СТАБИЛИЗАЦИИ РИДБЕРГОВСКОГО АТОМА И КОНКУРЕНЦИЯ Л- И V-КАНАЛОВ ПЕРЕХОДОВ

Н. П. Полуэктов, М. В. Федоров*

Институт общей физики Российской академии наук 117942, Москва, Россия

Поступила в редакцию 10 марта 1998 г.

Теоретически исследуются фотоионизация ридберговского атома и его стабилизация в сильном лазерном поле. Анализируется роль переходов рамановского типа между соседними ридберговскими уровнями через континуум и через резонансные ридберговские уровни меньшей энергии (переходы л- и V-типа, соответственно). Определены условия, при которых возможно экспериментальное наблюдение этого явления. Описаны особенности стабилизации, обусловленной переходами V-типа.

1. ВВЕДЕНИЕ

Одним из наиболее интересных и широко обсуждаемых явлений в области взаимодействия атомов с сильным лазерным полем является стабилизация атомов, т.е. повышение их устойчивости по отношению к фотоионизации с ростом интенсивности лазерного поля. В работах [1] и [2] (и в больших циклах последующих работ) были предложены и описаны два существенно различных механизма стабилизации: адиабатическая или высокочастотная стабилизации [1] и интерференционная стабилизация ридберговских атомов [2]. Согласно теории интерференционной стабилизации при взаимодействии ридберговского атома с полем световой волны за счет рамановских переходов Л-типа (через континуум) происходит эффективное когерентное перезаселение атомных уровней E_n , близких к первоначально заселенному уровню E_{na} . Возникающая в результате когерентная суперпозиция ридберговских состояний оказывается устойчивой по отношению к фотоионизации, в силу того что переходы с различных ридберговских состояний в континуум интерферируют и взаимно погашают друг друга, затрудняя ионизацию атома. Экспериментальное наблюдение интерференционной стабилизации ридберговских атомов и когерентного перезаселения ридберговских уровней, описано, соответственно, в работах [3] и [4].

В принципе, помимо переходов Λ -типа, когерентное перезаселение ридберговских уровней может осуществляться и за счет рамановских переходов V-типа, через нижележащие резонансные атомные уровни, если таковые имеют место (см. рис. 1). В работе [4] был сделан вывод, что V-переходы не играют роли в перераспределении населенностей риберговских уровней, что в общем случае вряд ли верно.

Следует отметить, что в работах [5–7] перераспределение населенностей ридберговских уровней исследовалось теоретически с учетом обоих каналов переходов, Λ - и V-типа. Однако степень значимости V-канала и условия, при которых он является опреде-

^{*}E-mail: fedorov@theor.msk.ru

ляющим, не были найдены и исследованы в полной мере, в частности, ввиду отсутствия ясного понимания соотношения между матричными элементами Λ - и V-переходов.

В настоящей работе проблема интерференционной стабилизации ридберговских атомов исследуется теоретически с учетом как Λ -, так и V-каналов переходов при использовании известных выражений для матричных элементов, вычисленных в квазиклассическом (ВКБ) приближении [8–10]. Раздел 2 посвящен математической формулировке задачи и используемым в процессе решения приближениям. В разд. 3 представлена простейшая трехуровневая модель, которая допускает аналитическое решение задачи и при определенных условиях позволяет качественно исследовать соотношение и роль переходов как Λ -, так и V-типа в интерференционной стабилизации. При больших расстройках использование трехуровневой модели становится некорректным. Простейшим обобщением трехуровневой модели на нерезонансный случай является четырехуровневая модель, рассмотренная в разд. 4. В разд. 5 приведены результаты численного анализа задачи с включением в рассмотрение до 22-х уровней, что позволяет проверить справедливость выводов, сделанных на основании аналитических решений, а также сделать количественные оценки величин, измеряемых в эксперименте. В Заключении содержится краткое резюме состояния проблемы и сформулированы условия экспериментального наблюдения стабилизации ридберговского атома в лазерном поле за счет рамановских переходов V-типа.

2. ПОСТАНОВКА ЗАДАЧИ И ОБЩИЕ УРАВНЕНИЯ

Рассмотрим взаимодействие атома с классическим полем световой волны, напряженность электрического поля которой в дипольном приближении задаем в виде

$$\varepsilon(t) = \varepsilon_0(t) \cos(\omega t), \tag{1}$$

где ω — частота, а $\varepsilon_0(t)$ — зависящая от времени амплитуда напряженности (огибающая) импульса поля, $\varepsilon_0(t) \to 0$ при $t \to \pm \infty$. Пусть до прихода лазерного импульса $(t \to -\infty)$ атом находится в некотором возбужденном (ридберговском) *s*-состоянии с энергией $E_{n_0} = -1/2n_0^2$, где $n_0 \gg 1$; здесь и далее используется атомная система единиц. Пусть частота ω превосходит энергию связи электрона в состоянии $\varphi_{n_0}, \omega > |E_{n_0}|$, т. е. возможен однофотонный переход из этого состояния в континуум. Рамановские переходы Λ -типа — это переходы через континуум (например, $\varphi_{n_0} \to$ континуум $\to \varphi_n$), сопровождаемые виртуальным поглощением и излучением кванта ω и возбуждением ридберговских уровней E_n , близких к первоначально заселенному уровню E_{n_0} . В силу того что, вообще говоря, $E_n \neq E_{n_0}$, такие переходы могут быть эффективными только в достаточно сильном поле.

Пусть структура атомного спектра такова, что наряду с переходами Λ -типа (через континуум) возможны также эффективные резонансные (или почти резонансные) переходы между состояниями φ_n и ридберговскими *p*-состояниями $\varphi_{n'}$ с меньшими значениями главного квантового числа, $n' < n_0$, и энергии, $E_{n'} < E_{n_0}$. Рамановские переходы между этими группами состояний (например, $\varphi_{n_0} \to \varphi_{n'} \to \varphi_n$) будем называть переходами V-типа (см. рис. 1).

