ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ *S* – *I* – *S*-СТРУКТУР С ЛОКАЛИЗОВАННЫМИ СОСТОЯНИЯМИ В МАТЕРИАЛЕ ПРОСЛОЙКИ

И. А. Девятов*, М. Ю. Куприянов

Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына Московского государственного университета им. М. В. Ломоносова 119899, Москва, Россия

Поступила в редакцию 20 января 1998 г.

Целью данной работы является теоретическое исследование процесса упругого резонансного туннелирования через одиночные локализованные состояния в диэлектрической прослойке I, расположенной в области сужения между двумя массивными сверхпроводящими электродами, а также расчет вольт-амперной характеристики (BAX) такой структуры. В результате проведенного анализа предсказана возможность появления существенного тока через структуру не при $|eV| = 2\Delta$ (Δ — модуль параметра порядка сверхпроводящих электродов) как в случае обычного S - I - S-перехода, а при $|eV| \ge \Delta$, а также наличие на BAX участков с отрицательным дифференциальным сопротивлением в случае туннелирования через одиночное локализованное состояние. Усреднение BAX по ансамблю локализованных состояний, распределенных равномерно в объеме прослойки, и по энергии вблизи химического потенциала μ в пределе $\Gamma_0/\Delta \gg 1$ (Γ_0 — полуширина линии резонанса локализованного состояния) приводит к значениям избыточного тока меньшением Γ_0 происходит переход от избытка к недостатку тока на BAX.

В последнее время появилось значительное число экспериментальных результатов [1–5], подтверждающих гипотезу [6] о резонансном характере транспорта тока в ВТСП джозефсоновских контактах с прослойками из оксидных полупроводников. Исследование стационарных свойств таких переходов [7] показало, что наличие локализованных состояний в прослойке приводит к образованию специфических джозефсоновских контактов S - c - S-типа. В отличие от хорошо изученных «геометрических» S - c - S-сужений [8–13] свойства контактов рассматриваемого ниже типа определяются не столько геометрическими факторами, сколько соотношением между характерными энергиями задачи: полушириной линии резонанса Γ_0 и модулем параметра порядка сверхпроводящих электродов Δ .

Проблема вычисления полного тока через S - c - S-структуры с не зависящей от энергии квазичастиц прозрачностью D ($0 < D \leq 1$) в общем виде была решена в [9]. Однако лишь недавно [10] в рамках обобщенного метода ВТК [11], вычисления были доведены до конкретных, удобных для сравнения с экспериментом, результатов и была доказана [12] эквивалентность расчетов, проведенных в модели квазиклассических траекторий [10] и в формализме келдышевских функций Грина [9].

Целью данной работы является обобщение разработанного в [10] подхода на случай S - c - S-структур с прозрачностью D, зависящей от энергии квазичастиц из-за наличия локализованных состояний в области сужения. При этом в отличие от рассмотренного в работах [14, 15] туннелирования по «резонансно-перколяционным» цепочкам

^{*}E-mail: idev@rsfq.npi.msu.su

из множества локализованных состояний мы ограничимся ниже лишь процессами однократного резонансного туннелирования типа «сверхпроводящий электрод — локализованное состояние — сверхпроводящий электрод». В зависимости от концентрации локализованных состояний транспорт тока через структуру определяется или средним током через множество локализованных состояний, или током через одиночное локализованное состояние. Ниже будут последовательно рассмотрены оба эти предела.

1. МОДЕЛЬ ПЕРЕХОДА

Будем считать, что геометрический размер сужения вдоль направления тока существенно меньше длин когерентности ξ прослойки и электродов, а также упругой и неупругой длин свободного пробега электронов. Для упрощения расчетов ограничимся 1D-моделью и предположим также, что граница между сверхпроводящими электродами и материалом области сужения прозрачна, а диэлектрический барьер имеет форму прямоугольника с высотой W и толщиной 2d, локализованного внутри сужения и содержащего отрицательный δ -функциональный потенциал $-B\delta(z-z_0)$, описывающий локализованное состояние, расположенное на расстоянии z_0 от центра прямоугольного потенциала [16]. Кроме того, следуя аргументам, изложенным в [10], будем считать приложенное к переходу напряжение V фиксированным, а сопротивление изолирующей прослойки с локализованным состоянием существенно меньшим сопротивления всего сужения в целом. Поэтому падение напряжения происходит вне *I*-слоя с локализованным состоянием. Ниже мы ограничимся лишь случаем изотропного характера спаривания в S-электродах. Однако развитый метод естественным образом обобщается на случаи других возможных типов симметрий параметра порядка в ВТСП структуpax [17].

