ДВУХКОМПОНЕНТНАЯ МОДЕЛЬ ДЛЯ ОПИСАНИЯ РОСТА РЫХЛЫХ ПРИПОВЕРХНОСТНЫХ СЛОЕВ

А. Э. Филиппов

Донецкий физико-технический институт Национальной академии наук Украины 340114, Донецк, Украина

Поступила в редакцию 4 июля 1997 г.

Рассмотрена кинетическая модель для описания взаимодействия двух флуктуирующих плотностей, позволяющая устойчиво воспроизводить рост плотных, пористых и фрактальных структур вблизи поверхности твердого тела, помещенного в активную среду. Исследованы решения локальных и нелокальных уравнений модели и на их основе прокомментированы возможные сценарии поведения систем, описание которых может быть сведено к такой модели. При различных значениях параметров вычислены индексы степенного роста ширины фронта в стационарном режиме.

1. ВВЕДЕНИЕ

В последние годы исследование роста и морфологии рыхлых слоев, образующихся вблизи плоских поверхностей различной природы привлекает все больший интерес как с практической, так и с теоретической точек зрения (см., например, [1–5] и многочисленные ссылки в этих работах).

Во многих случаях независимо от конкретной специфики исследуемой системы развитие приповерхностного слоя протекает достаточно универсальным образом. Вначале в непосредственной близости от гладкой (плоской) границы двух контактирующих сред в результате химической реакции возникает плотный слой из одного или нескольких продуктов реакции. В процессе дальнейшего роста он становится все более рыхлым, плавно переходя к образованию существенно неоднородной, но, как правило, масштабно-инвариантной структуры, закономерности роста которой могут быть охарактеризованы фрактальной размерностью и соответствующими степенными показателями.

Так, например, переход от гладкого роста коррозионного фронта к фрактальному наблюдался недавно непосредственно [1] при исследовании двумерной коррозии тонких пленок A1, напыленных на оптически прозрачные подложки и помещенных в электролит, содержащий активные компоненты $Fe_2(SO_4)_3$, HCl, Na₂SO₄ и NaCl. Последовательность снимков показывает, как изначально идеально круглая ямка, перфорированная в поверхности A1, расширяется, а на ее границе формируются характерные древовидные формы. Со временем рост фронта становится самоподобным с фрактальной размерностью $D_f = 1.33 \pm 0.01$.

Эффект нарастания длины фронта может быть выражен даже более сильно. Так, например, в описанной в работе [2] системе при пропускании слабого тока ($J = 0.2 \text{ мA/cm}^2$) через медный электрод развивается «убегающий» рост фронта, состоящий в том, что его продвижение происходит на первоначально небольших выступах глад-кой границы электрода, тогда как остальные участки фронта остаются за то же время

практически неизменными. В результате формируется характерная дендритная структура, состоящая, в отличие от «обычной» фрактальной поверхности [1], из совокупности практически уединенных «деревьев».

Помимо чисто научного интереса исследование роста фронта коррозии привлекает внимание благодаря своей исключительной прикладной значимости, поскольку в ряде своих приложений напрямую соприкасается с проблемой повышения эффективности электрических батарей [3,4]. В частности, при использовании литиевого анода, помещенного в электролит, содержащий в качестве аддитива SOCl₂, благодаря исключительно высокой реактивной способности Li на его поверхности формируется пористый двухкомпонентный слой из LiCl и SO₂, приводящий к возникновению «эффекта задержки» [4] при длительном хранении элемента. Микрофотографии приповерхностного слоя показывают, что его можно рассматривать как комбинацию начального относительно плотного слоя с последующим переходом ко все более рыхлому фрактальному образованию.

Достаточно универсальные свойства, проявляемые различными системами, позволяют надеяться на применимость к их описанию единых моделей роста, основанных на комбинации идей континуальной теории поля и кинетических уравнений со случайным источником [5, 6].

Будучи уже достаточно традиционным для теории фазовой сепарации и флуктуационных явлений при фазовых переходах [7-20], использование кинетических уравнений с источником шума применительно к описанию роста фронта требует известной осторожности. Прежде всего потому, что в отличие от фазовых переходов, где генерация параметра порядка идет в объеме системы, случайный источник здесь не может быть аддитивным. Генерация ненулевой плотности компонент, образующих фронт, должна происходить лишь в непосредственной близости от уже существующей границы. Последнее означает, что соответствующий источник в уравнении должен быть в данном случае мультипликативным (т.е., как минимум, содержать саму плотность в качестве множителя). Однако в недавних публикациях, в которых теоретически изучались фазовые диаграммы и переходы в системах с мультипликативным шумом [21-24], отмечалось, что наличие такого достаточно интенсивного шума может радикально сказаться как на упорядоченной структуре, так и на самой фазовой диаграмме, приводя к появлению новых нетривиальных фаз. В нашем случае это означает, что уравнения модели должны быть записаны таким образом, чтобы по возможности избегать связанных с этим дополнительных осложнений.

С экспериментальной точки зрения исследование фрактальных коррозионных структур удобно, поскольку фронт коррозии наблюдается непосредственно на микрофотографиях и соответствующие 2*D*-распределения плотностей могут быть явным образом описаны. Вместе с тем протекающие при этом процессы достаточно сложны, и несмотря на продолжительные усилия их теоретические модели все еще остаются очень упрощенными, хотя и предполагают численный анализ кинетических уравнений. В рассмотрении оставляют, как правило, лишь плотность единственной распределенной величины, которая предполагается наиболее существенной в каждом конкретном случае [5, 10].

Для реальных физико-химических процессов это, вообще говоря, неверно, поскольку в реакциях обычно участвуют две и более компонент. В этом случае сколь угодно изощренное описание системы на основе плотности единственной компоненты заведомо подменяет ее исследование анализом чисто теоретических моделей. При наличии современных возможностей численного моделирования попытки свести проблему к единственному уравнению есть скорее дань аналитической традиции, чем реальная необходимость. В настоящей заметке возможность продвижения в данном направлении продемонстрирована на примере двухкомпонентной модели, сформулированной для описания роста и коррозии широкого класса рыхлых поверхностных слоев, инициированных химическими реакциями.

2. ФОРМУЛИРОВКА МОДЕЛИ

Следуя работе Жанга и Паризи [5], будем формулировать модель в форме теоретико-полевого континуального варианта модели роста с самоподавлением, которая в случае единственной компоненты представляет собой континуальную версию известной модели Эдена [6]. Кратко модель Эдена может быть изложена следующим образом. Допустим, что частица-источник, помещенная в *d*-мерное пространство (мы будем в дальнейшем ограничиваться d = 2), порождает с некоторой вероятностью новые частицы в сосседних незаполненных точках пространства и т. д.