Волновая функция атома $\Psi(t)$ в поле $\varepsilon(t)$ (1) может быть разложена по базису волновых функций свободного атома. При этом проекция $\Psi(t)$ на связанные состояния атома, $\Psi_{bound}(t)$, представляется в виде суперпозиции функций φ_n и $\varphi_{n'}$:

$$\Psi_{bound}(t) = \sum_{n} a_n(t)\varphi_n + \sum_{n'} a_{n'}(t)\varphi_{n'},$$
(2)

где $a_n(t)$ и $a_{n'}(t)$ — амплитуды вероятности нахождения атома на уровнях E_n и $E_{n'}$, соответственно. Благодаря ионизации атома норма $\Psi_{bound}(t)$ не сохраняется и определяет вероятность ионизации за импульс:

$$w_i = 1 - \langle \Psi_{bound}(t) | \Psi_{bound}(t) \rangle |_{t \to \infty}.$$
(3)

Под стабилизацией атома мы подразумеваем такую ситуацию, когда при превышении полем определенного порогового значения вероятность ионизации w_i становится убывающей функцией пиковой напряженности поля в импульсе, $\varepsilon_{0 max}$, или выходит на постоянное значение меньшее единицы.

Уравнение Шредингера для полной функции атома в поле $\Psi(t)$ может быть сведено к уравнению для $\Psi_{bound}(t)$ или к эквивалентной системе уравнений для амплитуд вероятности $a_n(t)$ и $a_{n'}(t)$ с помощью процедуры, известной как адиабатическое исключение континуума [11,12]. В рамках такого подхода Λ -переходы между близкими ридберговскими уровнями (например, E_n и E_m) описываются тензором ионизационных ширин $\Gamma_{n,m}$:

$$\Gamma_{n,m} = 2\pi V_{n,E} V_{E,m} \Big|_{E=E_m+\omega},\tag{4}$$

где E — энергия электрона в промежуточном p-состоянии непрерывного спектра, $V_{a,b} = \langle \varphi_a | - \mathbf{d} \varepsilon_0 / 2 | \varphi_b \rangle$ — матричные элементы переходов и \mathbf{d} — дипольный момент атома.

Принимая во внимание сказанное и учитывая как Λ -, так и V-переходы, запишем уравнения для амплитуд вероятности $a_n(t)$ и $a_{n'}(t)$ в приближении «вращающейся волны» (резонансное приближение [11, 12]) в виде

$$i\dot{a}_{n'}(t) = (E_{n'} + \omega)a_{n'}(t) + \sum_{n} V_{n',n}a_{n}(t),$$

$$i\dot{a}_{n}(t) = E_{n}a_{n}(t) + \sum_{n'} V_{n,n'}a_{n'}(t) - i\sum_{m} \frac{\Gamma_{n,m}}{2}a_{m}(t).$$
(5)

Как было отмечено выше, для матричных элементов переходов $V_{a,b}$ существуют весьма простые и удобные аналитические выражения, полученные в квазиклассическом (ВКБ) приближении [8–10]:

$$V_{n,n'} \sim \frac{\varepsilon_0}{(nn')^{3/2} \omega^{5/3}}, \quad V_{n,E} \sim \frac{\varepsilon_0}{n^{3/2} \omega^{5/3}}.$$
 (6)

При больших n и n' зависимость матричных элементов $V_{n,n'}$ и $V_{n,E}$ от n и n' становится достаточно медленной, и приближенно ею можно пренбречь, полагая $n \approx n_0$ и $n' \approx n'_0$, где n'_0 — главное квантовое число уровня $E_{n'_0}$ (из серии $E_{n'}$), наиболее близкого к резонансу с уровнем E_{n_0} , т. е. уровня, соответствующего минимальной расстройке резонанса

$$\delta = E_{n_0'} + \omega - E_{n_0}.\tag{7}$$

В приближении $n \approx n_0$, $n' \approx n'_0$ из уравнений (4), (6) находим

$$\Gamma_{n,m} \approx \Gamma = \text{const} \sim \frac{\varepsilon_0^2}{n_0^3 \omega^{10/3}},$$

$$V_{n,n'} \approx \Omega_R = \text{const} \sim \frac{\varepsilon_0}{(n_0 n_0')^{3/2} \omega^{5/3}},$$
(8)

где Ω_R — аналог частоты Раби в двухуровневой системе [13]. Ионизационная ширина Г и частота Раби Ω_R (8) — это основные параметры, характеризующие рассматриваемую систему. Дополнительными, но тоже важными параметрами системы являются расстройка резонанса между уровнями E_{n_0} и $E_{n'_0}$, δ (7), и расстояния между соседними ридберговскими уровнями в областях энергий ~ E_n и $E_{n'}$, Δ и Δ' , соответственно:

$$\Delta = E_{n_0+1} - E_{n_0} \approx \frac{1}{n_0^3}, \quad \Delta' = E_{n_0'+1} - E_{n_0'} \approx \frac{1}{n_0'^3}.$$
(9)

3. ТРЕХУРОВНЕВАЯ МОДЕЛЬ И РОЛЬ ОСНОВНЫХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ ВЗАИМОДЕЙСТВИЕ АТОМА С ПОЛЕМ

Наиболее простой физической моделью, представляющей изучаемую систему, является модель, в которой учитывается только два ридберговских уровня E_1 и E_2 в серии $\{E_n\}$ (например, E_{n_0} и E_{n_0+1}) и один уровень E_0 ($E_{n_0'}$) нижележащей серии уровней

 ${E_{n'}}$ (рис. 2). Главное преимущество данной модели состоит в ее простоте, что обеспечивает возможность получения аналитических решений, из которых наиболее ясно видно, какие из введенных в конце предыдущего раздела параметров определяют поведение системы в различных диапазонах полей.

