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We develop а theory ofCoulomb oscillations in superconducting devices in the limit ofsmall 
charging energy Ее ~ d. We consider а small superconducting grain with fmite capacitance 
connected to two superconducting leads Ьу nearly ballistic single-channel quantum point contacts. 
The temperature is assumed to Ье very low, so there are по single-particle excitations оп the grain. 
Then the behavior of the system сап Ье described in terms of the quantum mechanics of the 
superconducting phase оп the island. The Josephson energy as а function of this phase has two 
minima that Ьесоmе degenerate when the phase difference оп the leads equals to 7Г, the tunneling 
amplitude between them being controlled Ьу the gate voltage оп the grain. We fmd the Josephson 
current and its low-frequency fluctuations, and predict their periodic dependence with period 2е 
оп the induced charge Qx = CVg . 

1. INТRODUCTION 

Coulomb effects in several different types of three-terminal devices consisting of ап island 
connected to externalleads Ьу two weak-link contacts, and capacitively coupled to ап additional 
gate potential, have Ьееп extensively studied in the last few уеат. Systems with а normal metal 
island and leads were studied theoretically both in the tunnel-junction limit [1] and in the case 
of а quantum point contact with almost perfect transrnission [2]. The theory of charge-parity 
effects and Coulomb modulation ofthe Josephson current was investigated in detail in [3]. A1l 
of the аЬоуе systems at present are realized experimentally. 

Recently, it was shown to Ье possible to produce а quantum point contact between two 
superconductors via а normally conductive region made of two-dimensional electron gas [4]; 
smeared step-wise behavior of the critical current was observed, in qualitative agreement with 
predictions [5] for а superconductive quantum contact with а few conduction channels of 
high transrnittivity. Observation of а nonsinusoidal current-phase relation in superconducting 
mechanically controllable break junctions has Ьееп reported in Ref. [6], again in agreement 
with Ref. [5]. 

Al10ther interesting experimental achievement was reported in Ref. [7], where S - N - S 
contact with а size comparable to the de Broglie wavelength in the N region made of BiPb 
was realized and nonmonotonic behaviour of the critical current with the thickness of normal 
region was found. This remarkable development of technology suggests the feasibility of making 
а system of а small superconductive (SC) island connected to the superconductive leads Ьу 
two quantum point contacts (QPC). In such а system, macroscopic quantum effects due 
to competition between Josephson coupling energy and Coиlomb (charging) energy could Ье 
realized, together with quantization (due to the small number of conductive channels) of the 
Josephson critical currel1t. 
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In the present рарес we develop а theory [ос а limiting сме of such а system, namely, 
two almost ballistic one-channel QPCs connecting а small SC island with two SC leads. We 
consider the limit of the characteristic charging energy much smaller than the superconducting 
gap, Ее «: t1; therefore, Coulomb effects асе small. We derive the dependence of the average 
Josephson current across the system and its f1uctuations (noise power) as functions of the SC 
phase difference between the leads а, and of the electric gate potential Vg • Coulomb effects 
show ир at phase differences а close to 1Г, where the two lowest states асе almost degenerate. 
We show that such а system realizes а tunable quantum two-level system (pseudospin 1/2) 
which тау Ье useful [ос the realization of quantum computers (see, e.g., Refs. [8-11]). 

The рарес is organized as follows. We start Ьу considering а single QPC connecting 
а superconducting island to а single lead (Sec. 2). We find the oscillations of the effective 
capacitance of the island as а function of the gate potential (in some analogy with Matveev's 
results [2] [ос а normal QPC). Depending оп the backscattering probability in the contact, it 
сап ье described either in the adiabatic ос in the diabatic approximation. We find the condition 
[ос diabatic-adiabatic crossover. Then in Sec. 3 we formulate а simple model [ос а double­
contact system in the adiabatic approximation. We replace the [иП many-body problem Ьу 
а quantum-mechanical рroЫет for the dynamics of the SC phase оп the middle island. In 
Sec. 4 we calculate the average Josephson current through the system as а function of а and 
Vg , with particular emphasis оп phase differences а close to 1г (where oиr effective two-level 
system is almost degenerate). Section 5 is devoted to the analysis of Josephson current noise; 
we calculate total intensity ВО ofthe «zero»-frequency noise (ап analog ofthe noise calculated 
in Refs. [12-14] [ос а single superconductive QPC), as well as finite-frequency noise В", due 
to transitions between the two alтost-degenerate levels. Finally, we present our conclusions 
in Sec. 6. 

