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An explicit expression for the excitation spectrum of the stationary solutions of a nonlinear
wave equation is obtained. It is found that all branches of many-valued solutions of a nonlinear
wave equation between the (2K + 1, 2K +2) turning points (branch points in the complex plane
of the nonlinearity parameter) are unstable. Some parts of branches between the 2K,2K + 1)
turning points are also unstable. The instability of the latter is related to the possibility that pairs

" of complex conjugate eigenvalues cross the real axis in the x plane.

1. INTRODUCTION

In the Ref. [1-5] it was found that for a transverse electromagnetic wave (Fig. 1) propagating
in a nonlinear medium, many states are possible for a given amplitude of the incident wave. The
nonlinear medium was taken in the form of a slab. The reflection ard transmission coefficients
in this case are functionals of the state. In a linear medium, there exists only one state for a given
incident wave, and this state is stable against small perturbations. In a nonlinear medium, some
of the states are stable and some are unstable against small perturbations. This property is very
important for practical purposes. In this paper we study the problem of stability for all states.
The main result is as follows: all solutions of the nonlinear problem can be parametrized by one.
parameter p;, which is equal to the transparency of the nonlinear medium. This parameter p,
is a multivalued function of the effective nonlinearity u. The graph of p; = p;(u) has turning
points (see Fig. 2). All branches between the 2K + 1 and 2K +2 (K = 0,1,2,...) turning
points are unstable, and some parts of branches between the 2K and 2K + 1 turning points
are unstable against small perturbations. In thermodynamics it is also possible to find many
solutions for given external conditions. Some of them are stable, some are not. But there
always exists a state that yields the absolute minimum of the free energy. All other stable states
can be considered metastable. Only quantum or thermal fluctuations can lead to transitions
between different metastable states. In a dynamical problem, on the other hand, there is no
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Fig. 1. Geometry of wave propagation
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Fig. 2. Dependence of p; on y; the number of solutions for given

general principle that distinquishes one solution from all other local stable states. Which state
will be realized after a transition from an unstable state is still an unsolved problem.

2. FORMULATION OF STABILITY PROBLEM
We investigate the stability of solutions of the wave equation
e e —_— E’2 =0 = 2l+ E2 1
%2 22 sE sEL)=0 € n*(1 + poE%) (1)

in a slab of length d. In Eq. (1), n is the refractive index and c the speed of light. In the general
case, py is a function of position z. In real materials g ~ Ey 2 where E, is the electric field
on the atomic scale. Hence, in real materials yo| E|? < 1. Only such a case will be considered
below. We investigate the stability of solutions of Eq. (1), that take the form

Eq = Re(e™*“4py(z)) 2
for an incident wave given by \
Aexp (izix) . )
It is convenient to use the dimensionless variables
y="Ls, u= AP, %o Ay, b="2d 4
c 4 c
Then Eq. (1) takes the form [5] (inside the slab)
} 62
1+ 2ulufiyp + 35 =0, ©)

with bbundary conditions
' _ ]
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i .
Yoy = Te®/™, Yy = ;Te"’/". 6)
The unknown coefficients R and T can be eliminated from Eq. (5), and we obtain

Yo —inhy =2, P +ingy =0. )
We represent 9 in the form [5] ’
¥ = Vpe. ' ®)

The value of the function p,) at point b (p; = p(b)) completely determines the modulus of the
transmission and reflection coefficients: )

ITP=p, |RE=1-p;. ©)

Equation (1) for the stationary solutions of type (7) can be reduced to a function p only [5],
and its solutions in the general case are elliptic functions. The condition |uE?| < 1 drastically
simplifies the investigation of solutions of type (8) [5].

The qualitative dependence of p; on the effective nonlinearity is shown in Fig. 2 (see also
Eq. (48)).