В рамках трехуровневой модели система (5) состоит из трех уравнений:

$$i\dot{a}_{0}(t) = (E_{0} + \omega)a_{0}(t) + \Omega_{R} [a_{1}(t) + a_{2}(t)],$$

$$i\dot{a}_{1}(t) = \Omega_{R}a_{0}(t) + E_{1}a_{1}(t) - i\frac{\Gamma}{2} [a_{1}(t) + a_{2}(t)],$$

$$i\dot{a}_{2}(t) = \Omega_{R}a_{0}(t) + E_{2}a_{2}(t) - i\frac{\Gamma}{2} [a_{1}(t) + a_{2}(t)].$$
(10)

В модели мгновенного включения и выключения взаимодействия (т.е. для импульсов прямоугольной формы) в течение времени действия импульса его огибающая постоянна, так же как и параметры Ω_R и Г. В этом случае система (10) — это система линейных дифференциальных уравнений с постоянными коэффициентами, которая имеет решения вида

$$a_k(t) = b_k \exp(-i\gamma t), \tag{11}$$

Рис. 3. Соотношения между параметрами задачи в различных диапазонах напряженности, представление характеристических полей

где b_k — константы, удовлетворяющие системе алгебраических уравнений

$$(E_{0} + \omega)b_{0} + \Omega_{R}(b_{1} + b_{2}) = \gamma b_{0},$$

$$\Omega_{R}b_{0} + \left(E_{1} - i\frac{\Gamma}{2}\right)b_{1} - i\frac{\Gamma}{2}b_{2} = \gamma b_{1},$$

$$\Omega_{R}b_{0} - i\frac{\Gamma}{2}b_{1} + \left(E_{2} - i\frac{\Gamma}{2}\right)b_{2} = \gamma b_{2}.$$
(12)

Постоянная γ имеет смысл комплексной квазиэнергии системы [14, 15], и ее значения могут быть определены как собственные значения матрицы коэффициентов в левой части уравнений (12). Поскольку система (12) — это система однородных уравнений, условие ее разрешимости определяется равенством нулю ее детерминанта. Это есть характеристическое уравнение системы, которое в данном случае может быть записано в виде

$$\Omega_R^2(2x-\Delta) = (x-\delta) \left[x(x-\Delta) + i\frac{\Gamma}{2}(2x-\Delta) \right], \tag{13}$$

где x — квазиэнергия, отсчитываемая от уровня E_1 , $x = \gamma - E_1$, $\Delta = E_2 - E_1$ и $\delta = E_0 + \omega - E_1$. На рис. 3 представлены зависимости Ω_R и Γ от амплитуды напряженности поля ε_0 . Область полей, в которых могут иметь место отклонения от теории возмущений — это та область, где либо Ω_R , либо Γ , превосходят расстояние Δ между уровнями E_1 и E_2 (горизонтальная линия на рис. 3). Пусть ε_1 и ε_2 — решения уравнений $\Omega_R(\varepsilon) = \Delta$ и $\Gamma(\varepsilon) = \Delta$, соответственно. Третье характеристическое значение напряженности поля, ε_3 , отмеченное на рис. 3, определено как решение уравнения $\Gamma(\varepsilon) = \Omega_R(\varepsilon)$, т.е. это то поле, при котором частота Раби и ионизационная ширина сравниваются друг с другом. В квазиклассическом приближении с помощью формул (6)–(9) находим явный вид характеристических полей ε_1 , ε_2 и ε_3 :

$$\varepsilon_1 = \left(\frac{n_0'}{n_0}\right)^{3/2} \omega^{5/3}, \quad \varepsilon_2 = \omega^{5/3}, \quad \varepsilon_3 = \left(\frac{n_0}{n_0'}\right)^{3/2} \omega^{5/3}.$$
(14)

Этим значениям поля соответствуют следующие значения параметра $V = \varepsilon / \omega^{5/3}$:

$$V_1 = \left(\frac{n'_0}{n_0}\right)^{3/2}, \quad V_2 = 1, \quad V_3 = \left(\frac{n_0}{n'_0}\right)^{3/2}.$$
 (15)

Эти величины расположены в порядке возрастания, и каждая последующая отличается от предыдущей множителем $(n_0/n'_0)^{3/2}$. Этот множитель может достигать достаточно больших значений, и, таким образом, точки ε_1 , ε_2 и ε_3 могут соответствовать существенно различным диапазонам полей. Так, например, в условиях эксперимента [4] квантовые числа n_0 и n'_0 были равны 26 и 5 соответственно, что дает $(n_0/n'_0)^{3/2} \sim 12$. Соответствующие значения характеристических полей:

$$\varepsilon_1 = 7 \cdot 10^5, \quad \varepsilon_2 = 8 \cdot 10^6, \quad \varepsilon_3 = 9 \cdot 10^7 \text{ BT/cm.}$$
 (16)

Как видим, эти поля отличаются друг от друга на порядок. Ниже основное внимание будет уделено ситуации, отвечающей большому значению параметра $(n_0/n'_0)^{3/2}$. При этом также проанализировано, какие отличия проявляются в динамике ионизации, когда отношение n_0/n'_0 становится порядка единицы.

Как следует из приведенных оценок и рис. 3, если параметр $(n_0/n'_0)^{3/2}$ велик, то существует весьма широкий интервал полей ε_0 , $\varepsilon_1 < \varepsilon_0 < \varepsilon_3$, в котором теория возмущений неприменима ($\Omega_R > \Delta$) и при этом частота Раби Ω_R намного больше ионизационной ширины Г. В этих условиях резонансные переходы V-типа могут играть определяющую роль для эффекта стабилизации атома. Учет резонансной связи с нижележащим уровнем E_0 приводит к тому, что «порог нелинейности», т. е. значение поля, при котором наступают отклонения от теории возмущений (ε_1), лежит значительно ниже, чем в случае, когда такая связь отсутствует (в этом случае пороговым для стабилизации является поле ε_2 , т. е. корень уравнения $\Gamma(\varepsilon) = \Delta$).