Определим вслед за авторами работы [5] последовательность параметров порядка на каждом *n*-ом шаге генерации посредством величин

$$\rho^{(1)}(\mathbf{r};n); \quad \rho^{(2)}(\mathbf{r}_1,\mathbf{r}_2;n); \quad \rho^{(3)}(\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3;n); \dots; \rho^{(j)}(\mathbf{r}_1,\mathbf{r}_2,\dots,\mathbf{r}_j;n), \tag{1}$$

первая из которых есть вероятность обнаружить частицу в точке пространства **r** в момент времени n, вторая — две частицы соответственно в точках r_1 и r_2 т.д. Тогда процесс Эдена с самоподавлением будет описываться соотношением

$$\rho^{(1)}(\mathbf{r};n+1) - \rho^{(1)}(\mathbf{r};n) = D \sum_{\mu} \left[\rho^{(1)}(\mathbf{r}+\mu;n) + \rho^{(1)}(\mathbf{r}-\mu;n) \right] / 2dn - C\rho^{(2)}(\mathbf{r}_1,\mathbf{r}_2;n), \quad (2)$$

где D и C — постоянные, суммирование выполняется по ближайшим соседям в d-мерном пространстве, а двухчастичная плотность вероятности в нижайшем мультипликативном приближении распадается на произведение двух одночастичных функций:

$$\rho^{(2)}(\mathbf{r}_1, \mathbf{r}_2; n) = \rho^{(1)}(\mathbf{r}_1; n)\rho^{(1)}(\mathbf{r}_2; n),$$
(3)

а соответствующая иерархия уравнений для многочастичных функции $\rho^{(j)}(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_j; n)$ оказывается оборванной.

Подставляя соотношение (3) в уравнение (2), переходя затем к континуальному пределу для оператора Лапласа

$$\sum_{\mu} \left[\rho^{(1)}(\mathbf{r} + \mu; n) + \rho^{(1)}(\mathbf{r} - \mu; n) \right] / 2dn \to \Delta \rho^{(1)}(\mathbf{r}; n)$$
(4)

и определяя переменную времени посредством подстановки $t = \ln n$, получаем в результате простейшую континуальную версию уравнения:

$$\partial \rho(\mathbf{r};t) / \partial t = D \Delta \rho(\mathbf{r};t) + C \rho(\mathbf{r};t) \left[1 - \rho(\mathbf{r};t)\right].$$
(5)

Здесь и далее под плотностями $\rho(\mathbf{r}; n)$ подразумеваются одночастичные функции $\rho^{(1)}(\mathbf{r}; n)$, и поэтому соответствующие верхние индексы опущены. Нетрудно видеть, что

если затравочная величина $\rho(\mathbf{r}; t) = 0$, то $\rho(\mathbf{r}; t)$ останется нулем и в дальнейшем. Генерация движущегося фронта $\rho(\mathbf{r}; t)$ возникает при таких начальных условиях, что при t = 0 величина плотности $\rho(\mathbf{r}; 0)$ отлична от нуля вдоль одной из границ системы.

Следует отметить, что структура уравнения (5) формально такова, что при отрицательных значениях переменной ρ его решения $\rho(\mathbf{r};t)$ неустойчивы при $\rho \to -\infty$. В теории фазовых переходов подобная неустойчивость устраняется старшими нелинейностями ~ $\rho^3(\mathbf{r};t)$ в уравнении и соответственно членами ~ $\rho^4(\mathbf{r};t)$ в производящем функционале свободной энергии. В моделях роста фронта затравка $\rho(\mathbf{r};0) > 0$ и члены порядка ρ^4 в общем случае не нужны [5]. При этом, однако, нужно следить за тем, чтобы начальные (и граничные) условия всегда принадлежали области притяжения к устойчивым ограниченным решениям $\rho(\mathbf{r})$ при $t \to \infty$.

Скорости генерации компонент реакции флуктуируют. В работе [21] было показано, что это приводит к появлению мультипликативного источника шума $\zeta(\mathbf{r}, t)$ с некоторой интенсивностью D:

$$\langle \zeta(\mathbf{r},t) \rangle = 0, \quad \langle \zeta(\mathbf{r},t) \zeta(\mathbf{r}',t) \rangle = D\delta(\mathbf{r}-\mathbf{r}')\delta(t-t'). \tag{6}$$

Этот источник моделирует скорее участие в реакциях тех компонент, которые явно не учтены в уравнении (уравнениях), чем эффект тепловых флуктуаций [21].

Из структуры локального члена в уравнении (5) видно, что он соответствует вариации подходящим образом подобранной эффективной энергии $V(\rho(\mathbf{r}; t))$:

$$\delta V\left(\rho(\mathbf{r};t)\right) / \delta \rho(\mathbf{r};t) = -C \rho(\mathbf{r};t) \left[1 - \rho(\mathbf{r};t)\right]. \tag{7}$$

Имеем $V(\rho(\mathbf{r};t)) = -C\rho^2(\mathbf{r};t)[1/2-\rho(\mathbf{r};t)/3]$ и, следовательно, барьер генерации $\rho(\mathbf{r};t) \neq 0$ отсутствует. Мультипликативность шума существенна, так как делает невозможным такой процесс, при котором флуктуация $\rho(\mathbf{r};t) \neq 0$ в произвольной точке внутри системы сама становится генератором $\rho(\mathbf{r};t)$, приводя к спонтанному зарождению вещества вдали от фронта загрязнения. Однако простое добавление в уравнение (5) источника, пропорционального плотности,

$$\partial \rho(\mathbf{r};t) / \partial t = D \Delta \rho(\mathbf{r};t) + C \rho(\mathbf{r};t) \left[1 - \rho(\mathbf{r};t)\right] + \rho(\mathbf{r};t) \zeta(\mathbf{r},t), \tag{8}$$

приводит к описанным в недавних работах [21–24] сильным побочным эффектам, (вплоть до полной трансформации упорядоченного стационарного состояния), которые нежелательны для прикладной модели. Качественно природа сильного воздействия шума, пропорционального $\rho(\mathbf{r}; t)$, на стационарное состояние достаточно прозрачна. При прохождении фронта через заданную точку плотность позади него принимает равновесное значение: $\rho(\mathbf{r}; t) = 1$. Реакции, приводящие к движению фронта, затухают. Этому, однако, противоречит максимальная в этой области интенсивность шума.