2. ОСНОВНЫЕ СООТНОШЕНИЯ

Сделанные предположения позволяют свести задачу о вычислении ВАХ к сшивке решений уравнений Боголюбова-де Женна в области сужения, пренебрегая при этом имеющимися в этих уравнениях неградиентными слагаемыми, и представить эти решения в виде суперпозиции плоских волн, описывающих процессы распространения в области слабой связи электронных и дырочных возбуждений с энергией E. Так, волновая функция ускоряющихся под действием приложенного потенциала V квазичастиц, порожденная электрон-подобным возбуждением левого сверхпроводника, имеет вид [10]

$$\psi_{el} = \sum_{n} \left[(a_{2n}A_n + J_0\delta_{n,0}) \exp(ikx) + B_n \exp(-ikx) \right] \exp\left\{ -i(E + 2neV)t \right\},$$

$$J_n = \sqrt{1 - |a_n(E)|^2} \quad (-d < z < z_0),$$

$$\psi_h = \sum_{n} \left[A_n \exp(ikx) + a_{2n}B_n \exp(-ikx) \right] \exp\left\{ -i(E + 2neV)t \right\} \quad (-d < z < z_0),$$

$$\psi_{el} = \sum_{n} \left[C_n \exp(ikx) + a_{2n+1}D_n \exp(-ikx) \right] \exp\left\{ -i(E + (2n+1)eV)t \right\} \quad (z_0 < z < d),$$
(1)

$$\psi_h = \sum_n [a_{2n+1}C_n \exp(ikx) + D_n \exp(-ikx)] \exp\{-i(E + (2n+1)eV)t\} \quad (z_0 < z < d)$$

Здесь $a_m = a(E + meV)$ — коэффициент андреевского отражения квазичастиц от сверхпроводящих электродов [10]:

$$a(E) = \frac{1}{\Delta} \begin{cases} \operatorname{sign}(E)\Delta^2 \left(|E| + \sqrt{E^2 - \Delta^2} \right)^{-1}, & |E| \ge \Delta \\ E - i\sqrt{\Delta^2 - E^2}, & |E| < \Delta \end{cases},$$
(2)

 μ — энергия Ферми, Δ — модуль параметра порядка электродов ($\Delta \ll \mu < W$). Связь между коэффициентами, определяющими волновую функцию по разные стороны от локализованных состояний, определяется стандартными условиями сшивки, приводящими к

$$\begin{pmatrix} B_n \\ C_n \end{pmatrix} = S_{el}(E_0, E_e^n) \begin{pmatrix} a_{2n}A_n + J\delta_{n,0} \\ a_{2n+1}D_n \end{pmatrix},$$

$$\begin{pmatrix} A_n \\ D_{n-1} \end{pmatrix} = S_h(E_0, E_h^n) \begin{pmatrix} a_{2n}B_n \\ a_{2n-1}C_{n-1} \end{pmatrix}.$$

$$(3)$$

Здесь $E_e^n = E + 2neV$, $E_h^n = E - 2(E + neV)$, S_{el} и $S_h = S_{el}^*$ — матрицы рассеяния соответственно для электронов и дырок [8, 10]:

$$S_{el} = \begin{pmatrix} r & t \\ t & r' \end{pmatrix}, \quad r(E_0, E) = \frac{up}{dn}, \quad t(E_0, E) = \frac{1}{dn}, \quad r'(E_0, E) = -\frac{up^*}{dn}, \tag{4}$$

$$dn = dn(E_0, E) = \frac{1}{\Gamma_0} \times \left\{ \left(\frac{k^2 - k^2}{k^2 + \kappa^2} \right) (E_0 - E) - \left(\frac{k^2 + k^2}{2k\kappa} \right) \left(\frac{\Gamma_1 + \Gamma_2}{2} \right) \right\} \right],$$
(5)
$$up = up(E_0, E) = \frac{1}{\Gamma_0} \times$$

$$\times \left[\left(\frac{\Gamma_2 - \Gamma_1}{2} \right) + i \left\{ \left(\frac{\kappa^2 - k^2}{\kappa^2 + k^2} \right) \left(\frac{\Gamma_1 + \Gamma_2}{2} \right) - (E_0 - E) \right\} \right], \quad \Gamma_{1,2} = \Gamma_0 \exp(\pm 2\kappa z_0), \tag{6}$$

$$\Gamma_0 = 2(W - E)\sqrt{D_0}, \quad D_0 = 16 \frac{k^2 \kappa^2}{(k^2 + \kappa^2)^2} \exp(-4\kappa d),$$
(7)