We are able now to formulate the stabxhty problem for solutions of type (8). We seek a
solution of Eq. (1) in the form

E=Fy,+E, , (10)
where Ej is given by Egs. (2), (8), and '
| E =Re [e"'w‘ (Ele"“" + Eze'=‘~‘)] . (11)

The boundary conditions for the function E correspond to the outgoing wave:

Bl _ i+ Bl _ i+
(E)o n(l+zn), (El),, n(1+m),

N (%) = -%(1 +i};*), (Ei) = -:;(1 +iK*). (12)
_ 0 b
Inserting Eq. (11) into Eq. (1), we obtain‘
E
= {(U+ 2009 Es + (B + $2BD} = 0,
‘ﬁyz + (U +ie"Y {1+ 2V, + 2y’ E, + B} = 0. (13)

Note that 7 is the solution of Eq. (5) with boundary conditions given by (6). The system
of equations (13) with boundary conditions (12) can be consldered an eigenvalue problem for
the symmetric operator L. The explicit form of operator Lis given by Eq. (13). We easily
obtain for the first line

A

Ly

& A
— +(+4py)), Lp=0,
50 + (1 4plyl) 12

L3 =2pcosQa)|y)?, Lis=2psinQa)y|?. (14)

As a trivial fact, we note that if x is an eigenvalue, then so is x*.
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3. STABILITY IN LINEAR MEDIUM

Consider as a starting point the linear case (u = 0). In the linear case, the system
of equations (13) decouples into two independent subsystems for the quantities F; and E,.
Solution of the first of Eqgs. (13) yields '

E, = Ajcos((b— y)(1 +ik))+ Azsin((b — y)(1 +ik)). (15)

From the boundary conditions (12), we obtain

A= —tA, (1 +ik) = - (16)
n n2+1
Solution of the second of Eq. (16) yields
+
k=—im™ P (1o ™) L N =0,41,22.. (17
b n-1 b
The second of Egs. (13) yields
+
k=—im™ L (1™, N=o0,41,42.. (18)
b n—-1 b

Hence the full spectrum of the operator L in the linear case is given by Egs. (17) and (18).
The real part of all eigenvalues is negative, hence the unique solution of (5) is stable in the
linear case.

If the length b of the slab is given by

b=rNo+e, |e| <1, | (19)

then for n > 1, two eigenvalues of the linear problem are closer to zero then all others:

+ ‘
m=—11n(" 1) +¥ (20)

b \n-1 b

As we will see below, these two eigenvalués play a special role in the nonlinear problem.

4. STABILI;I'Y PROBLEM IN NONLINEAR MEDIUM

Points where dp/dp1 = 0 are turning points. It is easy to show from Egs. (5) and (7) that
the function 9v/dp is a solution of the system of equations (13) for k = 0. This means that
of the two branches entering at the turning point, one is unstable, because in the vicinity of
the turning point k ~ §p;. We prove this statement below.

We use the following simple expression [5] for p and a:

L

_ 1 1 2 (Uind)
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.Y

Cdy

0 1/n2+ (1 - 1/n?) cos? (-1 '__'3” (i):- f}nz) p1/4>
_ 3u 1 - e
-ao+ (1-% (1+ ) ) [a"’t“{ﬁ N (1 —3u {1+ 1/m) m/“) } ’
+.arct lt : —
arctg § —1g 1-3u (1+1/n2) py /4 -

In Eq. (21), ay is the phase of ¢ at the point y = 0:

1
a=ag+~

_ ndp/dy » .
o) = arctg [m] - . (22)

Equations (5) and (21) enable us to represent the function ¢ in a form that yields an explicit
physical picture of nonlinear wave propagation. Inserting the expression (21)-into Eq. (5), we
find that %) can be represented in the form

P = eM(—y) (Aei'r(b—y) + Be—i‘v(b—y)) + gtha—y) (Ceiv(b—y) + De—i('v—)\)(b—y)) . (23)
where