Флуктуации должны быть максимальными в области фронта, т.е. там, где существенно отлична от нуля комбинация $\rho(\mathbf{r}; t)[1 - \rho(\mathbf{r}; t)]$, и стремиться к нулю вдали от него. В простейшем виде это предположение может быть использовано путем постулирования следующей формы уравнения:

$$\partial \rho(\mathbf{r};t) / \partial t = D \Delta \rho(\mathbf{r};t) + \rho(\mathbf{r};t) \left[1 - \rho(\mathbf{r};t)\right] \left[C + \zeta(\mathbf{r},t)\right]. \tag{9}$$

Несмотря на наличие самоподавления $-C\rho^2(\mathbf{r};t)$ уравнение (9) дает достаточно тривиальную картину продвижения плотного фронта с постепенно расширяющейся границей (за счет ее случайных блужданий, связанных с шумом $\zeta(\mathbf{r},t)$). Формирование реалистической рыхлой структуры тесно связано с многокомпонентностью задачи. Ниже мы рассмотрим простейший двухкомпонентный случай, предполагая в качестве примера химические реакции, протекающие в системе с загрязняемым литиевым анодом (см. [3,4] и ссылки в этих работах).

В принципе, полная картина реакций в системе достаточно сложна и может быть записана в виде

$$Li \rightarrow Li^{+} + e^{-},$$

$$4Li^{+} + 4e^{-} + 2SOCl_{2} \rightarrow 4LiCl + SO_{2} + S.$$
(10)

Однако реально нас интересует лишь возникновение фронта, состоящего из литиевого хлорида LiCl, загрязняемого концентрирующимся вдоль поверхности продуктом реакции SO₂. Принимая это во внимание, можно интерпретировать затравочное уравнение (9) как исходное уравнение для описания эволюции плотности LiCl, которую в дальнейшем будем обозначать $\rho_1(\mathbf{r}, t)$.

Соответствующие коэффициенты и источник шума также снабдим индексом «1». Плотность SO₂ в дальнейшем будем описывать функцией $\rho_2(\mathbf{r}, t)$. Локальное расталкивание обоих продуктов реакции LiCl и SO₂ будем моделировать посредством знакоопределенной добавки в эффективную энергию системы $V_{12}(\rho_1, \rho_2)$, которая в низшем приближении может быть записана в форме $V_{12}(\rho_1, \rho_2) = B\rho_1^2\rho_2^2/2$. Уравнение (9) трансформируется к виду

$$\frac{\partial \rho_1}{\partial t} = D_1 \Delta \rho_1 + \rho_1 (1 - \rho_1) \left(C_1 + \xi_1(\mathbf{r}, t) \right) - B \rho_1 \rho_2^2. \tag{11}$$

Его теперь необходимо дополнить уравнением, описывающим эволюцию второй компоненты $\rho_2(\mathbf{r}, t)$. Для этой цели можно воспроизвести рассуждения, приводящие к формулам (1)–(5), принимая, однако, во внимание, что, как и $\rho_1(\mathbf{r}, t)$, вторая компонента $\rho_2(\mathbf{r}, t)$ генерируется в результате тех же реакций (10) вблизи свободной (незагрязненной SO₂) поверхности LiCl. Это означает, что для $\partial \rho_2/\partial t$ следует использовать то же генерационное слагаемое, что и для $\partial \rho_1/\partial t$:

$$\frac{\partial \rho_2}{\partial t} = D_2 \Delta \rho_2 + \rho_1 (1 - \rho_1) \left(C_2 + \xi_2(\mathbf{r}, t) \right) - \rho_2 \rho_1^2 - F(\rho_2). \tag{12}$$

Здесь учтено, что, хотя обе плотности ρ_2 и ρ_1 возникают в ходе одной и той же реакции, скорости формирования из них плотных компонент могут быть различны, так что, вообще говоря, $C_2/C_1 \equiv v \neq 1$. Ниже для физически интересного случая фактически будет использована величина $\mu \geq 1$ (однако при этом $\mu \simeq 1$).

Линейные по ρ_2 слагаемые не могут, очевидно, обеспечить остановку роста ρ_2 и ее стабилизацию ($\rho_2 \rightarrow 1$) в статическом пределе. Примем также во внимание то, что самопроизвольная генерация ρ_2 вдали от фронта отсутствует, и, следовательно, эффективная энергия, варьируя которую получаем функцию $F(\rho_2)$:

$$\delta V_2\left(\rho_2(\mathbf{r};t)\right)/\delta\rho_2(\mathbf{r};t) = -F\left(\rho_2(\mathbf{r};t)\right),\tag{13}$$

должна содержать барьер, разделяющий два одинаковых минимума при $\rho_2 = 0$ и $\rho_2 = 1$. В низшем нетривиальном приближении имеем

$$V_2(\rho_2) = B\rho_2^2(1-\rho_2^2)/2.$$
(14)

Так что искомое уравнение для $\rho_2(\mathbf{r}; t)$ принимает вид

$$\frac{\partial \rho_2}{\partial t} = D_2 \Delta \rho_2 + \rho_1 (1 - \rho_1) \left(C_2 + \xi_2(\mathbf{r}, t) \right) - \rho_2 \rho_1^2 - \rho_2 (0.5 - \rho_2) (1 - \rho_2). \tag{15}$$

Переход к континуальному приближению при сохранении только низших градиентов в энергии и, соответственно, членов $\Delta \rho_{1,2}$ в уравнениях привел к известной потере информации об ограничении, накладываемом на минимальное количество LiCl в некоторой окрестности $|\mathbf{r} - \mathbf{r}'| \leq \sigma$ данной точки **г**, необходимой для «включения» реакций (10). С формальной точки зрения такое ограничение означает требование устойчивости состояния с $\rho_{1,2} = 0$ относительно малых возмущений (интегральной) плотности

$$\int_{|\mathbf{r}-\mathbf{r}'|\leq\sigma} d\mathbf{r}' \rho_1(\mathbf{r}').$$

В континуальном подходе ее можно обеспечить лишь принципиально нелокальными вкладами в уравнения (11) и (15). Заметим, что переход к континуальному пределу не упраздняет учета высших (по отношению к $(\nabla \rho(\mathbf{r}))^2$ градиентов и нелокальных форм типа

$$\int_{|\mathbf{r}-\mathbf{r}'|\leq\sigma} d\mathbf{r}' \rho_1(\mathbf{r}') V(\mathbf{r}-\mathbf{r}') \rho_1(\mathbf{r}')$$

в производящем функционале. В теории фазовых переходов аналогичные нелокальные члены в свободной энергии активно эксплуатируются для описания неоднородного упорядочения параметра порядка, критического поведения, блокировки зародышей и т. п. (см., например, работы [16–20]).

