что J_{\perp} убывает с толщиной немагнитной прослойки d как d^{-2} , $J_{\parallel} \gg J_{\perp}$ и характерные значения δ составляют сотни ангстрем и намного превышают толщины слоев. В этом случае изменение ширины стенки по мере удаления от границы раздела слоев является несущественным.

Если в качестве немагнитной прослойки выбран хром, то при понижении температуры в слоях хрома, толщина которых больше 32 Å, происходит антиферромагнитное упорядочение с образованием поперечной волны спиновой плотности [2]. Причем при d < 50 Å волна является соразмерной (структура AF₀). Аналогичная соразмерная слоистая антиферромагнитная структура возникает при введении в хром атомов железа (> 2%) [3]. По некоторым данным, слоистая антиферромагнитная структура может возникать в слоях марганца [4].

Возникновение дальнего порядка в слоях хрома приводит к тому, что взаимодействие между ферромагнитными слоями уже не уменьшается как d^{-2} , а практически не зависит от d.

Шероховатость границ раздела слоев, т.е. наличие на них атомных ступеней, может сделать однородное распределение ферромагнитного и антиферромагнитного параметров порядка в слоях энергетически невыгодным, поскольку взаимные ориентации соседних спинов, разделенных границей слоя, противоположны по разные стороны ступени (рис. 1*a*).

Если расстояние между ступенями достаточно велико, то энергетически выгодным является возникновение доменной стенки (рис. 16) [5,6]. В силу возрастания величины J_{\perp} ширина доменной стенки вблизи границы раздела слоев δ_0 может стать порядка межатомного расстояния. В этом случае становится существенным изменение ширины доменной стенки по мере удаления от границы раздела. Целью данной работы является исследование структуры доменных стенок, возникающих вследствие шероховатости границ раздела слоев, и нахождение условий их появления.

2. ТОНКАЯ ПЛЕНКА ФЕРРОМАГНЕТИКА НА СЛОИСТОМ АНТИФЕРРОМАГНЕТИКЕ

Рассмотрим тонкую ферромагнитную пленку на подложке из слоистого антиферромагнетика. Исследуем случай уединенной атомной ступени на границе пленкаподложка. Пусть ступень параллельна оси у декартовой системы координат, ось z которой перпендикулярна слоям. Таким образом, мы имеем дело с двумерной задачей.

Изучим обменное взаимодействие между локализованными спинами в системе пленка-подложка в приближении взаимодействия ближайших соседей. Гамильтониан системы имеет вид

$$\hat{\mathscr{H}} = -\frac{1}{2} \sum_{i,\delta} \mathscr{F}_{i,i+\delta} \hat{\mathbf{S}}_i \hat{\mathbf{S}}_{i+\delta}, \qquad (2)$$

где S_i — оператор *i*-го локализованного спина, индекс δ пробегает ближайших соседей, а обменный интеграл $\mathcal{F}_{i,i+\delta}$ равен

$$\mathcal{F}_{i,i+\delta} = \begin{cases} \mathcal{F}_1, & \text{если } i, i+\delta \text{ принадлежат пленке,} \\ \mathcal{F}_2(\delta), & \text{если } i, i+\delta \text{ принадлежат подложке,} \\ \mathcal{F}_{12} & \text{в остальных случаях,} \end{cases}$$
(3)

причем $\mathcal{F}_1 > 0$, а $\mathcal{F}_2(\delta) < 0$, если $i, i + \delta$ принадлежат разным слоям, и $\mathcal{F}_2(\delta) > 0$, если $i, i + \delta$ принадлежат одному слою. Пусть, для определенности, $\mathcal{F}_{12} > 0$.

Путем замены величины \mathscr{G}_2 и векторов спина, принадлежащих к одной из подрешеток антиферромагнетика, на противоположные можно свести задачу к взаимодействию двух ферромагнитных слоев с фрустрированным взаимодействием между слоями ($\widetilde{\mathscr{G}}_{12} = \mathscr{G}_{12}$ sign x). К этой же задаче сводится задача о тонкой пленке слоистого антиферромагнетика на ферромагнитной подложке.