2. ADIAВATIC-DIAВAТIC CROSSOVER IN А SINGLE QUANТUM РOINТ CONТACT 

Consider а sтall superconducting island connected to ап extemal superconducting lead 
Ьу ап one-channel, nearly ballistic quantuт point contact [5, 15]. The electric potential ofthe 
grain сап Ье adjusted via а gate terminal (рщ. 1а). Following Ref. [5], we assuтe that the 
contact is тuch wider than the Fermi wavelength (so that transport through the constriction 
сап Ье treated adiabatically), but much smaller than the coherence length ~o == h v р / 1г t1 (where 
Vp is the Fermi velocity, and t1 is the superconducting gap). 

Oиr low-temperatиre assumption is that the average number of one-electron excitations оп 
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Fig. 1. а) Sing!e QPC. The system consists of а SC grain connected to а SC !ead via а QPC. А gate 
tелninа! is used to contro! the e!ectric potential of the grain. Ь) Double-contact S - S - S system. 

The second tелninal is added to the sing!e-QPC setup 
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Fig. 2. Single-contact energy spectrиm. The 
spectrиm consists of the continuum of delocalized 
states and the two Andreev (subgap) states. Dashed 
lines denote Andreev states in the absence of 

Бф backscattering (diabatic terms). Solid lines are 
the states split Ьу backscattering (adiabatic terms) 

the island is much less than опе. Then they cannot contribute to the total charge of the grain, 
and we тау restrict our Coulomb blockade problem to the evolution of the superconducting 
phase оnlу. The low-temperature condition is then Т < д/ ln(V v(О)д) , where V is the volume 
of the grain and v(O) is the density of electron states at the Fermi level. 

We neglect phase fluctuations in the bulk of the island and describe the whole island Ьу а 
single superconducting phase х. At а fIxed value of the phase оп the island, the spectrum of 
the junction consists of the two Andreev states localized оп the junction and the continuum 
spectrum аЬоуе the gap [15] д (Fig. 2). The energies of the Andreev states Не below the gap: 

Е(х) = ±д) 1 - t sin2(x/2), (1) 

where Х is the phase difТerence at the contact and t is the transmission coefficient. 
At t = 1, the spectrum of Andreev states (1) has а level crossing point at Х = 7r. At this 

point, the left and right Andreev states have equal energies, but in the absence ofbackscattering 
(t = 1), transitions between them are impossible. Therefore, we expect that ап ideal ballistic 
contact cannot adiabatically follow the ground state as the phase Х changes, but remains in 
the same left or right Andreev state as it passes the level-crossing point Х = 7r. We borrow 
the terminology from the theory of atomic collisions [16] and саП the (crossing) Andreev levels 
at t = 1 diabatic terrns (dashed lines in Fig. 2), and the split levels - adiabatic terrns (solid 
lines in Fig. 2). Instead of а transmission coefficient t, it will Ье more convenient to speak 
of the reflection coefficient r = 1 - t. At r = О, the contact is described Ьу diabatic terrns. 
As r increases, transitions occur between the terrns, and at sufficiently large r the system will 
mostly adiabatically follow the split Andreev levels. In this section we study the adiabatic­
diabatic crossover, and fInd the crossover scale for the reflection coefficient т. 