В методе Монте-Карло, где величина ρ_1 была дискретной и равной в каждой ячейке 0 или 1, условию «включения» реакции соответствовало наличие минимум одной молекулы LiCl хотя бы в одной из вычислительных ячеек, ближайших к рассматриваемой [4]. В континуальной модели генерационные члены в обоих уравнениях для $\partial \rho_{1,2}/\partial t$ помимо локальных множителей $\rho_1(1-\rho_1)(C_{1,2}+\xi_{1,2}(\mathbf{r},t))$ должны содержать также существенно нелокальные. Генерация ρ_1 и ρ_2 «включается», когда суммарная плотность в некоторой окрестности $|\mathbf{r} - \mathbf{r}'| \leq \sigma$ данной точки **г** превысит заданный порог

$$\int_{|\mathbf{r}-\mathbf{r}'|\leq\sigma} d\mathbf{r}'\rho_1(\mathbf{r}')>a.$$

Генерационное слагаемое должно содержать обрезающий множитель

$$\Theta(\mathbf{r}) = \vartheta \left(\int_{|\mathbf{r}-\mathbf{r}'| \leq \sigma} d\mathbf{r}' \rho_1(\mathbf{r}') - a \right)$$

(16)

такой, что

И

$$\Theta(\mathbf{r}) \rightarrow 1$$
 при $\int_{|\mathbf{r}-\mathbf{r'}| \leq \sigma} d\mathbf{r'} \rho_1(\mathbf{r'}) > a$

$$Θ(\mathbf{r}) = 0$$
 πρи $\int_{|\mathbf{r}-\mathbf{r}'| \le \sigma} d\mathbf{r}' \rho_1(\mathbf{r}') < a$

При достаточно резком пороге функция $\vartheta(x)$ вырождается в ступенчатую.

При подстановке множителя (16) система уравнений становится существенно нелокальной и принимает окончательную форму

$$\frac{\partial \rho_1}{\partial t} = D_1 \Delta \rho_1 + \rho_1 (1 - \rho_1) (C_1 + \xi_1(\mathbf{r}, t)) \Theta(\mathbf{r}) - \rho_1 \rho_2^2,$$

$$\frac{\partial \rho_2}{\partial t} = D_2 \Delta \rho_2 + \rho_1 (1 - \rho_1) (C_2 + \xi_2(\mathbf{r}, t)) \Theta(\mathbf{r}) - \rho_2 \rho_1^2 - \rho_2 (0.5 - \rho_2) (1 - \rho_2).$$
(17)

В приближении ближайших соседей a = 1, а интегральное условие

$$\int_{|\mathbf{r}-\mathbf{r}'|\leq\sigma} d\mathbf{r}' \rho_1(\mathbf{r}') > a$$

может быть сведено к (дискретному) оператору Лапласа, что очевидным образом соответствует удержанию в уравнениях старших градиентов.

3. РЕШЕНИЕ УРАВНЕНИЙ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Система уравнений (17) сложна и может быть решена лишь численно. Она представляет собой одну из модификаций кинетических уравнений, различные варианты которых широко встречаются в последние годы при моделировании кинетики фазовых переходов (см. [9–20]) и критических явлений [17, 18] на основе обобщенного уравнения Ландау–Халатникова [7] или уравнения Кана [8], а также фазовой сепарации в системах, состоящих из взаимодействующих подсистем [14, 15, 18]. Следует отметить, что оно содержит практически все «неприятности», которые могут встретиться в кинетических уравнениях подобного типа, включая нелокальность, мультипликативный шум и взаимодействие подсистем.

Помимо этого в отличие от теории фазовых переходов система (17) должна решаться при специфических начальных условиях, когда упорядочение и фазовая сепарация происходят не в форме роста зародышей по всему объему [9–17, 19–20], а посредством продвижения фронта, стартующего от одной из границ системы, и последующего упорядочения и фазовой сепарации обоих взаимодействующих полей $\rho_{1,2}(\mathbf{r}; t)$ позади него.

Поскольку даже численное решение такой системы требует предварительного качественного представления о возможном сценарии процесса для задания параметров, представляется полезным исследовать вначале более простую локальную версию уравнений. Эта версия в известном смысле должна соответствовать описанию системы в тех ее областях, где плотности $\rho_{1,2}(\mathbf{r};t)$ примерно постоянны и градиентные члены, а также множители $\Theta(\mathbf{r})$ можно опустить.

В этом случае имеем просто систему двух дифференциальных уравнений для не зависящих от **r** переменных $\rho_{1,2} = \rho_{1,2}(t)$:

$$\frac{\partial \rho_1}{\partial t} = C_1 \rho_1 (1 - \rho_1) - B_1 \rho_1 \rho_2^2,$$

$$\frac{\partial \rho_2}{\partial t} = C_2 \rho_1 (1 - \rho_1) - B_2 \rho_2 \rho_1^2 - B_2 \rho_2 (0.5 - \rho_2) (1 - \rho_2).$$
(18)

Неподвижные точки, а также изоклины вертикалей и горизонталей этой системы могут быть найдены непосредственно из решения алгебраических уравнений:

$$\frac{\partial \rho_1^* / \partial t = C_1 \rho_1^* (1 - \rho_1^*) - B_1 \rho_1^* \rho_2^{*2} = 0,}{\partial \rho_2^* / \partial t = C_2 \rho_1^* (1 - \rho_1^*) - B_2 \rho_2^* \rho_1^{*2} - B_2 \rho_2^* (0.5 - \rho_2^*) (1 - \rho_2^*) = 0.}$$
(19)

Помимо трех очевидных неподвижных точек,

$$\mu_0^*: \quad \rho_1^* = 0, \quad \rho_2^* = 0,$$

$$\mu_1^*: \quad \rho_1^* = 1, \quad \rho_2^* = 0,$$

$$\mu_2^*: \quad \rho_1^* = 0, \quad \rho_2^* = 1,$$
(20)

возможна также пара нетривиальных точек, которые определены решениями системы (19) при $\rho_{1,2} \neq 0$ и $\rho_{1,2} \neq 1$.

