СТРОГАЯ ТРЕХМЕРНАЯ ТЕОРИЯ ПАРАМЕТРИЧЕСКОГО ВОЗБУЖДЕНИЯ ВОЛН ПРОСТРАНСТВЕННОГО ЗАРЯДА В ПОЛУПРОВОДНИКАХ

Б. И. Стурман*, А. И. Черных, Е. А. Шамонина

Сибирское отделение Международного института нелинейных исследований 630090, Новосибирск, Россия

Поступила в редакцию 27 января 1998 г.

Проведен анализ устойчивости поля пространственного заряда, индуцированного в полупроводниковом кристалле бегущей световой решеткой, относительно параметрического возбуждения волн пространственного заряда. Показано, что в области достаточно малых скоростей решетки существенным элементом анализа является учет высших фурье-гармоник поля. Комбинированием аналитических и численных методов проведено исследование устойчивости относительно роста малых трехмерных возмущений общего вида. Найдено, что неустойчивость возможна лишь в одной области скоростей световой картины и приводит к преимущественному возбуждению одномерных возмущений. Результаты проведенного анализа приложены к интерпретации экспериментов по генерации пространственных субгармоник в кристаллах семейства силленитов.

1. ВВЕДЕНИЕ

Слабозатухающие низкочастотные волны пространственного заряда в полупроводниках были предсказаны около 25 лет назад [1, 2]. Это предсказание не получило, однако, прямого экспериментального подтверждения и вскоре было забыто. Реальный интерес к волнам пространственного заряда (ВПЗ) возник неожиданно при исследовании фоторефрактивных явлений в кубических кристаллах семейства силленитов, $Bi_{12}RO_{20}$, где R = Si, Ge, Te. Эксперименты показали [3–6], что экспонирование кристалла бегущей решеткой интенсивности,

$$I = I_0 \left[1 + m \cos(\mathbf{Kr} - \Omega t) \right] , \tag{1}$$

при определенных условиях (например, при наличии внешнего поля, параллельного вектору решетки **K**) сопровождается не только формированием поля пространственного заряда с периодом внешнего воздействия $2\pi/K$, но и появлением дробных пространственных частот, **K**/2, **K**/3 и **K**/4, т. е. удвоением, утроением и учетверением периода. Альтернативным способом возбуждения субгармоник является [7,8] приложение знакопеременного электрического поля при нулевой частотной расстройке Ω между световыми пучками, формирующими интерференционную картину (1). Регистрация субгармоник осуществляется по обычной фоторефрактивной схеме: поле пространственного заряда вызывает изменение показателя преломления за счет эффекта Поккельса, а дифракция волн накачки на решетке показателя преломления приводит к появлению дополнительных световых пучков (рис. 1).

*E-mail: sturman@iae.nsk.su

Рис. 1. Схема эксперимента по генерации субгармоник бегущей световой картиной (*a*) и распределения света на экране за кристаллом, отвечающие генерации нерасщепленной субгармоники K/2 (*б*), продольно расщепленной (*в*) и поперечно расщепленной (*г*) субгармоникам

Объяснение генерации субгармоник было дано в работах [9–11]. Было показано, что распадный (параметрический) нелинейный процесс, определенный условиями резонанса

$$\mathbf{\Omega} = \omega_{\mathbf{k}_1} + \omega_{\mathbf{k}_2}, \quad \mathbf{K} = \mathbf{k}_1 + \mathbf{k}_2 \,, \tag{2}$$

может приводить к неустойчивости исходного периодического состояния относительно роста ВПЗ с волновыми векторами $\mathbf{k}_{1,2}$ и собственными частотами $\omega_{\mathbf{k}_{1,2}}$. Слабость затухания волн, необходимая для преодоления порога параметрической неустойчивости, обеспечивается достаточно большим значением произведения $\mu \tau$ (μ — подвижность, а τ — время жизни фотоэлектронов), а также достаточно сильным приложенным полем E_0 . Выполнение условий параметрического резонанса (2) должно обеспечиваться надлежащим выбором расстройки Ω . Благодаря тому обстоятельству, что для ВПЗ $\omega_{\mathbf{k}} \propto (\mathbf{k} \mathbf{E}_0)^{-1}$, равенства (2) могут быть выполнены только при $\Omega \geq 4\omega_{\mathbf{k}}$.

Теория параметрической неустойчивости, линейная по амплитудам ВПЗ и контрасту m световой картины, позволила объяснить широкий круг наблюдаемых закономерностей по генерации субгармоник и сделать некоторые предсказания [12–14]. Среди последних — возможность продольного расщепления основной субгармоники K/2 и уширения спектра пространственных частот (см. [15, 16] и рис. 16, e). Основы нелинейной теории параметрически возбужденных ВПЗ были заложены в недавней работе [17]. В ряде отношений эта теория аналогична известной теории параметрического возбуждения спиновых волн в ферромагнетиках [18].