We assume that the reflection probability r « 1 (almost perfect transmission) and that 
the charging energy Ее « д (the charging energy is defIned Ьу Ее = (2е)2/С). The latter 
assumption appears natural, because as in tunneljunctions [17], we expect that the capacitance 
С of the grain has ап additional contribution from the capacitance of the point contact. This 
capacitance is of order д/ е2 • А more detailed discussion of this phenomenon wi1l Ье given 
elsewhere. For now, we just mention that this contribution to the capacitance leads to the 
inequality Ее :::; д. 

То probe the degree of adiabaticity, we study the periodic dependence of the ground state 
energy Ео оп the gate voltage. Because of the weakness of charging effects, this dependence 
will ье sinusoidal: 

Eo(Vg ) = €cos(27rN) 
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(where N = VgC j2e is the dimensionless voltage), and we are interested in the ampIitude $ of 
these osciIIations. ТЬе physicaI origin of this periodicity is osciIIations of the induced charge 
оп the grain; this foIlows immediately from the relation 

8Q = С 8Ео 
2е 8N' 

(3) 

There is а simple physicaI explanation of the sinusoidaI dependence (2). ТЬе ground-state 
energy modulation is determined Ьу phase-sIiр processes in the contact. Such processes are 
phase tunneIing events with phase changing Ьу ±21r. WhiIe the magnitudes ofthe clockwise and 
counterclockwise tunneIing ampIitudes are the same, their phases are ±21Г N. This results in the 
expression (2). Higher-order tunneIing processes would give rise to higher-order harmonics in 
the periodic N -dependence. This argument shows that the ampIitude of osciIIations $ coincides 
with the phase-tuппеIiпg ampIitude, and therefore provides а good measure of adiabaticity in 
the phase dynamics. 

Assuming Ее « /)., we сап describe the contact Ьу the dynamics of the phase оп the 
grain, and thus reduce the probIem to single-particle quantum mechanics. Since we restrict 
our attention to Iow-Iying excitations, it is only necessary to include the two Andreev IeveIs оп 
the junction. ТЬе potentiaI term is the J osephson energy of the Andreev IeveIs, and the kinetic 
term is the charging energy. After а simple computation of the backscattering matrix elements 
(the off-diаgопаI entries in the potentiaI term), we arrive at the HamiItonian: 

1 2 
Н = Н(х) + 2Ее(1Гх - N) , (4) 

where 

( х 1/2' х) -cos- r sш-

Н(х) = /). 2 2 

т 1 / 2 sin ~ cos ~. 
(5) 

Here Х is the phase difference across the contact, and r is the reflection coefficient. Obviously, 
the eigenvalues of Н(х) reproduce the result (1). ТЬе number of Cooper pairs at the grain 1г х is 
the momentum conjugate to Х, [х, 1Гх ] = i. Notice that Х takes values оп the circle Х = х+21Г, 
and accordingly 1Гх is quantized to take integer values. We сап also write 1Гх = -i8j8Х. 

This HamiItonian loses its vaIidity at the top ofthe upper band at Х = 21Гn, where the upper 
Andreev state mixes with the continuous spectrum (Fig. 2). However, the probabiIity of the 
рЬме Х reaching the top ofthe upper band of н(х) is exponentially small at Ее « /). (smaller 
than the tunneling probabiIity). ТЬе adiabatic-diabatic crossover is determined Ьу the properties 
of the system near the minimal-gap point Х = 1Г. We сап therefore neglect transitions to the 
continuous spectrum at Х = 21Гn. At the same time, we must disregard tunneIing processes via 
the top ofthe upper Andrees band (next-nearest-neighbor tunneIing), which are present in the 
HamiItonian (4)-(5), but not in the original system. Nearest-neighbor tunneling is а feature 
of our modeI, and is beyond the precision of our approximation. 