В частности, в симметричном случае $C_1/B_1 = C_2/B_2 \equiv C$ имеем

$$\rho_1^* = 1 - \rho_2^{*2}/C,$$

$$(1 - \rho_2^{*2}/C) \left[\rho_2^* - (1 - \rho_2^{*2}/C)\right] - (0.5 - \rho_2^*)(1 - \rho_2^*) = 0,$$
(21)

откуда, например, при C = 5

$$\mu_3^*: \rho_1^* = 0.53(9), \rho_2^* = 1.51(83); \mu_4^*: \rho_1^* = 0.87(2), \rho_2^* = 0.8.$$
 (22)

Можно проверить, что точка μ_4^* является седловой, тогда как устойчивость точки μ_3^* зависит от ее расположения по отношению к точке μ_2^* . А именно, она устойчива в случае, когда в этой точке $\rho_2^* > 1$.

Однако, как ожидается, именно устойчивые неподвижные точки локальной системы (18) должны определять в пределе $t \to \infty$ стационарное решение для обеих плотностей $\rho_{1,2}$. Принимая во внимание физический смысл $\rho_{1,2}$, такое решение должно бы соответствовать либо одной из точек μ_1^* : $\rho_1^* = 1$, $\rho_2^* = 0$ или μ_2^* : $\rho_1^* = 0$, $\rho_2^* = 1$, либо, во всяком случае, такой точке, в которой $\rho_1^* + \rho_2^* = 1$.

Устойчивая при $\rho_2^* > 1$ неподвижная точка μ_3^* такому условию не удовлетворяет. В этой точке помимо $\rho_1 + \rho_2 > 1$ плотность $\rho_1^* \neq 0$, так что она, очевидно, не является физической. Физическая точка μ_2^* , однако, неустойчива при том же условии ($\rho_2^* > 1$ в точке μ_3^*). Фазовые траектории покидают окрестность этой точки, уходя в направлении μ_3^* . В пределе $\rho_2^* \to 1$ точка μ_3^* приближается к μ_2^* , и при $\rho_2^* = 1$ обе точки сливаются. При этом точка μ_2^* становится устойчивой.

Требование устойчивости μ_2^* накладывает ограничение на физическую область параметров при численном моделировании нелокальной системы. В частности, при $C_1/B_1 = C_2/B_2 \equiv C$ бифуркация точек μ_2^* и μ_3^* для локальных уравнений имеет место при C = 1. В результате диффузии ($\Delta \rho_{1,2} \neq 0$) и «убывания» меньшей из плотностей ρ_1 до нуля эта граница для нелокальной системы смещается в сторону ослабления соответствующего ограничения, так что (численно найденная) бифуркация точек μ_2^* и μ_3^* происходит при $C_{cr} \approx 1.4$.

Глобальная структура фазового портрета показана на рис. 1. Представлена физически интересная реализация портрета для $C < C_{cr}$. Неподвижные точки μ_3^* и μ_4^* для случая $C > C_{cr}$ можно получить численным решением уравнения

$$f(\rho_2^*) = (1 - \rho_2^{*2}/C) \left[\rho_2^* - (1 - \rho_2^{*2}/C)\right] - (0.5 - \rho_2^*)(1 - \rho_2^*) = 0.$$

Система уравнений (18) описывает по сути эволюцию плотностей $\rho_{1,2}^*$ в каждой точке пространства без учета взаимодействия между различными точками. В этом приближении взаимодействие отражается лишь посредством начальных условий. А именно: по мере прихода фронта в каждую точку пространства в ней начинается генерация обеих

Рнс. 1. Структура фазового портрета для локальной системы (представлен случай $B/C > (B/C)_{cr}$). Фазовые траектории локальной системы уравнений, показанные непрерывными линиями, сопоставлены с проекциями точек массивов { $\rho_1(x, y; t)$; $\rho_2(x, y; t)$ } на плоскость (ρ_1^*, ρ_2^*) (показанными серым), являющихся результатом численного решения полной системы нелокальных уравнений с шумом

плотностей $\rho_{1,2}^*$ и, следовательно, на фазовом портрете рис. 1 физическому сценарию соответствуют траектории, начинающиеся из окрестности тривиальной точки μ_0^* .

Сепаратриса, соединяющая эту точку с седлом μ_4^* , разделяет плоскость (ρ_1^*, ρ_2^*) на области притяжения соответственно к устойчивым неподвижным точкам μ_1^* и $\mu_{2,3}^*$. Исследуя поведение траекторий, стартующих вблизи сепаратрисы, можно предсказать некоторые результаты численного моделирования полных уравнений и, в конечном счете, свойства реальных систем. В частности, нетрудно предвидеть роль источника шума $\xi_{1,2}(\mathbf{r}, t)$. При достаточной интенсивности шум позволяет фазовым траекториям проходить как сверху, так и снизу от сепаратрисы, независимо от сценария, предшествовавшего приходу фронта в данную точку.

Какое-то время после прихода фронта обе плотности $\rho_{1,2}^*$ увеличиваются практически одновременно и очень быстро, чему соответствует первый максимум скорости эволюции

$$W(t) = \left[\left(\frac{\partial \rho_1^*}{\partial t} \right)^2 + \left(\frac{\partial \rho_2^*}{\partial t} \right)^2 \right]^2$$
(23)

на рис. 2. Вблизи седла μ_4^* дальнейшее одновременное увеличение обеих плотностей $\rho_{1,2}^*$ становится невозможным. Скорость W(t) резко уменьшается.

В это время происходит собственно фазовая сепарация, когда одна из плотностей ρ_1^* или ρ_2^* вытесняется из данной области пространства. За этим снова следует всплеск W(t), сопровождающий быстрое нарастание оставшейся компоненты, замедляющееся лишь около одного из устойчивых неподвижных состояний μ_1^* : $\rho_1^* = 1$, $\rho_2^* = 0$ или μ_2^* : $\rho_1^* = 0$, $\rho_2^* = 1$.