1
T I 3up (1 + 1/nd)/4

Equation (5) leads t6 the following expression for the quantities A; »:
/\1'2 = :!:/\, (24)

where A = up;/2n. From the same Eq. (5), we also obtain two equations for the quantities
A, B and C, D. As a result, we have

v=B [(1 + %) exp (—i(y — N — ) + (1 - 1) exp (i(y + A)(b — y»] +

n

1 . 1 .
e [(1 + ;) exp iy — (b — ) + (1 - ;) exp (—ily + A)(b - y»] T
Now from the boundary condition (7) at y = b, we obtain one equation for B and C
_pee (1,3 |
C=B 7 (2,+ 2n2) . (26)

Finally, recalling that |y)| = /p,, we have

w= 2 [(1+2) ew i+ (1-1 ) ew 200 | ewpGGcrinG - ), 21

where ¢, is some constant, that is simply related to the phase o given by Eq. (22).
Equation (27) means that the speed of light is slightly different for waves moving ini opposite
directions; and this is one of the main effects of nonlinearity.
Below, we use expressions (21) and (27) to solve the stability problem.
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5. DERIVATION OF THE EQUATION OF THE SPECTRUM x

The spectral points x, defined by Eqs. (13) with boundary conditions (12), are the roots
of some equation that is an analytic function of x and the associated parameter p;. Near the
turning points, there exists a region where the two eigenvalues are real. This enables us to
consider only real-valued k. The equations for x obtained under the assumption that « is real
can be analytically continued into the complex « plane. The roots of this equation also yield
the complex values of & of the initial eigenvalue problem, given by Egs. (12) and (13).

For real values of k, we obtain the following eigenvalue problem:

»E . : .

ay; + (1 +ir)? {(1+ 2u|$)E + 2u(|9*Ey + 9E})} =0, (28)
El i . Elpy i .
Fio n(l iK), Fioy n( 1K), .( 9)

where |y| is given by Eq. (21) and ¢ is given by Eq. (27). Equation (28) has four linearly
independent solutions. We seek them in the form

E, = Ae'*A-y) + Be' Y8 tup/mb-1) 4 Ce—iv-Bb-y) 4 De~iO*B" —up /M=) (30)

where A, B, C, D and J are complex numbers. We omitted in expression (30) higher harmonics
with small amplitudes of order O(Ap). We also put

E, =€ E,. 31

Inserting expression (30) for quantity Ei in to Eq. (28), we obtain the following system of
equations for the A, B, C, D:
A
Al B | =o, (32)

where the matrix A is

[ 1 1\ ,ik-8 1 1\* 1 1 1 1 \
14—+ —(1—-= (1= ~(1—-—
4 <1~ n’) Bp1 4 (1 n) 2 (1 n’) 2 (1 nz)
\ . 2 .
+
) % (1—%) -;- (1~l2) % (1+i2) +istB i. (1+l)
A= o " n Bh n . (33)
1, ik=B -1—+m—ﬂ. 0 0
2n ppr. 2n pp
- )
\0 | 0 ___L_'_m 8 _L+zn+ﬂ
. 2n ppy 2 wpy
The values of § are solutions
detA =0. (34)
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A simple calculation of det A yields

ik—pf 1‘ m+ﬁ .
(2n+ o1 ) (_571+ o1 ) -0 @ |

We see that each eigenvalue 3 is doubly degenerate. As a result, we obtain only two linearly
independent solutions of Eq. (28) of the form (30):

:E“l =i [Aexp (i(y + pp1/2n + ik)(b — )) + Cexp (—i(y — pp1/2n — K)o - )], (36)

where A and C are real numbers.
Two other solutions of the system of equations (28) can be found in the form

Ey = (iy+Ay) exp (i(y+pp [ 2n+ik)(b—y)) +Cy exp (—i(y—pp1 /2m—in)(b—y))  (37)
for = pp1/2n + ik, and
Ey = (iy+Cy) exp (—i(y—pp1 [ 2m+ik)(b—y)) +As exp (i(v+upi [ 2n—ik)(b—y))  (38)

for 3= pp1/2n — ik.
Inserting expressions (37) and (38) into Eq. (28), we obtain the following systcm of
equations for the coefficients A, ; and C| 3