There are two opposite Iimits of the probIem: smaIl and «strong» reflection. 
At zero reflection, the HamiItonian splits into lower and upper components. Within еасЬ 

component the potential is periodic with period 41Г. As explained аЬоуе, we must neglect 
next-nearest-neighbor tunneIing via the top of the bands. Therefore, the potentiaI minima of 
н(х) are disconnected and cannot tunnel to еасЬ otller ($ = О). 
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The opposite limit is the case of «large» reflection (the precise meaning of «strong reflection» 
consistent with r ~ 1 wi11 Ье clarified below). In this limit, а gap opens in the spectrum 
of Andreev states, and the system adiabatically follows the 10wer state. We сап replace the 
two-level Hami1tonian Н(-х) Ьу its 10west eigenvalue and arrive to the quantum-mechanical 
problem of а particle in а periodic potential. The semiclassicallimit of this problem is solved 
in Ref. [18]. In оur notation, the result is 

Ead = сопstJЕе~ехр(-Sсl), (6) 

where 

Нi 1 ~ 
Scl = В1 - - -ln- +0(1) 

Ее 4 Ее 
(7) 

is the classical action connecting two nearest minima ( or more precisely, the two turning points). 
The numerical constant В1 is of order unity (at r ~ О, В1 = 4.69 + 1.41т ln r + ... ). 

То study how the adiabaticity is destroyed, it is useful to introduce the dimension1ess 
«coherence factor» f(r) defined Ьу 

(8) 

where Ead is the amplitude of osci11ation of the ground-state energy derived in the adiabatic 
approximation (with on1y the 10west Andreev state included). We see that f(O) = О and 
f(r » rad) = 1. The crossover scale rad сап Ье derived Ьу computing the corrections to f(r) 
in these two limits. 

We first consider the limit of weak backscattering (Т ~ r ad). In this limit, we take the 
wavefunction to Ье the ground state of the Hami1tonian with zero r (at а given wavevector 
N), and then compute the first-order correction in r 1/ 2 to the energy. The wavefunction is 
of «tight-binding» type, and is generated Ьу the «ground-state» wavefunctions Ч'i 10calized in 
the potential minima (diabatic terms). The components of the two-dimensiona1 vectors Ч'i 
alternate: 

(9) 

We then find 

(10) 

(we assume the wavefunctions Ч'i to Ье normalized). It is important to note that Ч'i and 
Ч'i+l are wavefunctions for different potentials (-дJ cos(X/2) and ДJ cos(X/2»; the overlap 
integral (10) has а saddle point at the minirnal-gap point Х = 71', and it reduces the effective 
region of integration to Ix - 71'1 ::::; (Ее / ~)1/4. The norrnalization of the semiclassical tail of 
the wavefunctions Ч'i(Х) yields 

Ч'(х = 71') = exp(-Sсl(Х = 71'» (11) 

(ир to а numerical factor independent of Ее / А). We thus obtain 

(12) 
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Е а Е Ь 

8ф 

Fig. З. Tunneling paths in the diabatic (а) and adiabatic (Ь) limits. Тhese diagrams represent the 
lowest-order сопесtiопs to the phase-tunneling amplitudes in the diabatic and adiabatic limits, 

respectively 

i.e., in terms of the «coherence factor» f(r), 

( )
1/4 

f(r) '" т 1 /2 :е 

Physically, meaning of the integral (10) is the sum over аН paths shown in Fig. За. 
The аЬоуе calculation SllOWS that the crossover scale to adiabatic behavior is 

( Ее)I/2 rd'" -а Д 

(13) 

(14) 

In fact, we neglected the effect of change in the classical action Scl due to the gap opening; 
this effect is estimated to Ье of order 

БSсl '" J :е r ln т, (15) 

i. е., it is а higher-order effect than the change in f(r) proportional to т 1 /2 • Notice that the 
characteristic scale of this change in the classical action is again r ad '" J Ее / д (сопеsропding 
to БSсl '" 1). 