$$\kappa = \sqrt{2m(W-\mu)}, \quad k = \sqrt{2m\mu}.$$

В выражениях (1)–(7) Γ_0 — полуширина линии резонанса, расположенного в центре барьера локализованного состояния с собственной энергией равной энергии Ферми μ , D_0 — прозрачность прямоугольного потенциала без локализованного состояния, κ — обратный радиус локализованного состояния, $\Gamma_{1,2}$ — скорость распада резонансного состояния соответственно в правый (левый) электрод, $E_0 = W - B^2/8m$ — значение энергии локализованного состояния, m — эффективная масса электронов. Нетрудно проверить, что из (5)–(7) следует брейт-вигнеровская форма для амплитуды прохождения квазичастиц через барьер:

$$|t(E_0, E)|^2 = \frac{\Gamma_0^2}{(E_R - E)^2 + (\Gamma_1 + \Gamma_2)^2/4}, \quad E_R = E_0 + \frac{(k^2 - \kappa^2)}{2k\kappa} \frac{\Gamma_1 + \Gamma_2}{2}$$
(8)

 A_n

перенормированное значение энергии локализованного состояния [16].

Исключая из (3) коэффициенты C_n, D_n , приходим к следующему рекуррентному соотношение для B_n и A_n (с целью сокращения обозначений зависимость r и t от E_0 опущена):

$$F_n B_{n+1} - C_n B_n + H_n B_{n-1} = -r(E_e^n) J_0 \delta_{n,0}, \tag{9}$$

$$F_{n} = \frac{a_{2n+1}a_{2n+2}t(E_{e}^{n})t^{*}(E_{h}^{n+1})}{1 - a_{2n+1}^{2}b_{n}'}, \quad b_{n}' = \frac{r'^{*}(E_{h}^{n+1})}{r'^{*}(E_{e}^{n})}, \quad H_{n} = \frac{a_{2n}a_{2n-1}r(E_{e}^{n})t^{*}(E_{h}^{n})t(E_{e}^{n-1})}{r(E_{e}^{n-1})(1 - a_{2n-1}^{2}b_{n-1}')},$$
$$G_{n} = 1 - r(E_{e}^{n})r^{*}(E_{h}^{n})a_{2n}^{2} - \frac{a_{2n}^{2}a_{2n-1}^{2}r(E_{e}^{n})t^{*2}(E_{h}^{n})}{r'^{*}(E_{e}^{n-1})(1 - a_{2n-1}^{2}b_{n-1}')} - \frac{a_{2n+1}^{2}r'^{*}(E_{e}^{n+1})t^{2}(E_{e}^{n})}{r(E_{e}^{n})(1 - a_{2n+1}^{2}b_{n-1}')}.$$

Решения уравнения (9) имеет вид цепной дроби [18] (см. также [10, 13]):

$$B_{0} = -\frac{r(E_{e}^{0})J_{0}}{F_{0}S_{1} - G_{0} + H_{0}S_{-1}}, \quad B_{n} = B_{0} \prod_{i=1}^{|n|} S_{|i|},$$

$$S_{n,n>0} = \frac{H_{n}}{G_{n} - F_{n}S_{n+1}}, \quad S_{n,n>0} = \frac{F_{n}}{G_{n} - H_{n}S_{n+1}},$$

$$= r^{*}(E_{h}^{n})a_{2n}B_{n} + a_{2n-1}\frac{t^{*}(E_{h}^{n})t(E_{e}^{n-1})\left(B_{n-1} - a_{2n}a_{2n-1}B_{n}t^{*}(E_{h}^{n})/t^{*}(E_{e}^{n-1})\right)}{r(E_{e}^{n-1})(1 - a_{2n-1}^{2}b_{n-1}')}. \quad (10)$$

Волновая функция квазичастиц в *I*-слое, порождаемая электроноподобным возбуждением правого сверхпроводника, имеет вид подобный (1):

$$\begin{split} \psi_{el} &= \sum_{n} \left[(a_{2n-1}A'_{n} + J_{1}\delta_{n,1}) \exp(-ikx) + B'_{n} \exp(ikx) \right] \times \\ &\times \exp\left\{ -i\left(E + (2n-1)eV\right)t \right\} \quad (z_{0} < z < d), \\ \psi_{h} &= \sum_{n} \left[(A'_{n} \exp(-ikx) + a_{2n-1}B'_{n} \exp(ikx) \right] \times \\ &\times \exp\left\{ -i\left(E + (2n-1)eV\right)t \right\} \quad (z_{0} < z < d), \\ \psi_{el} &= \sum_{n} \left[C' \exp(-ikx) + a_{2(n-1)}D'_{n} \exp(ikx) \right] \times \\ &\times \exp\left\{ -i\left(E + 2(n-1)eV\right)t \right\} \quad (-d < z < z_{0}), \\ \psi_{h} &= \sum_{n} \left[(a_{2(n-1)}C'_{n} \exp(-ikx) + D'_{n} \exp(ikx) \right] \times \\ &\times \exp\left\{ -i\left(E + 2(n-1)eV\right)t \right\} \quad (-d < z < z_{0}). \end{split}$$
(11)