2
(A1+A:)%(1—7-11) +E§i(1——)(cl+cl)+1— (39
(€, +Cnk2 (1+—)+(A1+A‘ i} (1_i)+2mcl 0,

and
€+ cpERL (1+$) S (1— —) (42 +43)~1=0, (40)
2
ERHE - (1 - 1) + £0 (1 - i,) (Cy +C3) +2ikA; = 0.
n 2 n
The solutions of the system of equations (39), (40) are
_ 2 ' _ _1l+1/n
A= m, Cy k1= 1/n’ (41)
_il=1ln 2
2 k 1+ l/n’ 2 ﬂpl(l T 1/11)2' (42)
Hénce the general solution of the system of Eqs. (28) is
), = _ ko _
E =1 (Acxp (‘l(’)‘ + 2 L+ik)(b~ y)) + chp( ('y n + m) ] y))) +
(b . 2 up1 i 1+ 1/n
k- | [ _ . S BPLN 1 _
w0t (it ) oo (0 ) 0-) =L 107
_kn x(b—1) ; __2___
x cxp( (’Y )(b y))] + De [(zy+ i l/n)z) x
_ @ _ 1/n 1Py
x exp(~i(v- ) o-w) + n1+1/n°""((" ) e- y))] )
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In Eq. (41), A, B, C and D are real numbers.
The boundary conditions (29) at y = b yield the first pair of equations for the coefficients
A, B, C, D. In the leading approximation for the parameter u, we have

o-p (1)
a(tim) o (i2am) (rz) ro (eg) -0

The second pair of equations for the coefficients A, B,C, D we obtain from the boundary
" conditions (29) at y = 0:

1 —xb 1 2 Kb 4
A (1 - m) e " cos(v+b) — B (1 + H) "’ cos(y-b) +
. 2
+ _
+Ce—rb 1+1/n 2sin(vy+b) _ 1 1+ 1 cos(y_b) | +
1-1/n upy K n
. ‘ 2
+De"b (M + l (1 - l) cos(7+b)) =0,
upy K n

. N
A (1 - iz) e~ " sin(v.b) + Be*® (1 + —) sin(y_b) +
n n

, :
+Ce—"b (:tié’;) ( w — (1+ l) sin('y_b)) +

2
+De (M (-4 mw) ~o, )
B . K n
where
. [274Y
Y+ =7E 5 o (46)

The condition that the system of Egs. (44) and (45) has nontrivial solutions leads to an algebraic
equation for the spectrum x of the eigenvalue problem, given by Eq. (28) with boundary
conditions (29). To obtain this equation, it is convenient to eliminate the coefficient C from
the system of equations (44), (45), and to calculate the determinant of third order. The result
of this calculation is

. 2 1N 2
M (emcb (1 + l) - e—2:<b (1 - l) ) — _4_ cos(2'yb) +
K n n Lo
2 wo (111/n ? b (1=1/n ?
(2 G e () )
2 2 2 2
+[b((1+z),+(l_z))_1((1+1) (-4 )]smw):o. @)
n n K n n
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To simplify Eq. (47), we use the equation [5] for p,

(1-p) n? 48)

- 8
1 — cos(2vb) = e

Inserting the expression for cos(2yb) from Eq. (48) into Eq. (47), we obtain the following
equation for the spectrum points «:

32n? sin(2vb) 2ch 1 2 (kb ‘ ( ~ l)2
ppib(n? — 1) M [(e‘ ) (1 * ;) (e 1) |1 n) +
. 1)\?2 1\2
+sin(2yb) ((1+ ;) ; (1 _ .7;) ) ;
2 xb 1+1/2\*, , .0 1-1/n\7] _ ‘
+bMP1 [(e2 -1) (l—l/n) + (e72* —1) (1+1/n) 0. (49)