Рис. 2. Два максимума скорости изменения обеих концентраций $\rho_1^*(x, y; t)$ и $\rho_2^*(x, y; t)$ в фиксированной точке (x, y) при эволюции до и после окрестности седловой неподвижной точки μ_4^* . Светлые точки — результат численного эксперимента. Для сравнения (непрерывной линией) приведена аналогичная кривая, предсказываемая на основании анализа локальной системы для траектории, близкой к физической. На вставке показан фазовый порт-

рет локальной системы, на котором такая траектория отмечена жирной линией

Характерные двугорбые кривые скорости эволюции действительно наблюдаются при численном решении полной системы уравнений. В соответствии с физической постановкой задачи начальное условие выбирается в виде узкой полосы плотности $\rho_1(x, y; t = 0) \neq 0$ вдоль одной из границ двумерной системы. При этом процесс зарождения и сепарации плотностей $\rho_{1,2}(\mathbf{r}, t)$ сопровождается формированием характерных древовидных пространственных распределений обеих плотностей.

Обе плотности одновременно генерируются в районе фронта. Однако в отсутствие шума, $\xi_{1,2}(\mathbf{r},t) = 0$, начальное распределение $\rho_1(x,y;t=0) \neq 0$; $\rho_2(x,y;t=0) = 0$ приводит к формированию позади него области сплошного заполнения $\rho_1(x,y;t) \neq 0$ и к сохранению $\rho_2(x,y;t) = 0$ всюду в глубине системы. Для появления вкраплений $\rho_2(x,y;t) \neq 0$ в стационарном распределении позади фронта необходимо, чтобы выполнялось условие $\rho_2(x,y;t) > \rho_1(x,y;t)$ хотя бы в некоторых областях пространства в районе фронта (где обе плотности малы). Это условие выполняется при $\xi_{1,2}(\mathbf{r},t) \neq 0$.

Вначале распределение $\rho_1(x, y; t = 0) \neq 0$ позади фронта практически однородно. Области с $\rho_2(x, y; t) > \rho_1(x, y; t)$ не только порождают вкрапления $\rho_2(x, y; t = 0) \neq 0$, но, что более важно, останавливают генерацию обеих плотностей в данном месте фронта. Активный рост происходит лишь на тех фрагментах, где

$$\Theta(\mathbf{r}) = \vartheta \left(\int_{|\mathbf{r}-\mathbf{r}'| \leq \sigma} d\mathbf{r}' \rho_1(\mathbf{r}') - a \right) > 0.$$

Фронт становится разрывным, а расширяющаяся упорядоченная область со временем превращается во фрактал.

На рис. За серым цветом разной интенсивности показан характерный фрагмент системы (состоящей из 512×512 вычислительных точек) с распределением суммарной плотности $\rho(x, y; t) = \rho_1(x, y; t) + \rho_2(x, y; t)$, возникающим на промежуточном этапе

1510

перехода от однородного роста к фрактальному. Видны загрязненные участки, а также области активного роста. Такие участки характеризуются промежуточными величинами $\rho_1(x, y; t) \cong \rho_2(x, y; t) \le 0.8$, которым соответствуют промежуточные же интенсивности серого цвета.

На упоминавшемся уже рис. 1 фазовые траектории локальной системы уравнений (показанные сплошными линиями) сопоставлены с проекциями точек массивов $\{\rho_1(x, y; t); \rho_2(x, y; t)\}$ на плоскость (ρ_1^*, ρ_2^*) (показанными серым), являющихся численным решением полной системы нелокальных уравнений с шумом. Следует заметить, что такое сопоставление в данном случае необходимо, поскольку эффект мультипликативного шума, в принципе, может быть весьма нетривиальным [21–24].

Наблюдающееся на рисунке хорошее согласие достигается благодаря специальной комбинации источника $\xi_1(\mathbf{r}, t)$ и плотности ρ_1 в уравнениях (17), сконструированной выше из физических соображений в форме $\rho_1(1 - \rho_1)(C_1 + \xi_1)$.

На рис. 2 два максимума скорости изменения обеих концентраций $\rho_1(x, y; t)$ и $\rho_2(x, y; t)$, полученные в результате численного эксперимента, обозначены светлыми точками. Они достаточно хорошо согласуются с аналогичной кривой (непрерывная линия), предсказанной выше из анализа локальной системы. Это косвенно подтверждает правильность интерпретации модели и результатов, поскольку согласие имеет место лишь для описанных выше специальных траекторий (близких к физическим), выходящих из окрестности точки μ_0^* . На вставке к рис. 2 показан фазовый портрет локальной системы, где конкретная траектория отмечена жирной линией.

Качественно новое свойство системы (по сравнению с моделированием процессов роста на основе моделей с единственной флуктуирующей переменной [4]) состоит в возможности возникновения позади фронта пустот, не заполненных ни одной из компонент. В случае единственного поля, $\rho_1(x, y; t) \equiv \rho(x, y; t)$, такие лакуны неизбежно следовало трактовать как заполненные другой, «загрязняющей», компонентой плотности $\rho_2(x, y; t)$, которая в этом случае в уравнениях явно не присутствует. Модель (17) содержит дополнительную информацию о втором поле $\rho_2(x, y; t)$, что позволяет отличить области, занятые $\rho_2(x, y; t) \neq 0$, от собственно пустот.

Механизм их образования хорошо прослеживается на рис. Зб, где для небольшого фрагмента фронта представлена типичная последовательность роста $\rho(x, y; t)$, показанная для трех характерных моментов времени: при возникновении плотного начального слоя, при появлении первых древовидных выростов и при закрытии первых внутренних пор в суммарной плотности $\rho(x, y; t)$. Полностью сформированные пустоты хорошо видны также на рис. За. Формирование пустот тесно связано со способностью «за-грязнителя» $\rho_2(x, y; t)$ блокировать активные участки фронта $\rho_1(x, y; t)$ и, в принципе, останавливать его рост.

При закрытии поры фронт, как правило, продолжает двигаться в обоих направле-

Рис. 3. Типичные пространственные конфигурации суммарной плотности $\rho(x, y; t) = \rho_1(x, y; t) + \rho_2(x, y; t)$ при соотношении параметров C_1 и C_2 , близком к критическому. Показаны фрагменты системы 512×512 вычислительных точек: *a*) распределение плотности $\rho(x, y; t)$, возникающее на промежуточном этапе перехода от однородного роста к фрактальному; б) типичная последовательность роста $\rho(x, y; t)$ для небольшого фрагмента фронта, показанная для трех характерных моментов времени: при возникновении плотно-го слоя, при появлении первых древовидных выростов и при закрытии первых внутренних пор в структуре с суммарной плотностью $\rho(x, y; t)$

А. Э. Филиппов

ниях. Наружная граница $\rho_1(x, y; t) \neq 0$, естественно, практически не чувствует наличие поры, блокированной где-то внутри системы, и продолжает продвигаться вперед. Внутренняя окружающая пору граница $\rho_1(x, y; t) \neq 0$ качественно аналогична внешней и может двигаться «назад», вплоть до ее полной блокировки участками с $\rho_2(x, y; t) \neq 0$.