Когда толщина l подложки намного больше толщины пленки d (точнее, когда $|\mathcal{F}_2|l \gg \mathcal{F}_1 d$), доменная стенка возникает лишь в объеме пленки, а параметр порядка в подложке остается однородным. Поэтому можно исследовать распределение спинов в пленке при заданном условии на границе.

Поскольку мы исследуем распределение спинов в обменном приближении, их ориентация в пространстве и плоскость поворота в доменной стенке не играют роли. В тонких слоях спины ориентированы параллельно слоям. Поэтому для определенности будем считать, что спины справа и слева от доменной стенки ориентированы параллельно и антипараллельно оси y, а поворот спинов происходит в плоскости xy. Пусть θ_i — угол, который образует *i*-ый спин с осью y. Тогда в ближайшем к границе слое подложки $\theta_i = 0$ при x > 0 и $\theta_i = \pi$ при x < 0 (рис. 1).

Заменяя операторы спина в (2) их средними значениями, модуль которых будем считать неизменным, получаем выражение для энергии в приближении среднего поля. После варьирования по величинам θ_i перейдем от дискретного к континуальному представлению, считая, что толщина пленки намного превышает межатомное расстояние b ($d \gg b$). В результате для объема пленки получаем следующее уравнение:

$$\theta_{xx}^{\prime\prime} + \theta_{zz}^{\prime\prime} = 0. \tag{4}$$

На свободной границе пленки с вакуумом при z = a = d/b имеем

$$\theta_{xx}^{\prime\prime} - \theta_z^{\prime} = 0. \tag{5}$$

На границе пленка-подложка (z = 0)

$$\theta_{xx}^{\prime\prime} + \theta_z^{\prime} = \alpha \operatorname{sign} x \sin \theta, \tag{6}$$

где $\alpha = \mathcal{F}_{12} \langle S_2 \rangle / \mathcal{F}_1 \langle S_1 \rangle$, все производные в формулах (4)–(6) берутся по безразмерным координатам (отнесенным к межатомному расстоянию *b*), а $\langle S_1 \rangle$ и $\langle S_2 \rangle$ — модули среднего значения спина пленки и подложки соответственно.

Граничные условия (5), (6) отличаются от приведенных в работе [7] наличием члена θ''_{xx} . Это позволяет, к примеру, непрерывно перейти от (6) к (4) в случае, когда подложка и пленка сделаны из одного материала.

Решение уравнения (4) с граничными условиями (5), (6) определяет распределение намагниченности в доменной стенке, порождаемой шероховатостью. Оно зависит от двух безразмерных параметров α и a, где a — безразмерная толщина пленки. В обычных же доменных стенках ширина стенки определяется отношением обменной энергии к энергии анизотропии, которой мы пренебрегаем.

3. МЕТОД РАСЧЕТА

Система уравнений (4)–(6) представляет собой уравнение Лапласа для функции двух координат $\theta(x, z)$ с нелинейным граничным условием (6). Дополнительно потребуем, чтобы функция θ была непрерывна в области $0 \le z \le a$ и удовлетворяла условиям $\theta(x \to +\infty) \to 0, \ \theta(x \to -\infty) \to \pi$.

Для получения уравнения удобного для численного решения воспользуемся вначале методом аналогичным методу интегральных преобразований [8]. Исходную систему дифференциальных уравнений преобразуем к одному уравнению интегрального типа для одномерной сеточной функции $\psi(x_i)$. Для этого на достаточно большой области $x \in [-L, L]$, доопределив функцию $\theta(x + 2L, z) = \pi - \theta(x, z)$, воспользуемся дискретным разложением Фурье системы (4)-(6) вдоль оси x и последующим аналитическим решением расщепленных уравнений для фурье-гармоник. Получаем

$$\psi(x_i) = \sum_k K(k,0) \cos\left(\frac{\pi}{L} k x_i\right) \sum_j \cos\left(\frac{\pi}{L} k x_j\right) \alpha \, \operatorname{sign} x_j \, \sin\psi(x_j) \equiv S(\psi, x_i), \tag{7}$$