Перейдем теперь к анализу уравнения (13) для определения комплексных квазиэнергий системы. Прежде всего рассмотрим случай, когда расстройка δ равна половине расстояния между ридберговскими уровнями Δ , $\delta = \Delta/2$. Легко заметить, что в этом случае уравнение (13) допускает точное аналитическое решение, и корни (13) имеют вид

$$x_1 = \frac{\Delta}{2}, \quad x_{3,4} = \frac{\Delta}{2} - i\frac{\Gamma}{2} \pm \beta, \quad \beta = \sqrt{2\Omega_R^2 + \left(\frac{\Delta}{2}\right)^2 - \left(\frac{\Gamma}{2}\right)^2}.$$
 (17)

Первое из уравнений (17) показывает, что уровень x_1 стабилен $(\text{Im}[x_1(\varepsilon_0)] \equiv 0)$ и его положение не зависит от поля ($\text{Re}[x_1(\varepsilon_0)] = \Delta/2 = \text{const}$). Что касается корней $x_{2,3}(\varepsilon_0)$ (17), то функции $|\text{Im}[x_{2,3}(\varepsilon_0)]|$ являются монотонно растущими вплоть до значения напряженности $\varepsilon_0 \approx 2\varepsilon_3$, при котором $\Gamma = 2\Omega_R$ и $\beta = 0$. Монотонный рост функций $|\text{Im}[x_{2,3}(\varepsilon_0)]|$ означает, что квазиэнергетические уровни $x_{2,3}$ не сужаются во всем диапазоне полей $0 < \varepsilon_0 < 2\varepsilon_3$. Такое поведение квазиэнергетических уровней находится в разительном контрасте с поведением квазиэнергетических уровней в отсутствие V-переходов, т. е. при $\Omega_R = 0$: при учете только Λ -переходов квазиэнергетические уровни сужаются, начиная с напряженности поля $\varepsilon_0 \sim \varepsilon_2$, что и является причиной интерференционной стабилизации Λ -типа. Следовательно, по сравнению со схемой, в которой учитываются только Λ -переходы, рассматриваемая здесь схема (рис. 2) имеет качественные отличия: в такой схеме при $\delta = \Delta/2$ отсутствуют сужение уровней (вплоть до $\varepsilon_0 \approx 2\varepsilon_3$) и индуцированная полем стабилизация атома, но зато возникает один квазиэнергетический уровень (x_1), стабильный при любых значениях напряженности поля от 0 до ε_3 .

«Абсолютная» стабильность уровня x_1 является результатом специального выбора расстройки δ . При $\delta \sim \Delta$, но $\delta \neq \Delta/2$ у x_1 появляется ширина, малая по сравнению с ионизационной шириной Γ и пропорциональная ($\delta - \Delta/2$)². В зависимости от напряженности ε_0 , ширина уровня | Im[$x_1(\varepsilon_0)$]| имеет максимум при $\varepsilon_0 \sim \varepsilon_1$ и при $\varepsilon_0 > \varepsilon_1$ убывает, что свидетельствует о сужении уровня и стабилизации атома [16]. Таким образом, в общем случае $\delta \neq \Delta/2$ (но $\delta \sim \Delta$), в рассматриваемой трехуровневой системе (рис. 2) один из трех квазиэнергетических уровней (x_1) по мере роста поля сперва испытывает обычное ионизационное уширение, а затем — сужение, причем сужение начинается с аномально низких полей (по сравнению со схемой без V-переходов).

При больших значениях расстройки, в принципе, решения уравнения (13) можно найти, представляя их в виде разложения по степеням $1/\delta$. Однако здесь мы эти решения не приводим, ввиду того что сама по себе применимость такого разложения оказывается формально оправданной только при очень больших расстройках,

$$|\delta| > \frac{\Omega_R^2}{\Gamma} = \frac{1}{n_0^{\prime 3}} = \Delta', \tag{18}$$

т.е. при расстройках, превышающих расстояние между соседними ридберговскими уровнями $E_{n'}$. При этом более адекватной является четырехуровневая модель.

Решение задачи о фотоионизации не исчерпывается нахождением квазиэнергий. В принципе, необходимо решение начальной задачи, т. е. нахождение полной волновой функции электрона в поле $\Psi(t)$ или, по крайней мере, ее проекции на связанные состояния $\Psi_{bound}(t)$. При мгновенном включении и выключении взаимодействия эта задача может быть решена методом квазиэнергий и квазиэнергетических состояний. При этом функция $\Psi_{bound}(t)$ представляется в виде суперпозиции квазиэнергетических функций

$$\Psi_{bound}(t) = \sum_{k} C_k \exp(-i\gamma_k t)\psi_k,$$
(19)

где ψ_k — квазиэнергетические функции, соответствующие квазиэнергиям γ_k и определяемые из решения уравнений типа (12), а коэффициенты разложения C_k определяются из начальных условий [17].

Для трехуровневой системы (рис. 2) точное аналитическое решение начальной задачи возможно в случае, когда расстройка δ равна половине расстояния между уровнями E_1 и E_2 , $\delta = \Delta/2$. Опуская громоздкие выкладки, приведем результат:

$$w_{i}(t) = 1 - \langle \Psi_{bound}(t) | \Psi_{bound}(t) \rangle = \frac{\Omega_{R}^{2} + (\Delta/2)^{2}}{2\Omega_{R}^{2} + (\Delta/2)^{2}} \left[1 - \exp(-\Gamma t) \right] + \frac{\Gamma}{2\beta} \frac{\Omega_{R}^{2}}{2\Omega_{R}^{2} + (\Delta/2)^{2}} \exp(-\Gamma t) \sin(2\beta t) - \frac{\Gamma^{2}}{2\beta^{2}} \frac{\Omega_{R}^{2} + (\Delta/2)^{2}}{2\Omega_{R}^{2} + (\Delta/2)^{2}} \exp(-\Gamma t) \sin^{2}(\beta t), \quad (20)$$

где параметр β определен уравнением (17).