Проводя вычисления, аналогичные описанным выше, приходим к рекуррентному соотношению для B'_n подобному (9):

$$F'_{n}B'_{n+1} - G'_{n}B'_{n} + H'_{n}B'_{n-1} = -r'(E^{n-1}_{e})J_{1}\delta_{n,1},$$
(12)

$$F'_{n} = \frac{a_{2n}a_{2n-1}r'(E_{e}^{n-1})t^{*}(E_{h}^{n})t(E_{e}^{n})}{r'(E_{e}^{n})(1-a_{2n}^{2}b_{n})}, \quad b_{n} = \frac{r^{*}(E_{h}^{n})}{r^{*}(E_{e}^{n})}, \quad H'_{n} = \frac{a_{2n-2}a_{2n-3}t(E_{e}^{n-1})t^{*}(E_{h}^{n-1})}{1-a_{2n-2}^{2}b_{n-1}}$$
$$G'_{n} = 1 - r'(E_{e}^{n-1})r'^{*}(E_{h}^{n})a_{2n-1}^{2} - \frac{a_{2n}^{2}a_{2n-1}^{2}r'(E_{e}^{n-1})t^{*2}(E_{h}^{n})}{r^{*}(E_{e}^{n})(1-a_{2n}^{2}b_{n})} - \frac{a_{2n-2}^{2}r^{*}(E_{h}^{n-1})t^{2}(E_{e}^{n-1})}{r'(E_{e}^{n-1})(1-a_{2n-2}^{2}b_{n-1})}.$$

Введением нового индекса s = 1 - n и сменой обозначений $\beta_s = B'_{1-s} = B'_n$ рекуррентные соотношения (12) удается свести к виду (9) с $\delta_{n,0}$ в правой части. Поэтому решения (12) имеют вид подобный (10):

$$\beta_{0} = -\frac{r'(E_{e}^{0})J_{1}}{f_{0}s_{1} - g_{0} + h_{0}s_{-1}}, \quad \beta_{n} = \beta_{0} \prod_{i=1}^{|n|} s_{|i|},$$

$$s_{n,n>0} = \frac{h_{n}}{g_{n} - f_{n}s_{n+1}}, \quad s_{n,n<0} = \frac{f_{n}}{g_{n} - h_{n}s_{n-1}},$$
(13)

$$\alpha_n = A'_{1-n} = r'^* (E_h^{1-n}) a_{1-2n} \beta_n + t^* (E_h^{1-n}) \times \times a_{2(1-n)} \frac{\beta_{n-1} t(E_e^{1-n}) / r'(E_e^{1-n}) + \beta_n a_{1-2n} a_{2(1-n)} t^*(E_h^{1-n}) / r^*(E_e^{1-n})}{1 - a_{2(1-n)}^2 b_{1-n}},$$

где $h_n = F'_{1-n}, f_n = H'_{1-n}, g_n = G'_{1-n}, \alpha_n = A'_{1-n}.$

Ток через переход удобно считать в области сужения, где он выражается обычной квантовомеханической формулой для одночастичных возбуждений и представляется в форме фурье-ряда:

$$I(t) = \sum_{k} I_{k} \exp(2ikeVt),$$

$$I(t) = \sum_{k} I_{k} \exp(2ikeVt),$$

$$\times \left\{ J_{0} \left[a_{2k}^{*}A_{k}^{*} + a_{-2k}A_{-k} \right] + \sum_{n} (1 + a_{2n}a_{2(n+k)}^{*})(A_{n}A_{n+k}^{*} - B_{n}B_{n+k}^{*}) \right\} -$$

$$- \int d\varepsilon f(\varepsilon + eV) \left\{ J_{1} \left[a_{2k+1}^{*}\alpha_{-k}^{*} + a_{1-2k}\alpha_{k} \right] +$$

$$+ \sum_{n} \left(1 + a_{2n-1}a_{2(n+k)-1}^{*} \right) \left(\alpha_{1-n}\alpha_{1-(n+k)}^{*} - \beta_{1-n}\beta_{1-(n+k)}^{*} \right) \right\}.$$

$$(14)$$

Выражения (10)–(14) определяют все компоненты тока через структуру с локализованным состоянием. При этом в отсутствие зависимости от энергии матриц рассеяния S_e, S_h , связанной с наличием локализованного состояния, выражение для тока (14) и рекуррентные соотношения (10), (13) переходят в формулы (6) и (5) работы [10], причем

$$A'_{n}(E) = -A^{*}_{1-n}(-E - eV), \quad B'_{n}(E) = (r/r^{*})B^{*}_{1-n}(-E - eV).$$