As noted above, Eq. (49) solves the general eigenvalue problem given by Egs. (12) and (13).
Near the turning points, Eq. (49) has two.real solutions. If n 3> 1, then both are in the
range |kb| < 1. In the range |kb| < 1, we obtain from Eq. (49) the quadratic equation -

16m2 n?+1 16nn?+1) 4
+ + b | —m——— + — +
[up%b - 1)2 3 — sm(2'yb)] Kb [ - sm(2~/b)]

up1b(n? — 1)
1 nf+6n2+1 nP+1 .
+ sin =0. :
ppib (% —1)? 3n? va)] 0 (50)

+4x2b? [

The first term in Eq. (50) vanishes at the turning points, because the equation for the
turning points is precisely the free term in Eq. (50):

16n? n?+1 ’
: + i =0.
e — 17 3 -3 sin(2yb) = 0 (51)

The last statement immediately follows from Eq. (48). The coefficients of the terms xb
and (kb)? in Eq. (50) are both positive at the turning points, because p; is bounded from above
and below: : ‘

4 2

n
@ <p <L (32

The inequality (52) is a consequence of Eq. (48). Hence, near the turning points the two
eigenvalues are real. One of them can be found from Eq. (50) for any value of the refractive
index n; it changes sign at the turning points. The second eigenvalue is also small (|xb| < 1)
near the turning points only if n 3> 1. For all other eigenvalues |xb| 2 1.

We are able now to give a qualitative picture of the movement of these two <«lowest»
eigenvalues. It is presented in Fig. 3. At some values of u, the two conjugate eigenvalues
reach the real axis in the x plane (point (1,1) in Fig. 2). After collision, they become real.
One of them moves along the real axis towards the origin, and reaches it at point 2 (turning
point, branch point in the u-plane). After that, one branch is unstable (see Fig. 1). At point 3,
both eigenvalues reach their extreme values and start to decrease in absolute value. At point 4
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Fig. 3. Trajectory of two. «conjugate»
eigenvalues, one of them passing through
2ero

we g0 to the next turning point. Note that in the limit u — 0, Eq (49) ylelds for k the values
of the linear problem ( Egs. (17), (18)).

To complete our investigation, we need to prove the possibility of the complex eigenvalues
(with Imk # 0) crossing the real axis Rex = 0 when the nonlinearity parameter u changes
from zero to some finite value.

Suppose that for some value of the parameters (bup,;;yb) a purely imaginary solution of
Eq. (47) exists with ¥ = ik (& is real). Then from Eq. (47), we obtain two equations:

tz(/ib) (n* - 1)?

s OO e 1y &)
and
( 1) s1n(27cb) 4 Loont+ent+1 -
sin(2~yb) ‘ ( =5 ) - ot [COS(2"/b) - 008(2nb)-——1)2-] 0. (54

Inserting the expression for up1b from Eq (53) into Eq. (54), we find one equation for yb
and Kb

2An2+ 1) (I N sin(_27cb)) +
n2 Kb

kb
kbn?((:l )+ 1) [(n? — 1)* cos(2b) — cos(2&b)(n* + 6n? + 1)] = 33

The function on the left-hand side of Eq. (55) is an even function of the parameter &b.
Hence, we can investigate just the region kb > 0. Consider first kb in the range

7b € §[2K1,2K+ 11, K=01,.. (56)
Thatis, -
Rb=7K+X, 0<X<m/2 (57)

In the range given by Eq. (57), we have

2(n2+ D (|, @0, X
fx0= ( 7b )+ R (2 + 1)
x [(n — 1) cos(2b) — cos(2X)(n + 6n? + 1)] = 0, (58)
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0<'X <m/2.