Параллельно с теоретическими исследованиями шло экспериментальное изучение возбуждения ВПЗ в кристаллах семейства силленитов. Одним из интригующих экспериментальных результатов явилось обнаружение поперечного расщепления основной субгармоники K/2 (см. рис. 1*г*) в схеме с бегущей решеткой интенсивности [19, 20]. Такое расщепление не согласуется с линейной теорией параметрического возбуждения ВПЗ, которая предсказывает ослабление неустойчивости с ростом поперечной (по отношению к **K**) компоненты волновых векторов $\mathbf{k}_{1,2}$.

Попытка объяснить поперечное расщепление была предпринята недавно в работах [21, 22]. Их авторы сконцентрировали свое внимание на области частотных расстроек $\Omega < 4\omega_K$, а при описании исходного периодического состояния ограничились, как и ранее [10, 11], линейным приближением по контрасту *m* световой картины. Это приближение дает одномерное гармоническое распределение поля пространственного заряда,

$$E = E_K \exp \left[i(Kz - \Omega t)\right] + \text{c.c.},$$

с амплитудой

$$E_K = \frac{m}{2} \frac{E_0}{\varepsilon^{-1} - 1 + iQ_K^{-1}} , \qquad (3)$$

где $\varepsilon = \omega_K / \Omega$ — безразмерный варьируемый в эксперименте параметр, а Q_K — добротность ВПЗ с волновым вектором K [11]. В рамках указанных выше предположений, при $\Omega \simeq \omega_K$ (т. е. при $\varepsilon \equiv \omega_K / \Omega \simeq 1$) и m = 1 была найдена новая область неустойчивости относительно параметрического возбуждения ВПЗ и показано, что в этой области наиболее легко возбуждаются волны с ненулевыми поперечными компонентами волновых векторов. Этот результат позволил интерпретировать экспериментальные наблюдения поперечного расщепления субгармоники K/2.

Не представляет труда увидеть, что использованное в [21, 22] линейное приближение по контрасту m становится неприменимым при $\varepsilon \simeq 1$, $m \simeq 1$. Действительно, в этом случае $|E_K| \simeq E_0 Q_K/2 \gg E_0$, что противоречит здравому смыслу, поскольку полное поле внутри кристалла, $E_0 + E(z)$, оказывается знакопеременным и много большим приложенного. На самом деле, использованное линейное приближение по контрасту применимо лишь до тех пор, пока $|E_K| \leq E_0$; при $\Omega \simeq \omega_K$ (т.е. в линейном резонансе) это эквивалентно ограничению $m \leq Q_K^{-1} \ll 1$. При бо́льших значениях m, которые весьма актуальны для эксперимента, становятся существенными высшие фурье-гармоники поля E с пространственными частотами 2K, $3K \dots$; амплитуда же E_K из-за нелинейной связи с этими гармониками резко уменьшается [11,23]. При $\varepsilon \simeq 1$, $m \simeq 1$ число значимых фурье-гармоник в исходном состоянии может быть оценено как Q_K ; в кристаллах семейства силленитов это составляет обычно 6–8 [10, 11].

Теоретические результаты, полученные в [21, 22], могут быть прокомментированы следующим образом. При $\Omega < 4\omega_K$ (т. е. при $\varepsilon > 0.25$) был рассмотрен нерезонансный параметрический процесс первого порядка. Рост минимального (по k) относительного расстояния до параметрического резонанса, $(\omega_k - \omega_{K-k} - \Omega)_{min}/\Omega = 4\varepsilon - 1$, с увеличением ε был скомпенсирован резким увеличением амплитуды $E_K(\varepsilon)$ из-за приближения к линейному резонансу. Именно с этим ростом было связано появление новой области неустойчивости при $\varepsilon \simeq 1$.

В действительности, рост функции $E_K(\varepsilon)$ при $\varepsilon > 0.25$ испытывает насыщение из-за возбуждения высших пространственных гармоник, что должно ослаблять эффективность рассмотренного параметрического процесса. Кроме того, параметрические процессы высшего порядка, определенные условием синхронизма $s\Omega = \omega_k + \omega_{sK-k} c$ s = 2, 3..., могут оказывать существенное влияние на эволюцию слабых возмущений. Эти нелинейные процессы могут, в частности, быть резонансными. Таким образом, физическая ситуация в области расстроек $\Omega \lesssim 4\omega_K$ оказывается намного более сложной по сравнению с той, которая имела место при $\Omega \ge 4\omega_K$. Вместе с тем рост $E_K(\varepsilon)$ и эффективная генерация высших пространственных гармоник поля пространственного заряда при $\varepsilon \approx 1$ оставляют надежду на то, что теоретические результаты работ [21, 22] и данная их авторами интерпретация поперечного расщепления субгармоники $\mathbf{K}/2$ являются правильными хотя бы качественно.

Цель настоящей работы — последовательный анализ устойчивости исходного периодического решения для поля пространственного заряда во всем актуальном диапазоне частотных расстроек. Он включает в себя учет как высших фурье-гармоник в исходном периодическом состоянии, так и трехмерных малых возмущений общего вида. Такой анализ необходим не только для объяснения поперечного расщепления; он важен также для определения точности аналитической линейной теории параметрического возбуждения [10, 11], построенной для $\Omega \gtrsim 4\omega_K$ и являющейся базисом для нелинейной теории фоторефрактивных субгармоник [17].