We сап altematively find the crossover scale r ad Ьу computing the lowest order сопесtiоп 
to the «coherence factor» f(r) in the adiabatic limit. In this limit the Hamiltonian (4), (5) can 
ье rewritten in adiabatic terms (for simplicity the voltage N is introduced into the boundary 
condition Ч'(х + 27Г) = е2i 1l' NЧ'(х) Ьу а gauge transformation) as 

( ) 2 [ ] 
Ее а Ее а а Ее 2 

Н = -- - +D(X) - - а(х)- + -а(х) - -а (х), 
2 ах 2 ах ах 2 

(16) 

where 

(17) 

is the diagonalized form of the matrix (5), 
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( О g(X») 
С(Х) = -g(Х) О ' (18) 

and 10} and 11} are the eigenvectors ofthe matrix (5). The last term in the Hamiltonian (16) сап 
Ье shown to yield smaller corrections than the first-order term in С(х). А careful second-order 
perturbation calculation in g(X) yields 

1 - ЛТ) '" J ехр {Sl(Xl, Х2) - S2(Ю, Х2)} g(ю)g(Х2) dю dX2, (19) 

XI<X2 

where S 1,2(Xl, Х2) are the classical actions along the lower and upper adiabatic branches between 
the points Хl and Х2. TWs integral corresponds to summation over аll tunneling paths shown 
in Fig. 3Ь. The function g(X) for the given matrix Н(Х) is а Lorentzian peak at Х = 7г of 
height r- 1/ 2 and width r 1/ 2• Pиtting everytblng together, the integral (19) is calculated to Ье 

1- f(r) '" ~JEe. 
r tl 

(20) 

TWs asymptotic behaviour agrees with the crossover scale (14) found previously. 
То summarize the results of tbls section, the characteristic scale for adiabatic-diabatic 

crossover in а nearly-ballistic single contact is found to Ье r ad '" J Ее / tl. The phase tunneling 
amplitude is proportional to the gate-voltage modulation of the effective capacitance of the 
island, and thus сап Ье directly measured. At low reflection coefficients, these oscillations are 
proportional to ..jТ, as in the normal one-channel QPC [2]. 

3. ADIAВATIC APPROXlМATION OF А DOUBLE-JUNCTION SYSTEM 

We now turn to the case of а double-junction system (Fig. lЬ). As before, we assume 
that the reflection probabilities in both contacts are small, r i «:: 1, that the charging energy 
Ее «:: tl, and that the temperature is sufficiently low to preclude single-electron excitations 
оп the grain. То adjust the electrostatic potential of the grain we again use а gate terrninal; 
N = VgC /2е denotes the dimensionless gate voltage, as before. 

For the moment, to simplify the discussion we assume that the reflection coefficients in 
the contacts are greater than the crossover scale r ad found in the previous section; we сап 
therefore consider only the lower adiabatic branch of the Andreev states. In fact, the results 
сап ье extended further to the case ri < rad Ьу using appropriate «coherence factors» ЛТ), 
sirnilar to those in the previous section. 

We set the superconducting phase оп one of the leads to zero; the phase оп the other lead 
Q is assumed to Ье flXed externally. Then the total Josephson energy of the two contacts is 
(Fig. 4): 

(21) 

where 

(22) 

are the lower adiabatic Andreev terms in the two junctions. 
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At t! = t2 = 1, the potentiaI u(х) obviously has two minima - at Х = aj2 and at 
Х = aj2 + 1г - and sharp peaks at Х = 1г and Х = 1г + а (Fig. 4). At small nonzero Ti, gaps 
open at the crossing points of Andreev IeveIs, which smoothes the реаЬ of u(х). Still, the 
bottom of the potentia1 remains essentiaIIy unchanged. 

The adiabatic Hamiltonian for the doubIe junction becomes 

1 (д )2 H(a,N) = u(х) + U(а - х) + 2Ее -i дх - N (23) 

The potentiaI term of the HamiItonian is the sum of Josephson energies of the contacts, and 
the kinetic term is the Coulomb energy of the charge at the grain. 