3. ВЫЧИСЛЕНИЕ УСРЕДНЕННОГО ТОКА

При наличии большого числа локализованных состояний в барьере ток через переход является самоусредняющейся величиной и выражение (14) должно быть усреднено по энергиям локализованных состояний и их пространственному распределению. Считая, что локализованные состояния распределены равномерно с плотностью g как в области слабой связи, так и по энергии вблизи поверхности Ферми, можно показать, что в пределе $eV \gg \Delta$ асимптотическое выражение для усредненного по координатам и энергиям локализованного состояния постоянного тока через структуру имеет вид

$$I_{dc}(V) = R_N^{-1} eV + \delta I, \quad eV \gg \Delta, \quad R_N^{-1} = \pi^2 g \Gamma_0 / 2\kappa, \tag{15}$$

где R_N^{-1} — усредненная резонансная проводимость аналогичной структуры с нормальными электродами [19].

При низких температурах, $T \ll \Delta$, член δI в (15) представим в виде

$$\delta I = \frac{e}{\pi\hbar} \int d\varepsilon \left\langle \frac{\left|t^{*}(\varepsilon)t(-\varepsilon)\right|^{2}}{\left|1 - a^{2}(\varepsilon)r^{*}(-\varepsilon)r(\varepsilon)\right|^{2}} \right\rangle \left(\left|a(\varepsilon)\right|^{2} + \left|a(\varepsilon)\right|^{4}\right) + \frac{e}{\pi\hbar} \int_{|\varepsilon| > \Delta} d\varepsilon \left\langle \left|t(\varepsilon)\right|^{2} \left(\frac{1 - \left|a(\varepsilon)\right|^{4}}{\left|1 - a^{2}(\varepsilon)r^{*}(-\varepsilon)r(\varepsilon)\right|^{2}} - 1\right) \right\rangle - \frac{2\Delta}{eR_{N}},$$
(16)

где уголковые скобки означают усреднение по энергии E_0 и координате z_0 локализованного состояния.

В пределе широкой линии резонанса, $\Gamma_0 \gg \Delta$, в существенной области энергий $\varepsilon \approx \Delta$ в интегралах по энергии (16) можно пренебречь различием между $t(\varepsilon)$ и $t(-\varepsilon)$, $r(\varepsilon)$ и $r(-\varepsilon)$ и свести их к табличным:

$$\delta I = \frac{e\Delta}{\pi\hbar} \times \left\langle T^2 \left(\frac{1}{1-T} + \frac{2}{\sqrt{1-T} (2-T)} \operatorname{arcth} \left[\frac{2\sqrt{1-T}}{2-T} \right] - \frac{2-T}{(1-T)^{3/2}} \operatorname{arcth} \left[\sqrt{1-T} \right] \right) \right\rangle, \quad (17)$$

где $T \equiv |t(E_0, E)|^2$. Численное усреднение в (17) по энергии и координате локализованного состояния дает положительное значение избыточного тока $\delta I \simeq 0.22(2\Delta/eR_N)$.

В обратном пределе узкой линии резонанса, $\Delta \gg \Gamma_0$, аналитические оценки и численные расчеты тройных интегралов в (16) приводят к отрицательным значениям δI , что соответствует недостатку тока через структуру $\delta I \simeq -0.7(2\Delta/eR_N)$.

Полученные результаты находятся в согласии с результатами работы [15], в которой в технике келдышевских функций Грина был предсказан аналогичный переход от недостатка к избытку тока при туннелировании по резонансно-перколяционным цепочкам, содержащим большое число локализованных состояний. Необходимо также отметить, что в пределе $\Gamma_0 \gg \Delta$, несмотря на качественную схожесть с баллистическими S - c - S-сужениями, полученное выражение для избытка тока меньше полученного для S - c - S-переходов в 1.5 раза.

4. ТОК ЧЕРЕЗ ОДИНОЧНОЕ ЛОКАЛИЗОВАННОЕ СОСТОЯНИЕ

При малой концентрации локализованных состояний *g* в *I*-слое интерес представляет нахождение тока через одиночное локализованное состояние.

Рассмотрим сначала задачу о транспорте тока через аналогичную структуру, но с нормальными берегами. Ранее она изучалась в работах [16, 19]. Поскольку при отсутствии сверхпроводимости в электродах не надо учитывать процессы андреевского отражения, выражение для тока (14) сводится к формуле

$$I = \frac{e}{\pi\hbar} \int d\varepsilon \times \left\{ f(\varepsilon) \left| t(E_R, \varepsilon) \right|^2 - f(\varepsilon + eV) \left| t(E_R, \varepsilon) \right|^2 \right\} \xrightarrow{T \to 0} \frac{e}{\pi\hbar} \int_{0}^{eV} d\varepsilon \left| t(-E_R, \varepsilon) \right|^2.$$
(18)