Чисто аналитическое или численное исследование неустойчивости в общем случае весьма затруднительно. Однако комбинирование аналитических и численных методов способно значительно упростить поставленную задачу. Основная идея проведенного анализа следующая. Вначале численно решается одномерная задача по отысканию N фурье-гармоник поля пространственного заряда, представляющих с достаточно высокой точностью исходное периодическое состояние. Затем аналитически находится характеристическая матрица ранга $2N \times 2N$, связывающая между собой фурьекомпоненты трехмерного возмущения. Элементы этой матрицы включают в себя инкремент неустойчивости Γ , фурье-гармоники исходного поля пространственного заряда, а также продольную и поперечную компоненты волнового вектора возмущения. Условие равенства нулю определителя этой матрицы дает характеристическое уравнение порядка 2N для Γ . Это уравнение вновь решается численно, чтобы найти ветвь решения, отвечающую максимальному значению $\Gamma' = \text{Re }\Gamma$, и исследовать зависимость этого максимального значения от ε и волнового вектора возмущения.

Проведению анализа неустойчивости предшествует рассмотрение свойств исходного динамического уравнения для потенциала поля пространственного заряда. Завершает статью обсуждение полученных результатов и выводы.

2. ИСХОДНЫЕ СООТНОШЕНИЯ

Наше исследование, как, в сущности, и анализ работ [21, 22], основано на скалярном динамическом уравнении для потенциала φ , определенного равенством

$$\mathbf{E} = -\boldsymbol{\nabla}\varphi.$$

Это уравнение, выведенное в [11], описывает процессы фотовозбуждения электронов с глубоких ловушек, их дрейф в поле $E_0 + E$, диффузию и рекомбинацию. Оно имеет вид

$$\Delta \varphi_{zt} - \frac{\omega_0}{l_s} \Delta \varphi - \frac{1}{l_0} \Delta \varphi_t + \omega_0 \Delta \varphi_z + \frac{l_D^2}{l_0} \Delta^2 \varphi_t = -\frac{4\pi e}{\epsilon_0} \delta g_z + \frac{4\pi e}{\epsilon_0} \frac{1}{E_0} \nabla (\delta g \nabla \varphi) + \frac{1}{E_0} \nabla (\Delta \varphi_t \nabla \varphi), \qquad (4)$$

где Δ — оператор Лапласа, $\omega_0 = g_0/N_t$ — характеристическая частота, N_t — эффективная концентрация ловушек, g_0 — пространственно-однородная часть скорости фотовозбуждения электронов (легко выражаемая через коэффициент поглощения света и интенсивность I_0), $\delta g = mg_0 \cos(Kz - \Omega t)$ — ее пространственно осциллирующая часть, ϵ_0 — статическая диэлектрическая проницаемость кристалла, $l_0 = \mu \tau E_0$ — длина дрейфа фотоэлектронов, $l_D = \sqrt{k_B T \mu \tau / e}$ — длина диффузии, k_B — постоянная Больцмана, T — абсолютная температура и $l_s = \epsilon_0 E_0/4\pi e N_t$ — длина экранирования. Нижние индексы z и t означают дифференцирование по продольной координате и времени.

Два первых слагаемых в левой части уравнения (4) описывают бездиссипативное распространение ВПЗ, а три последних — затухание волн. Члены правой части характеризуют возбуждение ВПЗ и эффекты нелинейного взаимодействия. Опуская эти члены и полагая $\varphi \propto \exp(i\mathbf{kr} - i\omega_{\mathbf{k}}t - \gamma_{\mathbf{k}}t)$, легко найти собственную частоту $\omega_{\mathbf{k}}$ и декремент затухания $\gamma_{\mathbf{k}}$ волны с волновым вектором **k** [11]:

$$\omega_{\mathbf{k}} = \frac{4\pi e g_0}{\epsilon_0 E_0 k_z}, \quad \gamma_{\mathbf{k}} = g_0 \left(\frac{1}{N_t} + \frac{4\pi e}{\epsilon_0 \mu \tau E_0^2} \frac{1}{k_z^2} + \frac{4\pi k_B T}{\epsilon_0 E_0^2} \frac{k^2}{k_z^2} \right) . \tag{5}$$

Видно, что $\omega_{\mathbf{k}}$ и $\gamma_{\mathbf{k}}$ пропорциональны I_0 , т.е. добротность волны, $Q_{\mathbf{k}} = |\omega_{\mathbf{k}}|/\gamma_{\mathbf{k}}$, не зависит от интенсивности света. Максимальное (по \mathbf{k} и E_0) значение $Q_{\mathbf{k}}$ составляет $Q_{\mathbf{k}}^{max} = \sqrt{\pi e N_t \mu \tau / \epsilon_0}$. В последующих численных оценках и расчетах мы положим $\epsilon_0 = 56$, $N_t = 10^{16}$ см⁻³, а произведение $\mu \tau$ будем варьировать в диапазоне (4-8) $\cdot 10^{-7}$ см²/В. Принятые значения отвечают литературным данным по силленитам [24, 25] и дают $Q_{\mathbf{k}}^{max} = 6 - 8$. Близкие к максимальному значения $Q_{\mathbf{k}}$ достигаются при $E_0 \gtrsim 6$ -7 кВ/см, $k_{\perp} = 0$ (k_{\perp} — поперечная компонента волнового вектора) и периоде волны $2\pi/k_z \simeq 15$ -25 мкм. Отметим, что рост k_{\perp} в соответствии с (5) всегда вызывает увеличение $\gamma_{\mathbf{k}}$ и уменьшение $Q_{\mathbf{k}}$.