где

$$K(k,z) = -4 \left(\frac{L}{k\pi}\right)^{2} \exp\left(-\frac{z\,k\,\pi}{2L}\right) \left\{ 2 \left[\exp\left(\frac{a\,k\,\pi}{L}\right) + \exp\left(\frac{z\,k\,\pi}{L}\right)\right] \frac{L}{k\pi} + \left[\exp\left(\frac{a\,k\,\pi}{L}\right) - \exp\left(\frac{z\,k\,\pi}{L}\right)\right] \right\} \times \left\{ 4 \left[\exp\left(\frac{a\,k\,\pi}{L}\right) - 1\right] \left(\frac{L}{k\pi}\right)^{2} + 4 \left[\exp\left(\frac{a\,k\,\pi}{L}\right) + 1\right] \frac{L}{k\pi} + \left[\exp\left(\frac{a\,k\,\pi}{L}\right) - 1\right] \right\}^{-1}.$$
(8)

Для численного решения этого уравнения запишем простую итерационную схему:

$$\psi^{m+1}(x_i) = \psi^m(x_i) + C_F(x_i) \left[S(\psi^m, x_i) - \psi^m(x_i) \right], \tag{9}$$

где

$$C_F(x_i) = c_0 + \exp\left[-(x_i/x_T)^2\right],$$
 (10)

с начальным условием $\psi^0(x_i) = \pi/2 - \text{th}(10x_i/L)$. Свободные параметры c_0 и x_T подбираются экспериментально в ходе расчета так, чтобы обеспечить максимальную скорость сходимости итерационной процедуры, сохраняя ее устойчивость. Итерации будем проводить до тех пор, пока значение невязки η не станет таким, что

$$\eta = \max_{x_i} |\psi^{m+1}(x_i) - \psi^m(x_i)| > \eta_0 = 10^{-5}.$$
 (11)

Решение во всей области получим из выражения

$$\theta(x_i, z) = \sum_k K(k, z) \cos\left(\frac{\pi}{L} k x_i\right) \sum_j \cos\left(\frac{\pi}{L} k x_j\right) \alpha \, \operatorname{sign} x_j \, \sin\psi(x_j). \tag{12}$$

С использованием описанного метода проведена серия расчетов при различных комбинациях параметров a = 4; 8; 16; 32; 64 и $\alpha = 1/64; 1/16; 1/4; 1; 4$.

Аналогичный метод применялся при моделировании спинового вихря, описанного в разд. 4, и многослойных структур (разд. 5).

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Типичная зависимость $\theta(x)$ приведена на рис. 2. Отметим, что при x = z = 0 имеет место разрыв производной θ''_{xx} , в то время как θ'_z остается непрерывной. За ширину доменной стенки $\delta(z)$ принималось расстояние между точками с координатами (x_1, z) и (x_2, z) , отвечающими значениям $\theta_1 = \pi/4$ и $\theta_2 = 3\pi/4$ соответственно.

Главной особенностью рассматриваемых доменных стенок является то, что их ширина возрастает по мере удаления от границы раздела. График зависимости $\delta(z)$ в случае $\alpha a \gg 1$ приведен на рис. 3. Видно, что зависимость линейна вблизи подложки и практически выходит на константу вблизи свободной поверхности. При $\alpha a \ll 1$ эффект изменения ширины доменной стенки несуществен.