Из (18) следует, что при низкой температуре, $T \ll \Gamma_0$, производная тока dI(V)/dVимеет форму лоренцевой кривой $|t(-E_R, V)|^2$ с максимумом в точке $eV = -E_R$, а ток I(V) имеет форму размытой в масштабе Γ_0 ступеньки, начинающей свой рост при $eV \leq -E_R$, и выходит на постоянную амплитуду $(e/\pi\hbar)(\pi\Gamma_0/ch(z_0))$ при $eV \gg -E_R$. Последнее справедливо для $E_R \ll -\Gamma_0$. При $E_R \gg 0$ резонансный ток несуществен при V > 0, а при $E_R = 0$ он соответствует линейному участку при V = 0, имеет линейную зависимость, пока $eV \ll \Gamma_0$, и выходит на постоянное значение $(e/\pi\hbar)(\pi\Gamma_0/2 ch(z_0))$ при $eV \gg \Gamma_0$. Численно рассчитанные по формуле (18) ВАХ структуры с нормальными

Рис. 1. ВАХ S - c - S-структуры с одиночным локализованным состоянием в области слабой связи, рассчитанные численно на основании формул (9)–(14) при $\Delta/\Gamma_0 = 10$, $z_0 = 0$ для значений энергии одиночных локализованных состояний $E_R = 0$; $-0.4\Gamma_0$; $-1.4\Gamma_0$; $-2.3\Gamma_0$ (соответственно кривые 1, 2, 3, 4). Характеристика с $E_R = -0.4\Gamma_0$ изображена штриховой линией. На вставке для сравнения изображены ВАХ аналогичных N - c - N-структур с несверхпроводящими электродами, рассчитанные численно при тех же значениях параметров; штриховые линии — зависимости кондактанса от напряжения

Рис. 2. ВАХ S-c-S-структуры с одиночным локализованным состоянием в области слабой связи при различных значениях отношения полуширины линии резонанса Γ_0 к модулю параметра порядка сверхпроводящих электродов Δ , рассчитанные численно на основании формул (9)–(14) при $E_R = 0$; $z_0 = 0$; $R_Q = h/4e^2$ — квантовая единица сопротивления. На вставке в большем масштабе показана ВАХ, рассчитанная для $\Delta/\Gamma_0 = 1$, $E_R = 0$, $z_0 = 0$

берегами представлены при различных значениях энергии локализованных состояний на вставке на рис. 1.

Наличие сверхпроводимости в электродах структуры приводит к необходимости, наряду со одноэлектронным рассеянием, определяемым матрицей (2), учитывать и множественные процессы андреевского отражения квазичастиц от сверхпроводящих электродов. При этом ток через структуру будет определяться не формулой (18), а более общим выражением (14). Ниже мы рассмотрим различные случаи соотношения между Δ и Γ_0 .

При широкой линии резонанса, $\Gamma_0 \gg \Delta$, и энергии локализованных состояний $E_R \approx 0$ аналитические расчеты и численный счет по формуле (14) приводит к форме ВАХ, аналогичной ВАХ баллистического S - N - S-сужения с прозрачностью D = 1 (рис. 2). Этот результат естествен: в этом случае квазичастицы свободно двигаются в области сужения в существенном для них интервале энергии $\varepsilon \approx \Delta \ll \Gamma_0$, испытывая множественные андреевские отражения в подщелевой области. Это приводит к скачку тока $2\Delta e/\pi\hbar$ при V = 0 и к появлению избыточного тока $\delta I = 8\Delta e/3\pi\hbar$ при $eV \gg \Delta$, такого же, как и в S - N - S-случае [9].

При ширине линии резонанса $\Gamma_0 \approx \Delta$ и энергии локализованного состояния вблизи нуля $E_R \approx 0$ численный расчет по формуле (14) приводит к сложной форме зависимости I(V). На ВАХ имеются особенности в подщелевой области при $eV \simeq 2\Delta/n$, участки с отрицательным дифференциальным сопротивлением и насыщение тока в области больших напряжений (см. вставку на рис. 2). Этот результат также имеет естественное объяснение: при $\Gamma_0 \approx \Delta$ появляется конечная вероятность для квазичастицы рассеяться в области сужения нормальным образом. Это приводит к видоизмененной картине известных подщелевых особенностей при $eV \simeq 2\Delta/n$ [10, 13], типичной для структур с $D \leq 1$, но с амплитудой отличной от полученной для не зависящего от энергии δ функционального рассеивающего потенциала. Выход на насыщение при $eV \gg \Gamma_0$ ти-

Рис. 3. «Полупроводниковая» диаграмма, поясняющая невозможность протекания тока через структуру с локализованными состояниями при собственной энергии $E_R = 0$ и при напряжении на переходе $eV > -\Delta$

пичен для структур с транспортом тока через одиночное локализованное состояние.