В пренебрежении нелинейными по φ и δg членами уравнение (4) приводит к выражению (3) для стационарной амплитуды поля пространственного заряда. Элементарные оценки показывают, что нелинейные члены несущественны при $|E_K| \ll E_0$. В области $\varepsilon \lesssim 0.25$, как видно из (3), это неравенство остается применимым вплоть до $m \approx 1$.

3. ПЕРИОДИЧЕСКОЕ РЕШЕНИЕ

Уравнение (4) допускает одномерное стационарное решение $\varphi^{(0)}(Kz - \Omega t)$, имеющее периодичность световой картины (1). Соответствующее поле пространственного заряда имеет только *z*-компоненту. С достаточно хорошей точностью оно может быть представлено усеченным рядом Фурье:

$$E = E_0 \sum_{\substack{s=-20\\s\neq 0}}^{20} e_s e^{is\xi} , \qquad (6)$$

где $\xi = Kz - \Omega t$, а e_s — безразмерная фурье-гармоника поля номера s. Мы нашли набор $\{e_s(\varepsilon)\}$ численно на основе уравнения (4) и убедились, что он отвечает единственному физическому решению. Последнее доказывается сопоставлением результатов, полученных путем редукции уравнения (4) к алгебраической системе нелинейных

Рис. 2. Сравнение точного решения для амплитуды e_1 (сплошная кривая) с результатом, полученным в линейном по контрасту приближении (штриховая кривая)

уравнений для амплитуд e_s и посредством временной эволюции поля $E = -\varphi_z$ к стационарному состоянию. Сплошная линия на рис. 2 показывает зависимость $|e_1(\varepsilon)|$, вычисленную для m = 1, $E_0 = 7$ кВ/см, периода решетки $2\pi/K = 20$ мкм и произведения $\mu\tau = 6 \cdot 10^{-7}$ В/см. Штриховая кривая отвечает соотношению (3), полученному в линейном по контрасту m приближении при тех же значениях параметров. Видно, что в области $\varepsilon \lesssim 0.3$ кривые практически совпадают. В то же время при $\varepsilon \gtrsim 0.6$ линейное приближение дает сильно завышенные значения $|e_1|$. Реально рост $|e_1(\varepsilon)|$ насыщается при $\varepsilon \gtrsim 0.4$. Любопытно, что в окрестности точки $\varepsilon = 0.4$ сплошная кривая лежит выше штриховой, т. е. учет высших гармоник приводит здесь к увеличению фундаментальной амплитуды E_K . Отметим также наличие гистерезиса при $\varepsilon \simeq 0.39$. Эта особенность, как и смещение максимума из точки $\varepsilon = 1$ в точку $\varepsilon \simeq 0.4$, связана с положительным нелинейным сдвигом частоты для ВПЗ [9, 11, 25]. С увеличением произведения $\mu\tau$ гистерезис и смещение максимума становятся выраженными более сильно.

Рисунок 3 показывает зависимость $|e_s|$ от номера *s* при разных значениях ε и прежних значениях экспериментальных и материальных параметров. Хорошо видно, что число существенных гармоник быстро растет при изменении ε от 0.35 до 0.4. Для $\varepsilon \leq 0.25$ высшие гармоники очень малы. На рис. 4 изображены зависимости полного поля $E_0 + E(\xi)$ для m = 1 и нескольких значений ε , полученные суммированием ряда Фурье (6). При $\varepsilon = 0.25$ распределение поля подобно распределению интенсивности света (1). Увеличение вклада высших гармоник с ростом ε сопровождается усилением асимметрии профиля поля и смещением в положительную сторону его максимума. Интересно отметить, что при достаточно большом значении ε полное поле приближается к нулю вблизи правого конца интервала.

4. ХАРАКТЕРИСТИЧЕСКОЕ УРАВНЕНИЕ

Для исследования устойчивости найденного выше периодического решения мы представим потенциал в виде $\varphi = \varphi^{(0)} + \varphi^{(1)}$, где $\varphi^{(1)}$ — малое возмущение. В общем случае оно зависит от переменных ξ , $\mathbf{r}_{\perp} = (x, y)$ и t. Линеаризация исходного динамического уравнения (4) относительно $\varphi^{(1)}$ приводит к однородному уравнению в частных

Рис. 3. Зависимость амплитуды $|e_s|$ от номера *s* для разных значений ε . Кривые проведены для облегчения восприятия

Рис. 4. Пространственный профиль электрического поля внутри одного периода для нескольких значений є