Согласно уравнению (20) атом ионизуется за время $t_i \sim 1/\Gamma$. При этом, однако, даже в асимптотическом пределе $t \gg t_i$ существует конечная, отличная от нуля остаточная вероятность нахождения атома на дискретных уровнях w_{res} :

$$w_{res} = \frac{\Omega_R^2}{2\Omega_R^2 + (\Delta/2)^2}.$$
(21)

Ввиду того что $\Omega_R \propto \varepsilon_0$, в области слабых полей ($\Omega_R < \Delta/2$) остаточная вероятность $w_{res}(\varepsilon_0)$ (21) является растущей функцией напряженности поля ε_0 . При $\Omega_R > \Delta/2$ вероятность ионизации $w_{res}(\varepsilon_0)$ насыщается на уровне 1/2. Следует подчеркнуть, что данный предел характерен только для трехуровневой модели. При рассмотрении модели с большим числом уровней предельное значение остаточной вероятности $w_{res}(\varepsilon_0)$ при

больших значениях ε_0 будет другим, но, тем не менее, оно будет конечным и, следовательно, вероятность ионизации никогда не достигнет единицы. Подробнее вопрос о влиянии числа уровней, вовлеченных в рассмотрение, на результаты задачи, рассматривается ниже в разд. 4 при численном решении задачи. Отметим, что конечность остаточной вероятности (вероятности того, что атом не ионизуется в пределе лазерного импульса сколь угодно большой длительности) существенно связана с учетом V-переходов: в случае, когда V-канал отсутствует, асимптотическая остаточная вероятность равна нулю. Этот вывод следует, в частности, и из уравнения (21), в котором отсутствие V-канала соответствует случаю $\Omega_R \equiv 0$ и, следовательно, $w_{res} \equiv 0$.

Из (20) следует, что для проявления V-стабилизации необходим лазерный импульс значительной длительности. Действительно, если длительность импульса t столь мала, что выполняются неравенства $\Gamma t \ll 1$ и $\beta t \ll 1$, то выражение в правой части уравнения (20) можно разложить в ряд Тейлора по времени t, что в линейном приближении приводит уравнение (20) к виду, тождественному результату теории возмущений («золотое правило Ферми») [18]:

$$w_i(t) = \Gamma t. \tag{22}$$

Очевидно, что уравнение (22) не описывает никакой стабилизации, так как согласно (22) $w_i \propto \varepsilon_0^2$, т.е. вероятность ионизации монотонно растет с ростом напряженности поля.

В промежуточной области длительностей импульса, $\beta^{-1} \ll t \ll \Gamma^{-1}$, как нетрудно проверить, основной вклад в вероятность ионизации $w_i(t)$ вносит первое слагаемое в правой части уравнении (20). В силу предположения $\Gamma t \ll 1$ экспонента $\exp(-\Gamma t)$ может быть разложена в ряд, что дает

$$w_i(t) \approx \frac{\Omega_R^2 + (\Delta/2)^2}{2\Omega_R^2 + (\Delta/2)^2} \,\Gamma t.$$
(23)

Это выражение также не описывает никакой стабилизации, так как соответствующая вероятность ионизации $w_i(\varepsilon_0)$ по-прежнему остается монотонно растущей функцией напряженности поля ε_0 .

И, наконец, только при длительности импульса t, превышающей время ионизации атома $1/\Gamma$, $\Gamma t > 1$, вероятность ионизации $w_i(\varepsilon_0)$ насыщается и выходит на уровень

$$w_i = 1 - w_{res},\tag{24}$$

где остаточная вероятность нахождения на дискретных уровнях w_{res} определяется уравнением (21). По нашему определению, насыщение функции $w_i(\varepsilon_0)$ на уровне меньшем единицы интерпретируется как стабилизация атома. При длительности импульса порядка классического кеплеровского периода, $t \sim T_K$, полученное условие стабилизации $\Gamma t \sim 1$ выполняется в полях с напряженностью $\varepsilon_0 \sim \varepsilon_2$, т.е. при тех же условиях, что и в случае интерференционной стабилизации за счет рамановских переходов Λ -типа. Если же интерсоваться областью значительно более слабых полей, $\varepsilon_0 \sim \varepsilon_1$, то в этом случае условие стабилизации $\Gamma t > 1$ накладывает весьма жесткое ограничение снизу на длительность импульса t:

$$t > (n_0/n_0')^3 T_K.$$
 (25)

Степень жесткости условия (25) может быть оценена, например, при значениях параметров, отвечающих условиям эксперимента [4]: $T_K \approx 3$ пс, $n_0 = 26$, $n'_0 = 5$ и $(n_0/n'_0)^3 \approx 10^2$. При этом условие (25) выполняется, если t > 50 пс. Следует отметить, что согласно результатам численных расчетов, приведенных ниже (разд. 4), условие (25) несколько смягчается при учете большего числа уровней в рассматриваемой модельной системе. Тем не менее по-прежнему стабилизация за счет переходов V-типа может наблюдаться в области сравнительно слабых полей, $\varepsilon_0 \sim \varepsilon_1$, только если длительность импульса t достаточно велика и, по крайней мере, превышает несколько кеплеровских периодов. В этом плане стабилизация за счет переходов V-типа радикально отличается от стабилизации за счет переходов Λ -типа, которая проявляется наиболее ярко при $t < T_K$.

Везде в настоящем разделе предполагалось, что $n_0 \gg n'_0$. Следует отметить, что столь сильное неравенство может и не выполняться. Например, при частоте ω , близкой к энергии связи электрона на уровне E_{n_0} , $\omega \approx 1/2n_0^2$, и, как следует из законов сохранения энергии для Λ - и V-переходов, $n'_0 \approx n_0/\sqrt{2}$. Следовательно, вообще говоря, имеет смысл и рассмотрение случая $n_0 \sim n'_0$. Легко видеть, что в такой ситуации все три характеристических поля ε_1 , ε_2 и ε_2 , определенные уравнением (14) и диаграммой на рис. 3, оказываются близкими друг к другу, $\varepsilon_1 \sim \varepsilon_2 \sim \varepsilon_3$. Это значит, что при $n_0 \sim n_0'$ область существования V-стабилизации $\varepsilon_1 < \varepsilon < \varepsilon_3$ практически вырождается в точку, и единственным реализуемым механизмом стабилизации остается стабилизация за счет переходов Л-типа. Таким образом, для существования нетривиальной области параметров, в которой может иметь место стабилизация атома за счет переходов V-типа, необходимо достаточное превышение частоты поля над пороговым значением $\omega \gg |E_{n_0}|$. При этом для реализации резонансов с нижележащими ридберговскими уровнями необходимо, чтобы частота ω была не слишком велика, $\omega \ll |E_q|$, где Е_а — энергия основного состояния атома. В целом условия на величину частоты лазерного поля, обеспечивающие возможность существования эффекта стабилизации атома за счет переходов V-типа, могут быть записаны в виде неравенств

 $|E_{n_0}| \ll \omega \ll |E_g|. \tag{26}$

4. ЧЕТЫРЕХУРОВНЕВАЯ МОДЕЛЬ АТОМА

Как было отмечено в предыдущем разделе, при большой величине расстройки, $\delta \geq \Delta'$ (18), рассмотренная выше трехуровневая модель становится неприменимой. Естественным простейшим обобщением трехуровневой модели является модель четырех уровней, $E_{n_0} \equiv E_1$, $E_{n_0+1} \equiv E_2$ и, например, $E_{n'_0-1} \equiv E_{1'}$ и $E_{n'_0} \equiv E_{2'}$ (см. рис. 4).