Интересной особенностью ВАХ структуры в пределе узкой линии резонанса $\Gamma_0 \ll \Delta$ является возможность появления существенного резонансного тока при $|eV| \ge \Delta$ при определенных значениях энергии локализованных состояний, а также наличие на ВАХ участков резкого убывания (рис. 1). Такое поведение связано с образованием эффективного однократного когерентного андреевского процесса в узкой полосе значений напряжения $|eV - E_R| \approx \Gamma_0 \ll \Delta$ при определенных значениях энергии локализованных состоянийх состояний и выходом из этого резонанса по мере роста напряжения.

Так, при энергии локализованного состояния E_R , совпадающей с энергией Ферми левого электрода (рис. 3), ток, проходящий через структуру, не будет существен (кривая l рис. 1) ни при каких положительных значениях напряжения V на переходе. Действительно, в этом случае энергия Ферми левого сверхпроводящего электрода превышает энергию правого электрода на величину eV. Поэтому при низкой температуре, $T \ll \Delta$, напротив лоренцева окна прозрачности $|t(E_R, E)|^2$ (8), обеспечиваемого локализованным состоянием, не будет заполненных квазичастицами энергетических уровней правого электрода, а значит, и тока из правого в левый электрод. Ток, текущий в противоположном направлении, будет также подавлен в силу неравенства $\Gamma_0 \ll \Delta$.

При отрицательных значениях напряжения на переходе, $V \approx -\Delta/e$ (см. рис. 4), напротив определяемого выражением (8) лоренцева окна прозрачности $|t(E_R, E)|^2$ имеются заполненные уровни правого сверхпроводника. Возникающее при этом эффективное однократное андреевское отражение электронов, движущихся из правого в левый электрод в узкой полосе $|V - E_R| \approx \Gamma_0 \ll \Delta$, приводит к существенному резонансному току. Аналогичная ситуация имела место и в случае равновесного резонансного джозефсоновского тока при V = 0 [7]. Тогда в пределе узкой линии резонанса, $\Gamma_0 \ll \Delta$, резонансный джозефсоновский ток также мог эффективно течь через такую структуру

Рис. 4. «Полупроводниковая» диаграмма, объясняющая появление существенного тока через структуру с локализованным состоянием при собственной энергии $E_R = 0$ и при напряжении на переходе $eV < -\Delta$ за счет образования эффективного андреевского процесса относительно уровня Ферми левого сверхпроводника в узкой энергетической полосе прозрачности этих состояний

лишь в узкой полосе энергии $E_R \approx \Gamma_0$. С ростом абсолютного значения напряжения ток плавно выходит на постоянное значение, подобно тому как это имело бы место в структуре с нормальными электродами.

При значениях собственной энергии локализованного состояния E_R , не совпадающих с положением энергии Ферми левого электрода и меньших Δ , эффективный андреевский процесс не имеет места ни при каких значениях напряжения на переходе. Это приводит к отсутствию существенного тока через структуру (кривая 2 на рис. 1).

Однако при энергии локализованного состояния $|E_R| > \Delta$ резонансный ток через структуру станет опять возможным (кривые 3, 4 на рис. 1). При этом существенной особенностью ВАХ структуры является наличие резко выраженного убывающего участка. При $eV \simeq -E_R$ имеет место резкое увеличение тока, связанное с образованием эффективного андреевского процесса в узкой полосе энергий $|eV - E_R| \approx \Gamma_0 \ll \Delta$ (см. рис. 5). Дальнейший рост напряжения ($-E_R < eV < \Delta + |E_R|$) приводит к рассогласованию прозрачностей для электронных и дырочных возбуждений, подавляющему андреевский процесс. Однако при $eV > \Delta + |E_R|$ открывается канал одноэлектронного резонансного переноса тока, аналогичного имеющему место в резонансных структурах с нормальными электродами (рис. 6). Дальнейший рост напряжения приводит к выходу тока на постоянное значение, стремящееся к аналогичной константе в N - c - N-переходах по мере уменьшения энергии локализованных состояний $E_R \ll -\Delta$.

Увеличение температуры структуры и смещение координаты локализованных состояний z_0 от оптимального значения $z_0 = 0$ приводит к уменьшению амплитуды и размытию особенностей ВАХ структуры.