производных. Существенно, что коэффициенты этого уравнения зависят от ξ (через $\varphi^{(0)}(\xi)$), но не от \mathbf{r}_{\perp} и t. Следовательно, мы можем положить в этом уравнении

$$\varphi^{(1)} = u(\xi) \exp(i\mathbf{k}_{\perp}\mathbf{r}_{\perp} + \Gamma t) + \text{c.c.},$$

где $\mathbf{k}_{\perp} = (k_x, k_y)$ — поперечная компонента волнового вектора возмущения, а Γ — инкремент неустойчивости. Таким образом, мы приходим к однородному дифференциальному уравнению для $u(\xi)$, коэффициенты которого содержат $\varphi^{(0)}(\xi)$, Γ и \mathbf{k}_{\perp} . Амплитуда $u(\xi)$ представима в виде

$$u = e^{i\kappa\xi} \sum_{s'=-N}^{N-1} u_{s'} e^{is'\xi} , \qquad (7)$$

где κ — безразмерное продольное волновое число, принимающее значения внутри интервала [0,1], а $N \leq 20$ — число фурье-гармоник в исходном состоянии, которое мы хотим принять во внимание. Разложение (7) аналогично представлению для блоховской функции электрона в одномерном периодическом потенциале. Фактически оно означает, что, рассматривая возмущение исходного состояния, мы учитываем пространственные частоты $\mathbf{K}(-N+\kappa) \pm \mathbf{k}_{\perp}, ..., \mathbf{K}(N-1+\kappa) \pm \mathbf{k}_{\perp}$. Продольные компоненты этих векторов по абсолютной величине меньше чем NK. В том случае, если $\kappa = 1/2$, возмущение представляет собой основную субгармонику, нерасщепленную или поперечнорасщепленную в зависимости от того, равна или не равна нулю поперечная проекция \mathbf{k}_{\perp} волнового вектора.

Используя представление (7) и разложение Фурье (6), мы сводим, наконец, дифференциальное уравнение для $u(\xi)$ к следующему матричному линейному уравнению для u_s :

$$(C_s \,\delta_{ss'} - A_{ss'}) \, u_{s'} = 0. \tag{8}$$

Здесь $\delta_{ss'}$ — символ Кронекера, а коэффициенты C_s и $A_{ss'}$ задаются соотношениями

$$C_{s} = [(s + \kappa)^{2} + \theta^{2}] \{-i(s + \kappa)\nu - (s + \kappa)^{2} + \varepsilon - i\varepsilon (s + \kappa) K l_{s} + \frac{1}{K l_{0}} [\nu - i(s + \kappa)] + \frac{K l_{D}^{2}}{l_{0}} [(s + \kappa)^{2} + \theta^{2}] [\nu - i(s + \kappa)] \},$$

$$A_{ss'} = -\varepsilon \frac{m}{2} (\delta_{ss'+1} + \delta_{ss'-1}) [(s + \kappa)(s' + \kappa) + \theta^{2}] + e_{s-s'} \{(s - s')^{2} [(s + \kappa)(s' + \kappa) + \theta^{2}] + (s + \kappa) [(s' + \kappa)^{2} + \theta^{2}] (s' + \kappa + i\nu) \},$$
(9)

где $\nu = \Gamma/\Omega$, а $\theta = |k_{\perp}|/K$ — безразмерное поперечное волновое число. Отметим, что 2N-мерный вектор C_s происходит из левой части уравнения (4), а матрица $A_{ss'}$, включающая в себя найденные численно амплитуды $e_{s-s'}$, — из его правой части.

Условие разрешимости системы (8),

$$\det\left(C_s\,\delta_{ss'}-A_{ss'}\right)=0,\tag{10}$$

представляет собой искомое характеристическое уравнение для инкремента неустойчивости. Это уравнение имеет 2N ветвей решений для Г как функции ε , κ и θ . В общем случае эти ветви могут быть найдены только численно. Аналитическое решение характеристического уравнения возможно только для случая N = 1. Такое упрощение может быть оправдано лишь при $\varepsilon \lesssim 0.25$; оно ведет к известным аналитическим результатам по параметрическому возбуждению ВПЗ [10, 11].

5. ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ

Характеристическое уравнение (10) решалось численно. Для каждого номера N и для каждого набора параметров $\varepsilon = \omega_K / \Omega$, κ и $\theta = |k_{\perp}| / K$ мы интересовались ветвью решения с максимально возможной скоростью экспоненциального роста возмущений $\Gamma'_N = [\text{Re } \Gamma]_{max}$, т.е. ветвью, отвечающей сильнейшей неустойчивости. Ниже приводятся результаты нашего анализа.