4. JOSEPHSON CURRENТ 

The condition Ее «: ~ enabIes us to treat the CouIomb term in the Hamiltonian 
perturbatively. First, neglecting the Coulomb term, we obtain а classical system defined оп 
the circle Х Е (О,21Г) in the potentia1 (21) with two minima. The energies of the minima are 
V! (а) = -2~I cos(aj4)1 and V2(a) = -2~I sin(aj4)I (see Fig. 4). То very high ассшасу, 
we сап neglect backscattering in determining the minima, except near а = О. Since аН 
Coulomb effects оссш near the resonance point а = 1Г, this approximation is justified. At 
zero temperature, ош classical system prefers the Iowest of the minima. Thus the energy of 
the S - S - S system in the absence of the Coulomb term is given Ьу 

Е(а) = -2~cos(aj4) for - 1г < а < 1г (24) 

(see Fig. 5). Differentiating this energy with respect to the phase а gives the Josephson current 

дЕ(а) . а 
l(а) = 2е-- = ~sш-

да 4 
for - 1г < а < 1г (25) 

(Fig. 6). Notice that the current has large jumps at the points of leveI crossing а = 1г + 21Гn. 
Qua1itatively this picture is very simiIar to the case of а single S - S ballistic junction, but the 
shape of the current-phase dependence l(а) is different. 

If we assume а nonzero temperature Т «: ~, the occupation of the upper minimum is 
exponentiaHy smaH except in the vicinity of the leveI-сrossing point I а - 1г I '" т j~. Thus, the 
effect of the temperature is to smear the singularity in 1 (а) at а = 1Г. 

и 

п+а 

о al2 п+ а/2 Х 
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Fig. 4. Potential и(х). At Q =1 о 

it has two minima. Finite backscattering 
in the contacts smoothes the summits of 
the potential, but leaves the bottom of 

the wells unchanged 
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Fig. 5. Classical minimum of the potential u(х) as а function of the external phase difТerence 
а. Dotted liпе shows the quantum gap opened Ьу the Coulomb term 

Fig.6. Josephson сuпепt as а function ofthe external phase difТerence а. Dotted liпе shows smearing 
of the singularity due to the Coulomb term 

Another source of level mixing near the singular point Q: = 7r is quantum fluctuations, 
i.e., fluctuations arising from the kinetic tепn in the Hamiltonian (23). They result in nonzero 
tunnelling amplitudes through the two potential barriers between the potentia1 rninirna. Due 
to the shift in the «angular momentum» Ьу N, the wave functions in the two potential wells 
aquire an additional factor exp(iNx). This results in the relative phase of the two tunneling 
amplitudes differing Ьу 27r N. The net tunneling amplitude (defining the level splitting) сап Ье 
written 

(26) 

where 1'1 and 1'2 are the two amplitudes ofphase tunneling in the two different directions (i.e., 
of phase slip processes in the two different contacts). Below we assume that these amplitudes 
are computed at the level-crossing point Q: = 7r, where they are responsible for level splitting. 

The amplitudes 1'1 and 1'2 have the asymptotic behaviour derived in the previous section 
(except for numerical factors). When the backscattering in the contacts is such that r ~ rad, 
they сап Ье found in the serniclassical approxirnation: 

1'1,2"" (Е:) 1/4 ехр ( -B2/i) ~ 1, (27) 

where В2 "" 1 is deterrnined Ьу the classica1 action connecting the two potential minirna (at 
r ~ 1, В2 ~ 1.45 + 2. 20т ln r + ... ). At r ~ r ad, the tunneling amplitudes are 

1'1,2 "" т 1 /2 ехр ( -B2/i) . (28) 

For the best observation of Coulomb oscillations, 1'1 and 1'2 must Ье of the same order, 
but not too small. In the ideal case 1'1 = 1'2 = 1', the total amplitude is 
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,(N) = 2, COS(Jr N). (29) 

Although the periodic dependence (29) has а period of 4е as function of the «extemal charge. 
Qx = CVg == 2eN, the Josephson current and its fluctuations only depend оп 1,(N)12 (cf. 
Eqs. (32), (34) below), and their period is 2е, as expected [3]. 

The characteristic scale for the r-dependence of В2 is 8т '" J Ее / ~, so for '1 and '2 
to Ье of the same order, the transparencies of the two contacts must differ Ьу по more than 
Ir 1 - Т21 S JEe/~. 