Рис. 5. «Полупроводниковая» диаграмма, изображающая транспорт тока через структуру с локализованными состояниями при собственной энергии этих состояний $E_R < -\Delta$ и при напряжении на переходе $eV > \Delta$ за счет образования эффективного андреевского процесса относительно уровня Ферми правого сверхпроводника в узкой энергетической полосе прозрачности этих состояний

Рис. 6. «Полупроводниковая» диаграмма, изображающая транспорт тока через структуру с локализованными состояниями при собственной энергии этих состояний $E_R < -\Delta$ и при напряжении на переходе $eV > \Delta + |E_R|$ за счет одноэлектронного транспорта в узкой энергетической полосе прозрачности этих состояний

5. ЗАКЛЮЧЕНИЕ

Таким образом, в работе было показано, что ВАХ S - I - S-структур с локализованным состоянием в материале прослойки существенно зависят от величины параметра Δ/Γ_0 , а также от концентрации локализованных состояний. При низкой концентрации этих состояний ток определяется транспортом через одиночное локализованное состояние. В этом случае при большой ширине линии резонанса $\Gamma_0 \gg \Delta$ ВАХ перехода совпадает с ВАХ баллистического перехода с прозрачностью равной единице. При промежуточных значениях ширины линии резонанса $\Gamma_0 \approx \Delta$ на ВАХ перехода наблюдается видоизмененная картина известных подщелевых особенностей [10, 13] при $eV \simeq 2\Delta/n$ с дальнейшим выходом тока на насыщение. В пределе узкой линии резонанса, $\Gamma_0 \ll \Delta$, при определенных значениях собственной энергии локализованных состояний E_R существенный ток через переход может течь при напряжении на переходе $|eV| = \Delta$. Также на ВАХ перехода могут наблюдаться участки с отрицательным дифференциальным сопротивлением.

При большой концентрации локализованных состояний ток через переход определяется не током через одиночное состояние, а усредненным вкладом от множества этих состояний, распределенных равномерно по объему *I*-слоя и по энергии вблизи энергии Ферми. При этом в пределе больших напряжений, $eV \gg \Delta$, на BAX перехода должен наблюдаться избыток тока в случае большой ширины линии резонанса, $\Gamma_0 \gg \Delta$, и недостаток тока в пределе узкой линии резонанса, $\Gamma_0 \ll \Delta$. Это согласуется с результатами, полученными ранее [15] с использованием другой техники для структур, качественно схожими со структурами, рассмотренными в данной работе. Численно рассчитаны величины недостатка и избытка тока.

В данной работе рассматривался случай обычных изотропных сверхпроводников *S*типа. Тем не менее предложенный метод может быть естественным образом обобщен на случай *d*-симметрии [17].

Авторы благодарны Д. Гончарову за помощь в численных расчетах. Работа поддерживалась программами «Актуальные проблемы физики конденсированного состояния», Физика твердотельных наноструктур и РФФИ-INTAS (RFBR95-1305).

Литература

- 1. A. A. Golubov, M. A. J. Verthoeven, I. A. Devyatov et al., Physica C 235-240, 1361 (1994).
- И. Венгрус, М. Ю. Куприянов, О. В. Снигирев и др., Письма в ЖЭТФ 60, 372 (1994).
- 3. T. Satoh, M. Hidaka, M. Yu. Kupriyanov et al., IEEE Tran. Appl. Sup. 5, 2612 (1995).
- 4. M. Yu. Kupriyanov and J. S. Tsai, IEEE Tran. Appl. Sup. 5, 2531 (1995).
- 5. M. Siegel, R. Dommel, C. Horstmann, and A. I. Braginskii, in *Extended Abstracts of International Conference on Superconductor Electronics*, Nagoya, Jap. (1995), p. 141.
- 6. M. Yu. Kupriyanov, J. Low Temp. Phys. 106, 149 (1997).
- И. А. Девятов, М. Ю. Куприянов, ЖЭТФ 112, 189 (1997).
- 8. C. W. J. Beenakker and H. van Houten, Phys. Rev. Lett. 66, 3056 (1991).
- 9. А. В. Зайцев, ЖЭТФ 86, 1742 (1984).
- 10. D. Averin and A. Bardas, Phys. Rev. Lett. 75, 1831 (1995).
- 11. T. M. Klapwijk, G. E. Blonder, and M. Tinkham, Physica B 109/110, 1657 (1982).

- 12. A. V. Zaitsev and D. V. Averin, e-print cond. mat. base 9708190 (1997).
- 13. E. N. Bratus, V. S. Shumeiko, and G. Wendin, Phys. Rev. Lett. 74, 2110 (1995).
- 14. Л. С. Асламазов, М. В. Фистуль, ЖЭТФ 83, 1170 (1982).
- 15. А. В. Тартаковский, М. В. Фистуль, ЖЭТФ 94, 353 (1988).
- 16. H. Knauer, J. Rihter, and P. Siedel, Phys. Stat. Sol. 44, 303 (1979).
- 17. M. Hurd, e-print cond. mat. base 9702028 (1997).
- 18. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York (1953).
- 19. А. И. Ларкин, К. А. Матвеев, ЖЭТФ 93, 1030 (1987).