Сценарий эволюции системы оказывается чрезвычайно многообразным и при незначительном варьировании коэффициентов модели позволяет воспроизводить весьма реалистические конфигурации плотностей $\rho_1(x, y; t)$ и $\rho_2(x, y; t)$. В этом отношении наиболее сильным эффектом сопровождается изменение соотношения между C_1 и C_2 , отражающего возможное различие между локальными скоростями формирования компонент $\rho_1(x, y; t)$ и $\rho_2(x, y; t)$ в ходе реакции.

При $C_2 \gg C_1$ сепаратриса, соединяющая μ_0^* и μ_4^* , оказывается существенно ниже большинства фазовых траекторий, и в стационарном пределе большая часть плоскости (x, y) упорядочивается так, что $\rho_1(x, y; t) \to 0$; $\rho_2(x, y; t) \to 1$. При этом активные участки фронта быстро загрязняются слоем плотности $\rho_2(x, y) = 1$, и рост прекращается. Очевидно, что в обратном пределе, $C_2 \ll C_1$, фронт движется неограниченно далеко. Имеется критическое, $v_{cr} = (C_2/C_1)_{cr}$, соотношение между C_2 и C_1 , впервые приводящее к блокировке фронта. Численный эксперимент показывает, что это отношение близко к единице и составляет $v \approx 1.03$.

При $v \to v_{cr}$ рост фронта прекращается, из-за того что доля пространства (x, y), где $\rho_1(x, y; t) \neq 0$, оказывается «слишком малой». Количественно ее можно охарактеризовать, вычислив средние по всему образцу значения обеих плотностей $\rho_{1,2}(x, y; t)$:

$$h_{1,2}(t) \equiv \left\langle \left\langle \left\langle \rho_{1,2}(x,y;t) \right\rangle_{\Omega} \right\rangle \right\rangle = \left\langle \left\langle \int_{\Omega} dx \, dy \, \rho_{1,2}(x,y;t) \right\rangle \right\rangle, \tag{24}$$

полную среднюю плотность $h = h_1 + h_2$ и отношения между ними: $h_{1,2}/h$. Эволюция во времени суммарных плотностей $h_{1,2}$ и h при $v \to v_{cr}$ сопровождается изменением соотношения между величинами h_j при переходе от начального режима (при котором $h_1 > h_2$) к стационарному при $t \to \infty$, обусловленным преимущественным ростом компоненты $\rho_2(x, y; t)$.

Следует отметить, что из-за роста характерных размеров структур со временем и конечности массивов флуктуации $\delta h_{1,2}(t)$ для конкретной реализации численного эксперимента становятся ощутимыми на фоне средних $h_{1,2}(t)$ при $t \gg 1$. Монотонные асимптотические кривые $h_{1,2}(t)$ получаются усреднением результатов по нескольким (порядка 10) реализациям. Такое усреднение в формуле (24) обозначено двойными скобками $\langle \langle \ldots \rangle \rangle$.

Выполненные таким образом расчеты показывают, что рост фронта прекращается при $h_1/h \simeq 1/3$; $h_{1,2}/h \simeq 2/3$. Эти соотношения выглядят достаточно «универсально» и, по-видимому, обусловлены универсальными же закономерностями «протекания» по непрерывному кластеру $\rho_1(x, y; t) \neq 0$. Однако выяснение возможной связи свойств модели с теорией протекания представляет собой самостоятельную проблему и выходит за рамки этой работы.

Весьма трудоемким является также исследование фрактальных свойств структур, формируемых в рамках модели. Наличие взаимодействующих подсистем и нескольких масштабов длины в исходных уравнениях может, в принципе, приводить к переменному во времени или мультифрактальному поведению решений [25]. Кроме того, для континуальной модели даже статическое распределение плотностей $\rho_{1,2}(x, y; t \to \infty)$ глубоко позади фронта содержит переменные в пространстве значения $0 \le \rho_{1,2}(x,t) \le 1$, что вносит произвол в определение фрактальных размерностей.

Имея в виду уже зафиксированное выше определение средних:

$$h_{1,2}(t)/\Omega \equiv \langle \langle \langle \rho_{1,2}(x,y;t) \rangle_{\Omega} \rangle \rangle = \left\langle \left\langle \int_{\Omega} dx \, dy \, \rho_{1,2}(x,y;t)/\Omega \right\rangle \right\rangle,$$

а также учитывая, что за исключением окрестностей межфазных границ плотности $\rho_{1,2}(x, y; t \to \infty)$ близки к постоянным $\rho_{1,2}(x, y) = 0$ или 1, определим ширину этих границ для каждой из компонент посредством следующих соотношений для парциальных плотностей $\rho_{1,2}$:

$$\sigma_{1,2}(t) = \left\langle \left\langle \left\{ \int_{\Omega} dx \, dy \left[\rho_{1,2}(x,y;t) - \int_{\Omega} dx \, dy \, \rho_{1,2}(x,y;t) / \Omega \right]^2 / \Omega \right\}^{1/2} \right\rangle \right\rangle \equiv \\ \equiv \left\langle \left\langle \left\{ \left\langle \left[\rho_{1,2}(x,y;t) - h_{1,2}(t) / \Omega \right]^2 \right\rangle / \Omega \right\}^{1/2} \right\rangle \right\rangle,$$
(25)

и для суммарной плотности *р*:

$$\sigma(t) = \left\langle \left\langle \left\{ \int_{\Omega} dx \, dy \left[\rho(x, y; t) - \int_{\Omega} dx \, dy \, \rho(x, y; t) / \Omega \right]^2 / \Omega \right\}^{1/2} \right\rangle \right\rangle \equiv \\ \equiv \left\langle \left\langle \left\{ \left\langle \left[\rho(x, y; t) - h(t) / \Omega \right]^2 \right\rangle / \Omega \right\}^{1/2} \right\rangle \right\rangle.$$
(26)

Обозначенное двойными скобками $\langle \langle ... \rangle \rangle$ усреднение по множеству реализаций здесь необходимо по тем же причинам, что и при вычислении $h_{1,2}(t)$.