Для четырехуровневой модели система уравнений (5) принимает вид

$$\begin{split} i\dot{a}_{1'}(t) &= (E_{1'} + \omega)a_{1'}(t) + \Omega_R \left[a_1(t) + a_2(t)\right], \\ i\dot{a}_{2'}(t) &= (E_{2'} + \omega)a_{2'}(t) + \Omega_R \left[a_1(t) + a_2(t)\right], \\ i\dot{a}_1(t) &= \Omega_R \left[a_{1'}(t) + a_{2'}(t)\right] + E_1a_1(t) - i\frac{\Gamma}{2} \left[a_1(t) + a_2(t)\right], \\ i\dot{a}_2(t) &= \Omega_R \left[a_{1'}(t) + a_{2'}(t)\right] + E_2a_2(t) - i\frac{\Gamma}{2} \left[a_1(t) + a_2(t)\right], \end{split}$$

$$(27)$$

где, по-прежнему, Γ и Ω_R определены уравнениями (8).

Характеристическое уравнение системы (27) — это уравнение четвертого порядка, являющееся обобщением уравнения (13):

$$(x-\delta)(x-\delta+\Delta')\left[x(x-\Delta)+i\frac{\Gamma}{2}(2x-\Delta)\right] = \Omega_R^2(2x-\Delta)\left[2(x-\delta)+\Delta'\right], \quad (28)$$

где, как и прежде, x — это квазиэнергия, отсчитанная от уровня E_1 , $x = \gamma - E_1$, а параметры δ , Δ и Δ' определены уравнениями (7) и (9).

Чтобы проанализировать аналитически в рамках простых формул область больших расстроек $\delta \geq \Delta'$, рассмотрим наиболее простой случай, когда $\delta = \Delta'/2$. Считая Δ' большим параметром задачи ($\Delta' \gg \Delta$), замечаем, что при $\delta = \Delta'/2$ правая часть уравнения (28) не содержит Δ' . Поэтому в нулевом приближении по $1/\Delta'$ решения уравнения (28) совпадают с решениями этого же уравнения, но с нулевой правой частью:

$$x_1^{(0)} = \delta, \quad x_2^{(0)} = \delta - \Delta, \quad x_{3,4}^{(0)} = \frac{\Delta}{2} - i\frac{\Gamma}{2} \pm \sqrt{\left(\frac{\Delta}{2}\right)^2 - \left(\frac{\Gamma}{2}\right)^2}.$$
 (29)

Решения (29) вообще не зависят от частоты Раби Ω_R . Это значит, что в нулевом порядке по $1/\Delta'$ при $\delta = \Delta'/2$ в силу интерференции взаимодействие уровней $E_{1,2}$ с уровнями $E_{1',2'}$ оказывается подавленным. Поэтому решения (29) — это те значения квазиэнергии, которые получились бы для системы двух уровней, E_1 и E_2 , связанных с континуумом $(x_{3,4})$, и двух нижележащих уровней $E_{1'}$ и $E_{2'}$, которые не связаны ни друг с другом, ни с верхними уровнями, ни с континуумом $(x_{1,2})$. В связи с этим понятно, что решения $x_{3,4}$ (29) описывают сужение одного из уровней при $\Gamma > \Delta$ ($\varepsilon_0 > \varepsilon_2$), соответствующее интерференционной стабилизации атома за счет переходов Λ -типа [2]. Требование малости поправок к решению (29), вносимых ненулевой правой частью (28), приводит к условию

$$|\delta| < \Omega_R, \tag{30}$$

которое выполняется вплоть до полей $\varepsilon_0 \sim \varepsilon_3$. Следовательно, в случае, когда расстройка δ порядка половины расстояния между нижележащими уровнями Δ' , имеет место стабилизация Λ -типа. Этот результат не может быть получен в рамках моделей, содержащих только один уровень в серии уровней $\{E_n'\}$ (см. рис. 1), так как является следствием частичного взаимопогашения вкладов от различных уровней этой серии (в данном случае уровней $E_{1'}$ и $E_{2'}$). Область расстроек, в которой V-переходы в значительной мере компенсируют друг друга, достаточно широка и сравнима с величиной Δ' . Таким образом, можно сформулировать условия на величину расстройки, при которых возникает тот или иной тип стабилизации: вблизи резонанса, при выполнении условия

$$|\delta| \ll \Delta',\tag{31}$$

имеет место V-стабилизация, которая осуществляется в полях $\varepsilon_0 > \varepsilon_1$, слабых по сравнению с полями $\varepsilon_0 \sim \varepsilon_2$, характерными для Λ -стабилизации в отсутствие V-канала переходов. В свою очередь Λ -стабилизации возникает вдали от резонанса, при $|\delta| \sim \Delta'/2$, в диапазоне полей $\varepsilon_0 > \varepsilon_2$. Эти два типа стабилизации переходят друг в друга при изменении расстройки δ на масштабе $\sim \Delta'$.

5. РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ РАСЧЕТОВ

При всей привлекательности и простоте рассмотренных выше моделей, они не могут претендовать на удовлетворительное количественное описание спектра ридберговского атома и динамики его ионизации. С целью приближения к реальной действительности нами были рассмотрены более сложные, многоуровневые модели, причем задача о фотоионизации решалась численно. Численное решение позволило также проанализировать зависимость результатов от других ранее использованных приближений, таких как, например, приближение мгновенного включения взаимодействия и др.