Оценку для безразмерной ширины доменной стенки $\delta_0 = \delta(z = 0)$ и некоторого усредненного по толщине значения δ'_z , обозначаемого в дальнейшем β , можно получить из простых энергетических соображений. Аппроксимируем значение $\theta(x, z)$ следующим образом:

$$\theta(x,z) = \begin{cases} 0 & \text{при } x \ge \delta(z), \\ \frac{\pi}{2} \left(1 - x/\delta(z) \right) & \text{при } -\delta(z) < x < \delta(z), \\ \pi & \text{при } x \le -\delta(z), \end{cases}$$
(13)

где

$$\delta(z) = \delta_0 + \beta z, \ 0 \le z \le a. \tag{14}$$

Вклад в энергию за счет неоднородности параметра порядка в доменной стенке, рассчитанный на 1 м ее длины вдоль оси *y*, составляет

Рис. 2. Зависимости $\theta(x)$ в доменной стенке в сечениях z = 0 (1), z = 16 (2), z = 64 (3) для $\alpha = 1/16$, a = 64

Рис. 3. Зависимости ширины доменной стенки от расстояния до границы раздела при $\alpha a \gg 1$ в случае одной свободной поверхности для $\alpha = 1$, a = 64 (1), $\alpha = 1$, a = 32 (2), $\alpha = 1/4$, a = 64(3) и в трехслойной структуре для $\alpha = 3$, a = 16 (4)

$$W_1 = \frac{\mathscr{F}_1 \langle S_1 \rangle^2}{2b} \int_0^a dz \int_{-\infty}^\infty dx \left[(\theta'_x)^2 + (\theta'_z)^2 \right] \sim \frac{\pi^2 \mathscr{F}_1 \langle S_1 \rangle^2}{4b} \left(\frac{1}{\beta} + \frac{\beta}{3} \right) \ln \frac{\beta a + \delta_0}{\delta_0}.$$
 (15)

Наличие ступени приводит к возрастанию энергии взаимодействия пленки с подложкой на величину

$$W_2 = \frac{2\mathscr{F}_{12}\langle S_1 \rangle \langle S_2 \rangle}{b} \int_0^\infty dx \left[1 - \cos\theta(x, 0)\right] \sim \frac{2\mathscr{F}_{12}\langle S_1 \rangle \langle S_2 \rangle}{b} \delta_0.$$
(16)

Минимизируя энергию W_1 по параметру
 $\beta,$ а затем суммарную энергию доменной стенки

$$\tilde{W} = W_1 + W_2$$
 (17)

по параметру δ_0 , находим эти величины.

В случае $a\alpha \ll 1$

$$\beta \sim \sqrt{a\alpha},\tag{18}$$

При $a\alpha \gg 1$ имеем

j

$$\beta \sim 1,$$
 (20)
 $\delta_0 \sim 1/\min(1, \alpha).$ (21)

Рис. 4. Зависимость величины $\alpha\delta(a/2)$ от параметра $a\alpha$ (точки) и ее аппроксимация при $a\alpha \ll 1: \alpha\delta(a/2) \simeq 2\sqrt{a\alpha}$ (1) и $a\alpha \gg 1: \alpha\delta(a/2) \simeq a\alpha/2$ (2)

Рис. 5. Энергия доменной стенки \tilde{W} как функция параметра $a\alpha$ (точки) и ее аппроксимации $\tilde{W} \simeq 2\sqrt{a\alpha}$ при $a\alpha \ll 1$ (1) и $\tilde{W} \simeq 2\ln(a\alpha)$ при $a\alpha \gg 1$ (2)

Континуальное приближение справедливо, если $\delta_0 \gg \alpha/(1+\alpha)$.

Для характерной ширины доменной стенки $\delta(a/2)$ получаем

$$\delta\left(\frac{a}{2}\right) \sim \begin{cases} \delta_0 \sim \sqrt{a/\alpha} & \text{при } a\alpha \ll 1, \\ a & \text{при } a\alpha \gg 1. \end{cases}$$
 (22)

Приведенные выше оценки хорошо согласуются с результатами расчетов (рис. 4). Исключением является выражение для δ_0 при $a\alpha \gg 1$. Для $\alpha > 1$ результаты расчета заметно отличаются от оценки (21). Именно в этом случае основную роль играет окрестность особенности при x = z = 0 и простая аппроксимация (13) неприменима.