It is easy to prove that the function on the left-hand side of Eq. (58) is positive for 0 < X < =/2.
To check this, we change the cos(2yb) to —1 and find

2 : )
FX) > —2("nz+ b (1+ s‘"z(:f)) L BeX oy (59)

kb(n? +1) ’

0< X <m/2

In the range 0 < X < 7/2, the expression on the right-hand side of the inequality (59)
is positive} and hence in the range

kb€ 1;-[2K,2K+1],

Eq. (55) does not have a solution.
Consider now the range

\
b € %[2K+ 1,2K +2], (60)
that is,
fb=rK+m/2+X; 0<X<m/2 61)

In the range (61), we obtain from Eq. (55)

Zon _ 2n2+1) sin(2X)
- Ebﬁi—t(gﬁf?) [(n? — 1)? cos(2yb) + cos(2X)(n* + 6n + 1)] = 0. (62)

For any value of the parameter b, the function f(x) given by Eq. (62) varies from —oo to
2(n? + 1)/n? when z goes from zero to 7/2. Hence, there exists a minimum of one solution
of Eq. (55) in the range

ib € :tlzr-[2K+1,2K+2], K=0,1,2. (63)

Taking Eq. (53) into account, we find, that new unstable modes (with Im x # 0) always
appear outside some neighborhood of the turning points, because the quantity ysin(2vyb) is
negative at all turning points (u sin(2yb) < 0). The system of Egs. (48), (53), (62) can have
a solution only if |ub| is sufficiently large, so we find that all branches between the turning
points 2K +1,2K+2; K =0,1,2...) are unstable.. For || greater than some critical value
bucr(n), some parts of branches between the turning points 2K,2K +1, K = 1,2...) become
unstable. The instability of these branches is related to pairs of conjugate eigenvalues crossing
the real axis Re x = 0. The crossing points are given by Egs. (53) and (55).
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6. LIMITING CASE OF WEAK NONLINEARITY |u|B < 1

In the case |u|b < 1, the turning point can exist only if the refractive index n > 1, so
|u|bn Z 1. In the vicinity of the turning points, b is close to 7N, where N is an integer:

"yb=7rN+e+3—”4ﬂ. , (64)

In the range of parameters considered here, Eq. (48) can be reduced to the cubic equation

2,2 2¢2n° 8 v
3+ _EnT) (e | sem =
Y'+Y (4 3 ) ( 7 3 3ubn 0, (65)
where
2en | 3ubnp;
= — + .
Y 3 7 (66)
From Eq. (65) we find that at the turning points, Y is given by
Y = +(e?n? — 12)/%/3. (67)
From Eq. (51), it follows that the turning points exist only if pe < 0.
Between the turning points, all three solutions of Eq. (65) are given by
Y, = %(nzez —12)"2cos i, (68)
where
21K 1 €n® + 36en + 81ubn /2 B
or = = + 3arccos ( a1 ) , K=0,1,2. (69)
Equation (50) for x can be substantially simplified in this case
o, ‘
L [4+3Y2—”—‘] =0. (70)
n n 3 . ;

The solutions of this equation are

2.2
(kb)1.2 = —% + %,/%i - 3y2, ~ )

It is easy to see that between the turning points, one mode has positive values of kb, hence the
branch between the turning points is unstable.

7. CONCLUSIONS

In this paper we formulate an algebraic equation for the excitation spectrum « that solves
the problem of the stability of the solutions of a nonlinear wave equation in a slab. It is found
that all branches between the (2K + 1,2K +2) turning points are always unstable. Some parts
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of branches between the (2K, 2K + 1) turning points are also unstable. The instability of the
latter is associated with the possibility that pairs of complex conjugate eigenvalues cross the real
axis in the x-plane. Such a phenomenon can take place only if the effective nonlinearity is
sufficiently strong (|| > per(n)). In that event, the temporal behavior of transitions between
stationary states, when the amplitude of the incident wave varies, can be very complicated.
It was possible to obtain an explicit expression for the excitation spectrum, but only by
virtue of the weak nonlinearity of the coefficient in the wave equation. Strong nonlinear effects
result from the large length of the nonlinear medium compared to the wavelength scale.
/
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