Исследуем вначале неустойчивость относительно рождения нерасщепленной субгармоники K/2, т.е. неустойчивость относительно удвоения периода. В этом случае

Рис. 5. Зависимость $\Gamma'_N(\varepsilon)$ для $\kappa = 1/2, \ \theta = 0$, разных значений N и m = 1

Рис. 6. Зависимость $\Gamma'_{20}(\varepsilon)$ для n = 1, $\kappa = 1/2$, $\theta = 0$ при различных значениях произведения $\mu \tau$. Кривые 1, 2 и 3 отвечают $\mu \tau = 4 \cdot 10^{-7}$, $6 \cdot 10^{-7}$ и $8 \cdot 10^{-7}$ см²/В

мы должны ограничиться одномерным случаем ($\theta = 0$) и положить $\kappa = 1/2$. Рисунок 5 показывает зависимость $\Gamma'_N(\varepsilon)$ для $\mu\tau = 6 \cdot 10^{-7}$ см²/В, нескольких значений N и m = 1. В соответствии с ожидаемым мы видим, что при $\varepsilon \leq 0.25$ (т.е. при $\Omega \gtrsim 4\omega_K$) разумные результаты обеспечиваются уже в рамках аналитической теории (N = 1). Увеличение числа N, т.е. учет влияния высших пространственных гармоник, дает здесь только несущественные поправки к инкременту.

Ситуация существенно меняется при $\varepsilon \gtrsim 0.28$. В этой области аналитическая модель с N = 1 уже неприменима и инкремент $\Gamma'_N(\varepsilon)$ значительно убывает с увеличением числа пространственных гармоник N, принятых во внимание. Важно, что для $\varepsilon \gtrsim 0.37$ и $N \ge 6$ инкремент Γ'_N становится отрицательным. Таким образом, имеется только одна область частотной расстройки (область ε), в которой возможно возбуждение нерасщепленной субгармоники K/2. Утверждение о наличии второй области неустойчивости при больших ε , сделанное в [21,22], является следствием неоправданных предположений этой работы. Рисунок 5 ясно показывает, как исчезает эта нефизическая область с увеличением N. Следует отметить, что модель с N = 4 дает весьма точное описание инкремента во всей области субгармонической неустойчивости, $0.22 \leq \varepsilon \leq 0.37$.

Рисунок 6 показывает зависимость $\Gamma'_{20}(\varepsilon)$ для m = 1, $\kappa = 1/2$, $\theta = 0$ при разных значениях произведения $\mu\tau$. Видно, что увеличение $\mu\tau$ способствует неустойчивости, но не меняет вывода относительно наличия только одной области неустойчивости. Варырование приложенного поля E_0 и периода решетки $2\pi/K$ вблизи рассмотренных выше значений 7 кВ/см и 20 мкм также не приводит к качественно новым результатам. Значительное уменьшение E_0 или значительное изменение K приводят к подавлению неустойчивости. Для $E_0 = 7$ кВ/см и $2\pi/K = 20$ мкм неустойчивость исчезает при $\mu\tau \lesssim 3 \cdot 10^{-7}$ см²/В.

Обратим внимание, что каждая из кривых на рис. 6 состоит из двух участков, отвечающих различным ветвям решения характеристического уравнения. Переход с одной

Рис. 7. Зависимость Γ'_{20} от продольного волнового числа κ при $n = 1, \theta = 0, \mu \tau = 6 \cdot 10^{-7} \text{ см}^2/\text{B}$ и разных значениях ε

Рис. 8. Зависимость величины продольного расщепления от ε , полученная численно (1) и аналитически (2)

ветви на другую осуществляется в окрестности точки $\varepsilon = 0.38$. Правые (устойчивые) участки кривых в действительности не имеют никакого отношения к генерации субгармоник. Они описывают затухание возмущений с высокими пространственными частотами, связь которых с накачкой очень слаба. Эти участки показывают, однако, что субгармонические возмущения при $\varepsilon \gtrsim 0.4$ характеризуются еще меньшими отрицательными значениями Г'.

Рассмотрим теперь зависимость инкремента неустойчивости от продольного волнового числа κ . На рис. 7 приведены зависимости $\Gamma'_{20}(\kappa)$ при $\theta = 0$ и различных значениях ε . При $\varepsilon \gtrsim 0.224$ кривые имеют один максимум, расположенный в точке $\kappa = 1/2$, в то время как при $\varepsilon < 0.224$ они характеризуются двумя максимумами, симметрично расположенными относительно точки $\kappa = 1/2$. Такая бифуркация согласуется с аналитической теорией [10, 11] и указывает на возможность симметричного продольного расщепления основной субгармоники K/2 при уменьшении ε .

Кривая 1 на рис. 8 характеризует зависимость расстояния между максимумами от параметра ε , полученную численно для N = 20 и m = 1, а кривая 2 отвечает результату аналитической теории, $\sqrt{1-4\varepsilon}$. Основное различие результатов заключается в сдвиге точки бифуркации от $\varepsilon = 0.25$ к $\varepsilon \simeq 0.224$. Этот сдвиг связан с влиянием высших пространственных гармоник. Разница между аналитическим и численным значениями находится в пределах точности аналитической теории.