Here we should comment оп the difference between our result (26)-(28) and the normal 
two-channel system discussed in Ref. [2]. In the normal system, the two tunneling amplitudes 
multiply, and the net ground-state епещу oscillations are proportional to r ln r at small Т. In 
the superconducting system, the extemalleads have different superconducting phases, and the 
tunneling in the two contacts occurs at different values of the phase оп the grain. Therefore, 
the tunneling amplitudes add with certain phase factors, and yield the asymptotic behavior vr 
at r --+ о. In fact, the oscillations in the superconducting system will Ье proportional to r (М 
in the normal system [2]) in а different limit - at а phase difference а = о, where the potential 
u(х) has а single minimum and а single barrier. 

The hybridized energy levels in the vicinity of а = 1г are given Ьу the eigenvalues of the 
2 х 2 Hamiltonian 

( vi (а) H12(N») 
Н(а, N) = H 12(N) V'2(a) . (30) 

Diagonalization yields the two energy levels: 

The off-diagonal matrix elements of the Hamiltonian ореп а gap at the level-crossing point 
а = 1г (Fig. 5). This gap depends periodically оп the gate voltage Vg , and these oscillations 
comprise the Coulomb effects in the S - S - S junction. 

We сап obtain the Josephson current Ьу differentiating the energy leve1s with respect to the 
phase а. The gap results in smearing the singularity in l(а), еуеп at zero temperature (Fig. 6): 

for а '" 1Г. (32) 

The width of the crossover at а = 1г depends periodically оп Vg : la - 1ГI '" I,(N)I. 
In the аЬоуе discussion we neglected excited oscillator states. The interlevel spacing for the 

excitations in the potential wells is of order J ~Ee ~ ~,. Therefore, Coulomb effects have а 
much smaller energy scale and the excited states do not participate in mixing the ground states 
of the two potential wells. 

At nonzero temI>erature, фе~е Соul0mЬ effects compete with temperatиre-induced 
smearing, so that the width of the singularity at а = 1г is given at nonzero temperatиre Т «: ~ 
Ьу la -1ГI ~ max(,(N), Т/д). In order for Coulomb effects to dominate thermal fluctuations, 
we must therefore have Т S ,д. 
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It is instructive to compare tbls picture with the case of а multi-channel S - S - S tunnel 
junction (in contrast to the results of Ref. [3], note that we consider the opposite lirnit, with 
!! ~ Ее). If we develop а sirnilar theory for tunnel Josephson junctions, we find that the 
potentials (21) and (22) are both sinusoidal, and therefore the total potential (21) has only опе 
minimum (versus two in the nearly ballistic system). In the tunnel S - S - S system, the 
current-phase relation 1(a) is smeared at а = 1г due to the difference between the critical 
currents of the two Josephson junctions. Coulomb effects compete with this smearing, and 
in order to prevail, the charging energy Ее must Ье greater than the difference of the critical 
currents. In the tunnel system, the corresponding splitting 'у is linear in Ее, while in the nearly 
ballistic system it is exponentially small. Otherwise, Coulomb oscillations in 1(a) will appear 
simi1ar in these two cases. 

То summarize this section, we observed that the Coulomb effects in the one-channel 
S - S - S junction smears the singularity in the Josephson current 1(a) at the critical value 
а = (2n + 1)1Г. This smearing depends periodically оп the potential of the grain with period 
2е / С, and is exponentially small in the adiabatic parameter Ее /!! « 1. The smearing is the 
result of mixing the two states in the potential rninima of the Josephson energy. 

5. FLUCfUATIONS OF ТНЕ JOSEPHSON CURRENТ 

In this section we compute the low-frequency spectrum ofthe fluctuations ofthe Josephson 
current in our model. We shall Ье interested in frequencies much less than the oscillator energy 
scale J !!Ее, so we consider only transitions between the eigenstates of the reduced ground­
state Harniltonian (30). We also assume that the temperature is lower than J!!Ee; we .сап 
then disregard excited oscillator states and internal noise in the contacts (discussed in Refs. [12-
14,19]). Obviously, under these assumptions we сап observe current fluctuations only in the 
immediate neighbourhood of the resonance point а = ±1Г, where the energies (31) of the two 
low-lying states are close to each other. 