Для энергии доменной стенки получаем следующую оценку:

$$\tilde{W} \sim \begin{cases} \frac{\mathscr{I}_1 \langle S_1 \rangle^2}{b} \sqrt{a\alpha} & \text{при } a\alpha \ll 1, \\ \frac{\mathscr{I}_1 \langle S_1 \rangle^2}{b} \ln(a\alpha) & \text{при } a\alpha \gg 1. \end{cases}$$
(23)

Расчетная зависимость \tilde{W} от $a\alpha$ приведена на рис. 5.

Уширение доменной стенки приводит к тому, что при $a\alpha \gg 1$ ее энергия возрастает с толщиной пленки только логарифмически.

Оценим теперь, при каком расстоянии между ступенями однородное распределение параметра порядка в пленке становится энергетически невыгодным. Пусть R безразмерное расстояние между двумя параллельными ступенями, причем ориентация спинов в пленке на участке между ступенями отвечает не минимуму, а максимуму энергии взаимодействия с подложкой. За счет этого энергия системы возрастает на величину $2\mathscr{J}_{12}\langle S_1 \rangle \langle S_2 \rangle R/b$ в расчете на 1 м длины ступеней. Если эта энергия больше, чем

Рис. 6. Спиновый вихрь, возникающий при $R \ll a$ в случае $\alpha = 4$, a = 64, R = 16. На линиях постоянного значения θ указана величина θ в единицах π

энерги́я двух доменных стенок, то более выгодным становится возникновение в пленке домена с противоположным значением параметра порядка. Для случая $a\alpha \ll 1$ это условие эквивалентно условию $R > \delta_0$.

В случае $a\alpha \gg 1$ имеются две возможности. При $R \gg a$ возникают две доменные стенки, пронизывающие всю толщину пленки. Однако при $\delta_0 \ll R \ll a$ вблизи подложки возникает своеобразный спиновый вихрь (рис. 6), проникающий в глубь пленки на расстояние порядка R. В остальной части пленки однородное распределение параметра порядка остается невозмущенным.

5. МНОГОСЛОЙНЫЕ СТРУКТУРЫ

Для многослойных структур моделирование проводилось для случая, когда обменное взаимодействие в ферромагнитных слоях (железо) намного превосходит таковое в антиферромагнитных слоях (CrFe). При этом искажения однородного распределения параметра порядка возникают только в антиферромагнитных слоях, причем искажения в одном таком слое никак не влияют на таковые в другом.

Поведение доменной стенки в антиферромагнитном слое полностью определяется граничными условиями на его поверхностях. Как уже отмечалось, одновременной заменой знака обменного взаимодействия между антиферромагнитными подрешетками и направления спинов одной из подрешеток на противоположное задача о распределении антиферромагнитного параметра порядка сводится к задаче о распределении намагниченности в ферромагнитном слое с фрустрированным взаимодействием на границе.

Доменные стенки соединяют между собой ближайшие атомные ступени, которые могут принадлежать как одной границе слоя, так и противоположным. При этом в отличие от рассмотренного случая одной свободной границы максимум толщины доменной стенки достигается не на границе, а в центре слоя (рис. 3, кривая 4).

Как показало моделирование, принципиальную роль играет значение величины α . При $\alpha > 1$ ближайшие к границам слоя спины в зависимости от знака обменного взаимодействия между слоями ориентируются параллельно или антипараллельно спинам соседних слоев, чтобы минимизировать энергию межслойного взаимодействия. Когда расстояние между ближайшими ступенями R намного превышает толщину слоя

ЖЭТФ, 1998, 114, вып. 5(11)

Рис. 7. Доменная стенка в трехслойной структуре в случаях $\alpha = 3$, a = 16, R = 64 (*a*) и $\alpha = 0.1$, a = 16, R = 64 (*b*). Стрелками указано положение ступеней. Линии постоянного значения θ проведены через $\pi/10$

 $(R \gg a)$, доменная стенка, зарождаясь на атомной ступени, на расстоянии порядка *a* поворачивается и одновременно расширяется так, чтобы занять всю ширину слоя и далее идти параллельно его границам (рис. 7*a*). В этой области значение θ с увеличением *z* изменяется линейно от нуля на одной границе слоя до π на другой.