Прежде всего была проведена проверка существования эффекта стабилизации атома за счет переходов V-типа в случае сложных многоуровневых моделей, которые необходимо привлекать для количественного описания фотоионизации реального ридберговского атома. На рис. 5 приведены кривые вероятности ионизации, отвечающие последовательно и симметрично наращиваемому количеству уровней, соседствующих с первоначально заселенным уровнем E_{n_0} (рассмотрен случай точного резонанса, $\delta = 0$). При этом предполагалось, что эти уровни эквидистантны и обладают равными матричными элементами переходов (см. формулы (8)). Как легко видеть, добавление новых уровней только усиливает эффект стабилизации.

Также проводилось сравнение результатов решения задачи в случае плавного и мгновенного включения лазерного поля (рис. 6). При этом для двух видов включения сопоставлялись друг с другом результаты, полученные для импульсов с одинаковыми значениями пиковой напряженности поля и энергии в импульсе. Плавное включение

Рнс. 5. Вероятность ионизации в зависимости от поля в случае различного числа уровней в серии $\{E_n\}$: 3, 5, ..., 21. Лазерный импульс имеет прямоугольную форму, расчеты выполнены при следующих значениях параметров: $t = 8T_K$, $\delta = 0$, $(n_0/n_0')^{3/2} = 10$

Рис. 6. Вероятность ионизации, вычисленная в рамках трехуровневой модели, в зависимости от поля для двух типов включения лазерного импульса — плавного (1) и мгновенного (2); а — короткие импульсы ($t = T_K$), б — импульсы значительной длительности ($t = 5T_K$). Остальные параметры: $\delta = \Delta/2$, ($n_0/n_0'^{3/2} = 10$

моделировалось огибающей вида $f(t) = \sin^2(t/\tau)$. Оказалось, что для небольших длительностей импульса результаты вычислений как для мгновенного включения, так и для плавного близки друг к другу (рис. 6*a*). Если рассмотреть более длительные импульсы, то видно (рис. 6*b*), что обе кривые вероятности ионизации как для плавного, так и для мгновенного включения совпадают друг с другом в области применимости теории возмущений, но дальше расходятся. При этом существенно, что плавное включение не привносит качественных изменений и не разрушает эффект стабилизации, хотя эффект и оказывается менее ярко выраженным, чем в случае мгновенного включения взаимодействия атома с полем.

Зависимость решений от длительности лазерного импульса иллюстрируется результатами расчетов, представленными на рис. 7*a* ,*б*. Рисунки 7*a* и 7*б* отличаются друг от друга количеством учитываемых атомных уровней: три близких уровня (E_{n_e} , E_{n_e+1} и

3 ЖЭТФ, №3 (9)

Рис. 7. Вероятность ионизации в зависимости от поля в случае мгновенного включения лазерного импульса. Длительность импульса составляет $t = T_K/2$ (1), $2T_K$ (2), $8T_K$ (3). Остальные параметры: $\delta = 0$, $(n_0/n_0')^{3/2} = 10$. Расчетная схема содержит 3 + 1 (a) и 9 + 1 (б) уровень

 E_{n_0-1}) + один уровень $E_{n'_0}$ (рис. 7*a*) и девять уровней E_n + один уровень $E_{n'_0}$ (рис. 7*b*). Из рисунка видно, что остановка роста вероятности ионизации с увеличением напряженности поля, т.е. стабилизация атома, наступает в тем меньших полях, чем больше длительность импульса. Однако чем большее количество уровней содержит модель, тем результаты менее чувствительны к длительности импульса. Таким образом, условие (25), полученное в рамках трехуровневой модели, смягчается при переходе к моделям, в которых учитывается большее количество уровней. Тем не менее даже в таких многоуровневых моделях стабилизация атома за счет переходов V-типа может иметь место, только если длительность импульса составляет по крайней мере несколько кеплеровых периодов.

Следует отметить, что в количественном отношении результаты расчетов в моделях с малым и большим числом учитываемых уровней заметно отличаются друг от друга. Тем не менее все качественные утверждения, сделанные на основании простейших моделей с малым количеством уровней, сохраняют силу и в случае более сложных моделей. Поэтому мы не рассматриваем здесь вопрос о том, сколь много уровней следует учитывать в моделях рассматриваемого типа для получения правильного количественного описания ионизации реального ридберговского атома. Возможно, что на самом деле такая задача потребует не только количественной, но и качественной модификации модели расчетов. Этот вопрос требует отдельного рассмотрения и, несмотря на свою несомненную актуальность, выходит за рамки настоящей статьи.

На рис. 8 приведены кривые зависимости вероятности ионизации от расстройки δ при различных значениях параметра $V = \varepsilon/\omega^{5/3}$. Расчетная схема содержит три уровня $E_{n'_0}$ и пятнадцать уровней E_n . Полученные кривые полностью подтверждают сделанное в предыдущем разделе утверждение о том, что зависимость решений от расстройки проявляется на масштабе ~ Δ' . В случае сильной резонансной связи ($\delta = 0, \pm \Delta'$) имеет место стабилизация V-типа, характеризуемая сильным подавлением процесса ионизации, наступающим в относительно слабых полях $V ~ V_1$. В обратном случае, т. е. в межрезонансной области ($\delta ~ \pm \Delta'/2$), имеет место стабилизация Λ -типа [2], проявляющаяся только в значительно более сильных полях, $V \ge V_2 ~ 1$. Действительно, в области $\delta ~ \pm \Delta'/2$ кривая $w_i(\delta)$ на рис. 8 при V = 3 лежит ниже кривой $w_i(\delta)$ при V = 1, что указывает на наличие стабилизации атома в диапазоне полей V > 1.