На рис. 4 поведение функций $\sigma(t)$ показано в двойном логарифмическом масштабе для двух характерных случаев, $v \leq 1 < v_{cr}$ и $v \cong v_{cr}$. В обоих случаях после начального переходного процесса наблюдается выход при $t \to \infty$ на скейлинговое поведение

$$\sigma(t) \sim t^{\alpha} \tag{27}$$

с показателями $\alpha = 0.75$ для $v \le 1 < v_{cr}$ и $\alpha = 0.5$ для $v \simeq v_{cr}$.

Причина уменьшения индекса α до $\alpha = 0.5$ при $v \rightarrow v_{cr}$ состоит в том, что активные участки фронта быстро загрязняются участками с $\rho_2(x, y) = 1$, где увеличение обеих плотностей $\rho_{1,2}(x, y)$ постепенно прекращается. В результате имеет место более быстрое, чем при $v \leq 1 < v_{cr}$, нарастание ширины:

$$\sigma(t) = \langle \langle \left\{ \langle \left[\rho(x, y; t) - h(t) / \Omega \right]^2 \rangle / \Omega \right\}^{1/2} \rangle \rangle$$

на раннем этапе с последующим его замедлением в скейлинговом пределе $t \to \infty$.

В обратном пределе, $v \ll v_{cr}$ фронт движется неограниченно далеко, а области с плотностью $\rho_2(x, y)$ практически не участвует в формировании его ширины $\sigma(t)$. При

Рнс. 4. Построение функций $\ln[\sigma(\ln(t))]$ для определения фрактальной размерности фронта: *a*) для докритического режима $v \leq 1 < v_{cr}$; *b*) для режима близкого к критическому $v \simeq v_{cr}$. Жирные точки соответствуют σ , а маленькие — $\sigma_{1,2}$

этом модель вырождается в модель Эдена, имеющую индекс $\alpha = 1/3$ [5,6]. Таким образом, описанная в настоящей работе модель приводит к максимально сильной изрезанности фронта в промежуточной области параметра $v \le 1 < v_{cr}$, где эффект взаимодействия плотностей $\rho_1(x, y)$ и $\rho_2(x, y)$ выражен наиболее ярко.

То, что система (17) вырождается в однокомпонентную модель в пределе $v \ll v_{cr}$, когда генерация одной из плотностей $\rho_2(x, y)$ незначительна, дает достаточно очевидную ее проверку. В то же время (также, как это имеет место и в теории критических явлений при фазовых переходах) более низкая симметрия системы со взаимодействующими полями делает ее неустойчивой по отношению к уходу из класса (универсальности) скалярной модели. Аналогичная неустойчивость связана и с понижением симметрии пропагатора при учете нелокальностей.

Все это — формальные причины изменения скейлингового поведения функции σ . При этом остается открытым вопрос о том, в какой мере величина индекса α зависит от структуры конкретных слагаемых уравнений (17). Исследование и перечисление классов универсальности таких моделей является важным и интересным вопросом, который, однако, выходит за рамки одной статьи, посвященной прежде всего построению «работающей» двухкомпонентной модели, устойчиво воспроизводящей рост рыхлых приповерхностных слоев с порами и масштабно-инвариантной структурой.

Автор благодарит Ж.-П. Бадиали (J.-P. Badiali) и В. Руссиера (V. Russier) за то, что они привлекли его внимание к данной проблеме, а также за гостеприимство в Университете Пьера и Марии Кюри (Париж-VI) и многочисленные интенсивные дискуссии, благодаря которым модель приобрела свою настоящую форму.

Работа частично поддержана Фондом фундаментальных исследований Украины Ф4/72-97 (проект № 2.4/199) и международной программой INTAS 96-0410.

Литература

- 1. L. Balazs, Phys. Rev. E 54, 1183 (1996).
- 2. V. Fleury and D. Barkey, Europhys. Lett. 36, 253 (1996).
- 3. T. I. Evans, T. V. Nguyen, and R. E. White, J. Electrochem. Soc. 136, 329 (1989).
- 4. I. Nainville, A. Lemarchand, and J. P. Badiali, Phys. Rev. E 53, 2537 (1996).
- 5. G. Parisi and Zhang Yi-Cheng, J. Stat. Phys. 41, 1 (1985).
- M. Eden, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, ed. by J. Neyman, University of California Press, Berkeley (1961), vol. IV, p. 223.
- 7. Л. Д. Ландау, И. М. Халатников, Сборник трудов Л. Д. Ландау, т. 2, Наука, Москва (1969), с. 218.
- 8. J. W. Cahn, Acta Metal. 8, 554 (1960).
- 9. A. Mazor and A. R. Bishop, Physica D 39, 22 (1989).
- 10. F. Falk, Z. Phys. B 54, 159 (1984).
- 11. F. Falk, J. Phys. C: Solid State Phys. 20, 2501 (1987).
- 12. Ch. Zhulicke, A. S. Mikhailov, and L. Scimansky-Geller, Physica A 163, 559 (1990).
- 13. A. Gordon, Phys. Lett. A 154, 79 (1991).
- 14. T. M. Rogers, K. R. Elder, and R. C. Desai, Phys. Rev. B 37, 9638 (1988).
- 15. K. R. Elder and R. C. Desai, Phys. Rev. B 40, 243 (1989).
- 16. Ю. Е. Кузовлев, Т. К. Соболева, А. Э. Филиппов, ЖЭТФ 103, 1742 (1993).
- 17. A. E. Filippov, J. Stat. Phys. 75, 241 (1994).
- 18. А. С. Зельцер, А. Э. Филиппов, ЖЭТФ 106, 1117 (1994).
- 19. А. С. Зельцер, Т. К. Соболева, А. Э. Филиппов, **ЖЭТФ 108**, 356 (1995).
- 20. А. С. Зельцер, А. Э. Филиппов, Письма в ЖЭТФ 62, 604 (1995).
- 21. Yu. Tu, G. Grinstein, and M. A. Munoz, Phys. Rev. Lett. 78, 274 (1997).
- 22. J. Garsia-Ojalvo, A. Hernandez-Machado, and J. M. Sancho, Phys. Rev. Lett. 71, 1542 (1993).
- 23. A. Becker and L. Kramer, Phys. Rev. Lett. 73, 955 (1994).
- 24. G. Grinstein, M. A. Munoz, and Yu. Tu, Phys. Rev. Lett. 76, 4376 (1996).
- 25. F. J. Solis and L. Tao, Phys. Lett. A 228, 351 (1997).