Поскольку максимум зависимости $\Gamma'(\kappa)$ в общем случае не отвечает $\kappa = 1/2$, представляет интерес вычислить максимальное по κ значение Γ' как функцию внешнего параметра ε . Именно эта зависимость, $\Gamma'_{max}(\varepsilon)$, есть наиболее важная характеристика неустойчивости в одномерном случае. Сплошная кривая на рис. 9 дает $\Gamma'_{max}(\varepsilon)$ в актуальном интервале ε . Точка на этой кривой отвечает появлению продольного расщепления. Максимум инкремента достигается при $\varepsilon \simeq 0.265$. Штриховая кривая характеризует $\Gamma'(\varepsilon)$ для $\kappa = 1/2$ в области расщепления. Видно, что учет расщепления существенно

Рис. 9. Сплошная кривая — зависимость максимального по κ значения инкремента от ε для N = 20 и $\theta = 0$. Штриховая кривая отвечает $\kappa = 1/2$

Рис. 10. Зависимость Γ'_{20} от поперечного волнового числа θ для m = 1, $\kappa = 1/2$, $\mu \tau = 6 \cdot 10^{-7} \text{ см}^2/\text{B}$ и разных значений ε

сдвигает левую границу неустойчивости в сторону больших расстроек (малых ε).

Из сравнения результатов наших расчетов с аналитической теорией [10,11] видно, что последняя дает качественно (или даже полуколичественно) верные результаты для $\varepsilon \leq 0.25$. В области $\varepsilon \geq 0.25$, где последовательная аналитическая теория бессильна, а неустойчивость может быть еще весьма сильна, численные результаты имеют самостоятельную ценность. Напомним, что учет двадцати пространственных гармоник не является необходимым в области неустойчивости. С хорошей точностью приведенные выше результаты могут быть получены уже при N = 4. Отметим, что при уменьшении коэффициента модуляции m роль высших гармоник резко уменьшается, точность аналитической теории соответственно растет, а неустойчивость ослабевает.

Исследуем, наконец, зависимость Г' от безразмерного поперечного волнового числа $\theta = |\mathbf{k}_{\perp}|/K$. Такое исследование важно для интерпретации поперечного расщепления субгармоники **К**/2. Рисунок 10 показывает зависимость $\Gamma'_{20}(\theta)$ для m = 1, $\kappa = 1/2$ и разных значений є. Закономерности, следующие из приведенных графических данных, весьма просты. В том случае, когда значение $\Gamma'(\theta = 0)$ положительно (и даже слегка отрицательно), рост θ приводит к уменьшению Γ' , т.е. не способствует неустойчивости; скорость убывания $\Gamma'(\theta)$ растет с увеличением ε в области положительности инкремента. При достаточно больших значениях $\theta(\varepsilon)$, когда инкремент уже становится отрицательным, убывание функции $\Gamma'(\theta)$ резко насыщается. При $\varepsilon \gtrsim 0.385$ зависимость $\Gamma'(\theta)$ практически отсутствует. Постоянные (устойчивые) участки кривых на рис. 10 не связаны с параметрическим возбуждением субгармоник. Как и правые (отрицательные) участки кривых на рис. 6, они характеризуют затухание возмущений с высокими пространственными частотами, которые очень слабо связаны с накачкой. Рост инкремента Γ' с увеличением θ не исключен для более низких ветвей решения характеристического уравнения (8), однако для этих ветвей Г' < 0. Варьирование продольного волнового числа κ , а также произведения $\mu \tau$ не приводит к росту $\Gamma'(\theta)$.

6. ОБСУЖДЕНИЕ

По нашему мнению, настоящая работа представляет интерес в двух основных аспектах. Во-первых, развит новый метод для исследования устойчивости высококонтрастных фоторефрактивных решеток в полупроводниковых кристаллах относительно трехмерных возмущений. Этот метод способен дать решение задачи в случаях, когда использование чисто аналитического или численного подходов весьма затруднительно. Он, несомненно, может быть приложен к исследованию устойчивости фоторефрактивных решеток, возбуждаемых знакопеременным внешним полем. Этот случай весьма актуален для различных приложений фоторефрактивного эффекта [25, 26], а высшие пространственные гармоники здесь не менее существенны, чем при использовании техники бегущих решеток.

Во-вторых, стало ясно, что интерпретация поперечного расщепления, данная недавно в работах [21, 22], глубоко ошибочна. Последовательная линейная теория параметрического возбуждения ВПЗ (включающая в себя высшие гармоники поля пространственного заряда) показывает отсутствие как дополнительной области неустойчивости, так и преимущественного возбуждения поперечно-расщепленных субгармоник.

Невозможность объяснения поперечного расщепления субгармоник в рамках линейной теории вовсе не означает тупика в исследовании этого интересного эффекта. Более того, полученные результаты проливают свет на его природу. Как указано в [17], преимущество поперечного расщепления перед продольным должно проявляться на нелинейной стадии неустойчивости. На основе результатов, полученных в [17], в недавней работе [27] установлено, что для поперечно-расщепленной субгармоники K/2 конечной амплитуды существует область устойчивости относительно малых возмущений, в то время как нерасщепленная и продольно-расщепленная субгармоники K/2 всегда модуляционно неустойчивы. Полученные в настоящей работе результаты означают, что интерпретация поперечного расщепления в рамках нелинейной теории, данная в работе [27], становится единственной.