Рис. 8. Вероятность ионизации в зависимости от отстройки для различной напряженности лазерного поля (V = 0.1 (1), 0.3 (2), 1 (3), 3 (4)). Количество уровней в серии $\{E_n\}$ равно 15, в серии $\{E_{n'}\}$ — 3. Лазерный импульс имеет прямоугольную форму, параметры импульса: $t = 3T_K$, $(n_0/n'_0)^{3/2} = 10$

6. ЗАКЛЮЧЕНИЕ

В настоящей работе дано последовательное теоретическое описание фотоионизации ридберговского атома в сильном лазерном поле с учетом рамановских переходов как Λ -так и V-типа и исследованы условия и закономерности возникновения эффекта стабилизации атома в таких условиях. Показано, что резонансные переходы V-типа определяют новый тип интерференционной стабилизации ридберговских атомов, отличный от стабилизации за счет переходов Λ -типа. Основной особенностью V-стабилизации является возможность ее возникновения в весьма умеренных полях ($\varepsilon_0 \sim \varepsilon_1$), намного более слабых, чем в случае Λ -стабилизации. Так, например, при $n_0/n'_0 = 5$ интенсивность лазерного поля, при которой начинаются отклонения от теории возмущений, на два порядка меньше той интенсивности, при которой наблюдались бы нелинейные эффекты в отсутствие V-переходов.

Как показано выше, необходимые условия для реализации эффекта стабилизации V-типа определяются уравнениями (25), (26) и (31): длительность импульса должна быть достаточно велика (25), частота поля ω должна быть много больше энергии связи электрона на ридберговском уровне $|E_{n_0}|$, но много меньше энергии связи в основном состоянии $|E_g|$ (26), и расстройка резонанса δ должна быть много меньше расстояния между соседними ридберговскими уровнями серии $E_{n'}$ (с энергией $E_{n'} \sim E_{n_0} - \omega$) (31). Как было показано выше, ограничение на длительность импульса (25) является наиболее жестким в простейшей трехуровневой модели и несколько смягчается при переходе к более реалистичным многоуровневым моделям. При этом, однако, по-прежнему остается в силе требование, что длительность импульса должна быть много больше классического кеплеровского периода T_K .

Необходимо отметить, что ни в одном из предыдущих экспериментов по стабилизации и перераспределению населенности [3, 4, 19] не были выполнены все условия, необходимые для наблюдения стабилизации ридберговского атома за счет V-переходов. Например, в работе [4] не наблюдалось изменений в перераспределении населенностей на ридберговских уровнях при варьировании частоты поля ω . При этом расстройка δ изменялась на интервале порядка 10Δ , где Δ — расстояние между соседними ридберговскими уровнями группы $\{E_n\}$ (см. рис. 1). Однако в масштабе расстояния между соседними уровнями группы $\{E_{n'}\}, \Delta',$ этот интервал изменения δ весьма мал: он меньше, чем 0.1∆'. С другой стороны, в соответствии с полученными выше результатами именно при изменении расстройки δ на интервале порядка Δ' могут быть обнаружены существенные изменения в механизме ионизации и стабилизации атома и в картине распределения населенности на атомных уровнях. Кроме того, длительность лазерного импульса в эксперименте [4] составляла менее одного кеплерова периода, чего, согласно (25), явно недостаточно для возникновения стабилизации атома за счет рамановских переходов V-типа. Таким образом, в целом следует признать, что до настоящего времени стабилизация атомов за счет рамановских переходов V-типа экспериментально не наблюдалась. В то же время условия, необходимые для такого эксперимента, представляются вполне реализуемыми. По нашему мнению, постановка такого эксперимента представляет несомненный интерес. Условия, при которых возможно наблюдение стабилизации V-типа, могут быть, например, такими: $n_0 = 25$, $n'_0 = 5$, $\omega \approx 8 \cdot 10^{14} \text{ c}^{-1}$, t > 15 пс и $\varepsilon \ge 10^6$ В/см, что соответствует интенсивности $I \ge 10^9$ Вт/см².

Авторы выражают благодарность участникам научного семинара под руководством Н. Б. Делоне (ИОФАН) за ценные замечания при обсуждении проблемы.

Данная работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 9602-17649) и Гражданского фонда исследования и развития, США (грант № RP1-244).

Литература

- 1. M. Gavrila and J. Z. Kaminski, Phys. Rev. Lett. 52, 613 (1984).
- 2. M. V. Fedorov and A. M. Movsesian, J. Phys. B 21, L155 (1988).
- 3. J. H. Hoogenraad, R. B. Vrijen, and L. D. Noordam, Phys. Rev. A 50, 4133 (1994).
- 4. L. D. Noordam, H. Stapelfeldt, and D. I. Duncan, Phys. Rev. Lett. 68, 1496 (1992).
- 5. M. Yu. Ivanov, Phys. Rev. A 49, 1165 (1994).
- 6. A. Wojcik and R. Parzinski, Phys. Rev. A 50, 2475 (1994).
- 7. A. Wojcik and R. Parzinski, J. Opt. Soc. Am. B 12, 369 (1995).
- 8. И. Я. Берсонс, ЖЭТФ 80, 1727 (1981).
- 9. N. B. Delone, S. P. Goreslavsky, and V. P. Krainov, J. Phys. B 22, 2941 (1989).
- 10. M. S. Adams, M. V. Fedorov, V. P. Krainov, and D. D. Meyerhofer, Phys. Rev. A 52, 125 (1995).
- 11. М. В. Федоров, Электрон в сильном световом поле, Наука, Москва (1991).
- 12. M. V. Fedorov, Laser Physics 3, 219 (1993).
- 13. Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика, Наука, Москва (1989).
- 14. Я. Б. Зельдович, ЖЭТФ 51, 1492 (1966).
- 15. В. И. Ритус, ЖЭТФ 51, 1544 (1966).
- 16. M. V. Fedorov and N. P. Poluektov, Laser Physics 7, 299 (1997).
- 17. M. V. Fedorov, M.-M. Tegranchi, and S. M. Fedorov, J. Phys. B 29, 2907 (1996).
- 18. M. V. Fedorov and A. E. Kazakov, Progr. Quant. Electr. 13, 1 (1989).
- 19. R. B. Vrijen, J. H. Hoogenraad, and L. D. Noordam, Phys. Rev. A 52, 2279 (1995).