Если же $\alpha < 1$ и $R \gg a$, то структура доменной стенки более сложная, так как теперь становится энергетически выгодным поворот спинов на границе слоя на некоторый угол по отношению к направлению, отвечающему минимальной поверхностной энергии (рис. 76). При $a\alpha < 1$ не наблюдаются ярко выраженные в случае $a\alpha > 1$ участки поворота доменной стенки, и все искажения происходят на характерном масштабе порядка R. Как и в случае $a\alpha > 1$, доменная стенка занимает практически весь объем слоя в пространстве между ступенями.

10 ЖЭТФ, №5 (11)

Численное моделирование распределения спинов в двухслойной системе ферромагнетик-слоистый антиферромагнетик на основе модели Изинга было проведено в работе [9]. Но модель Изинга соответствует случаю очень сильной анизотропии типа «легкая ось» и неприменима для описания многослойных структур типа Fe/Cr, у которых энергия анизотропии в плоскости слоев намного меньше энергии обменного взаимодействия. Возникающие в рамках модели Изинга доменные стенки имеют атомные ширины, поэтому уникальные свойства доменных стенок в слоях ферромагнетик-слоистый антиферромагнетик в этой работе не были обнаружены.

Экспериментальную проверку условий возникновения и анализ структуры рассмотренных доменных стенок можно провести, изучая с помощью микроскопа магнитных сил ферромагнитные пленки, напыленные на антиферромагнитную подложку. Исследуя пленки различной толщины и с различной характерной шириной ступеней R на границе пленка-подложка, можно найти зависимость критической величины R, при которой возникают доменные стенки, от толщины пленки. Кроме того, можно определить зависимость ширины доменной стенки на поверхности пленки от толщины пленки. Теоретическая зависимость с точностью до сомножителя порядка единицы совпадает с приведенной на рис. 4.

6. ВЫВОДЫ

1. Наличие атомных ступеней на границе раздела между слоистым антиферромагнетиком и ферромагнитной пленкой приводит к возникновению в пленке доменной структуры, если расстояние между ступенями R больше ширины δ_0 доменной стенки на границе раздела.

2. Ширина доменной стенки увеличивается по мере удаления от подложки. Поэтому при больших толщинах пленки энергия стенки возрастает логарифмически с увеличением ее толщины.

3. В толстых пленках при $\delta_0 \ll R \ll a$ вместо доменной структуры вблизи подложки возникают статические спиновые вихри с характерным размером R.

4. В многослойных структурах ферромагнетик-слоистый антиферромагнетик доменные стенки соединяют между собой соседние ступени на границах слоя, занимая все пространство слоя, лежащее между ними. Структура таких доменных стенок существенно зависит от соотношения между внутрислойным и межслойным обменом.

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (грант № 97-02-17627).

Литература

- 1. А. И. Морозов, А. С. Сигов, Письма в ЖЭТФ 61, 893 (1995).
- 2. E. F Fullerton, S. D Bader, and J. L. Robertson, Phys. Rev. Lett. 77, 1382 (1997).
- 3. E. Fawcett, H. L. Albert, V. Yu. Galkin et al., Rev. Mod. Phys. 66, 25 (1994).
- 4. S. Bouarab, H. Nait-Lazis, M. A. Khan et al., Phys. Rev. B 52, 10127 (1995).
- 5. A. Berger and H. Hopster, Phys. Rev. Lett. 73, 193 (1994).
- 6. E. F Fullerton, C. H. Sowers, and S. D Bader, Phys. Rev. B 56, 5469 (1997).
- 7. J. C. Slonczewski, Phys. Rev. Lett. 67, 3172 (1991).
- 8. Р. Курант, Д. Гильберт, Методы математической физики, Т. 1,2, Гостехиздат, Москва (1951).
- 9. A. Berger and E. F Fullerton, J. Magn. Magn. Mater. 165, 471 (1997).