Справедливости ради следует отметить еще один аспект рассмотренной выше проблемы. Эксперимент дает обычно значения высших гармоник поля пространственного заряда, $E_{2K}, E_{3K} \dots$, заметно меньшие расчетных. Одна из очевидных причин такого расхождения связана с неидеальностью условий эксперимента, в частности, с неизбежно присутствующим уширением фурье-спектра распределения интенсивности света. Из общих соображений ясно, что такое уширение наиболее сильно сказывается именно на высших полевых пространственных гармониках. Вопрос о том, как влияет это уширение на параметрическую неустойчивость, остается открытым.

7. ВЫВОДЫ

Высшие гармоники поля пространственного заряда существенны при анализе устойчивости высококонтрастных фоторефрактивных решеток, индуцируемых в полупроводниковых кристаллах бегущей интерференционной световой картиной, в области частотных расстроек $\Omega \lesssim 4\omega_K$.

Комбинирование аналитических и численных методов способно дать полный анализ устойчивости упомянутых выше фоторефрактивных решеток относительно малых трехмерных возмущений. Результаты недавних работ [21, 22] по интерпретации поперечного расщепления субгармоники K/2 ошибочны. Последовательная теория параметрического возбуждения ВПЗ, включающая в себя высшие пространственные гармоники, предсказывает наличие лишь одной области неустойчивости и дает количественную модификацию известных аналитических результатов [10, 11] в этой области.

Авторы признательны Российскому фонду фундаментальных исследований за финансовую поддержку (грант № 96-02-19126). А. И. Черных благодарен М. Г. Степанову за ценные замечания.

Литература

- 1. Р. Ф. Казаринов, Р. А. Сурис, Б. И. Фукс, ФТП 6, 572 (1972).
- 2. Р. А. Сурис, Б. И. Фукс, ФТП 9, 1717 (1975).
- 3. S. Mallick, B. Imbert, H. Ducollet, J. P. Herrian, and J.-P. Huignart, J. Appl. Phys. 63, 5660 (1988).
- 4. D. J. Webb and L. Solymar, Opt. Commun. 74, 386 (1990).
- 5. D. J. Webb, L. B. Au, D. C. Jones, and L. Solymar, Appl. Phys. Lett. 57, 1602 (1990).
- 6. J. Takacs, M. Schaub, and L. Solymar, Opt. Comm. 91, 252 (1992).
- 7. J. Takacs and L. Solymar, Opt. Lett. 17, 247 (1992).
- 8. C. H. Kwak, M. Shamonin, J. Takacs, and L. Solymar, Appl. Phys. Lett. 62, 328 (1993).
- 9. А. Бледовский, Д. Оттен, К. Рингхофер, Б. И. Стурман, ЖЭТФ 102, 406 (1992).
- 10. B. I. Sturman, M. Mann, and K. H. Ringhofer, Appl. Phys. A 55, 325 (1992).
- 11. B. I. Sturman, M. Mann, J. Otten, and K. H. Ringhofer, J. Opt. Soc. Amer. B 10, 1919 (1993).
- 12. B. I. Sturman, M. Mann, J. Otten, K. H. Ringhofer, and A. Bledowski, Appl. Phys. A 55, 55 (1992).
- 13. T. E. McClelland, D. J. Webb, B. I. Sturman, and K. H. Ringhofer, Phys. Rev. Lett. 73, 3082 (1994).
- B. I. Sturman, T. E. McClelland, D. J. Webb, T. Shamonina, and K. H. Ringhofer, J. Opt. Soc. Amer. B 12, 1621 (1995).
- 15. H. C. Pedersen and P. M. Johansen, J. Opt. Soc. Amer. B 12, 1065 (1995).
- 16. P. Buchhave, S. Lynksyntov, M. Vasnetsov, and C. Heyde, J. Opt. Soc. Amer. B 13, 2595 (1996).
- 17. B. I. Sturman, M. Aguilar, F. Agullo-Lopez, and K. H. Ringhofer, Phys. Rev. E 55, 6072 (1997).
- B. C. Львов, Нелинейные спиновые волны, Наука, Москва (1987) (перевод: V. S. L'vov, Wave Turbulence Under Parametric Excitation. Application to Magnets, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin (1994).
- 19. J. Takacs and L. Solymar, private communication (1992).
- 20. H. C. Pedersen and P. M. Johansen, Opt. Lett. 19, 1418 (1994).
- 21. H. C. Pedersen and P. M. Johansen, Phys. Rev. Lett. 77, 3166 (1996).
- 22. H. C. Pedersen and P. M. Johansen, J. Opt. Soc. Amer. B 14, 1418 (1997).
- T. E. McClelland, D. J. Webb, B. I. Sturman, E. Shamonina, M. Mann, and K. H. Ringhofer, Opt. Comm. 131, 315 (1996).
- 24. P. Refregier, L. Solymar, H. Rajbenbach, and J.-P. Huignard, J. Appl. Phys. 58, 45 (1985).
- 25. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, *Photorefractive Crystals in Coherent Optical Systems*, Springer Series in Optical Sciences, Springer-Verlag, Berlin (1991).
- 26. A. A. Kamshilin, E. Raita, and A. V. Khomenko, J. Opt. Soc. Amer. B 13, 2536 (1996).
- 27. E. V. Podivilov, H. C. Pedersen, P. M. Johansen, and B. I. Sturman, submitted to Phys. Rev. E (1998).