We expect to observe two peaks in the noise spectrum - опе at zero frequency (due to 
thermal excitations аЬоуе the ground state), and the other at the transition frequency IE1 - Е2 1 
(due to off-diagonal matrix elements of the current operator). In this section we compute the 
total weights of these peaks and postpone discussion of their width (deterrnined Ьу dissipative 
processes). 

Consider first the zero-frequency peak. In ош approximation it is just the therrnal noise of 
а two-level system. In the vicinity ofthe resonance point а = 1Г, we сап Нпеате the spectrum 
Vi,2(a) and make the approximation that опе ofthe two states carries the current 1(a, N), and 
the other -1(a, N). The spectral weight of the noise is then given Ьу а simple forrnula: 

Во(а, N, Т) == (I2) - (1)2 = 121a, N1 . (33) 
2 1 - 2 

ch 2Т 

Substituting 1(a, N) and E 1,2(a, N) from the previous section, we obtain the noise intensity 
near resonance: 

!!2 
Во(а, N, Т) = 2' (~)2 h-2 (~ 

2 С Т 
( а2-;; ) + 'Y2(N) 
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Fig. 7. Zero-frequency noise as а function of phase а. It decays exponentially for а far from the 
resonance point а = 71'. Right at the уесу resonance point, the noise is suppressed, because both 

states carry near~-I,('ro Josephson current 

Fig. 8. Maximum value ofthe noise versus the potential ofthe grain. The period ofthe peaks corresponds 
to the period 2е ofthe induced charge Q = GVg • Тhe width ofthe peaks depends оп the capacitance 

ofthe grain 

For the effect of the Coulomb interaction to Ье observable, the tempemture must Ье smaller 
than the Соиl0тЬ gap: Т ~ ,!!. At constant Т and N, the noise decreases exponentially as о:: 

moves away from its critica1 value о:: = 11', апд at о:: = 11' the noise is suppressed in the interval 
10:: -11'1 < ,(N) (Fig. 7). The interplay between these two factors results in а strong dependence 
ofthe peak noise оп the potential ofthe grain. Тhe peak va1ue ofthe noise таха В(о::, N, Т) is 
plotted against N in Fig. 8. Most favorable is the case of identica1 contacts, where,1 = ,2 = " 
and therefore ,(N) = 2,cos(1I'N). In this case, when cos(1I'N) «: Т/,/). (sma11 gap 1imit) the 
noise takes its maximal value S ~ /).2/2. In the opposite limit оf1аще gap (cos(1I' N) :» Т /,/).) , 
the noise decreases exponentia1ly: 

The noise has а sharp peak at the resonance point cos 11' N = О, where two levels оп the grain 
with different electron numbers have equal energies. 

Now we turn to the noise peak at the interlevel frequency U) = IE1 - Е2 1. Since 
U) сап now Ье large compared to Т, опе needs to discriminate between different kinds of 
frequency-dependent correlation functions, which сап Ье measured as а noise intensity in 
different experimenta1 situations [21]; here, Ьу noise we теап the Fourier spectrum ofthe time­
symmetric current-current correlation function. In our approxirnation of а two-level system, 
such noise is tempemture independent, and its weight is determined ршеlу Ьу the off-diagonal 
matrix element: 

(35) 

А straightforward computation for the Hamiltonian (30) and 1 = 2е(дН/до::) yields ОП the 
vicinity of о:: = 11') 
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t.2"Y(N) ( а . а) (11112) = cos - + sш-
UJ 4 4 

(36) 

and 

SU)(a, N) = t.2 ( t."Y~N») 2 cos2 а ~ 1г • (37) 

This result contrasts with the corresponding noise intensity in the single quantum point 
contact (found in Refs. [12,13,19]). In the single quantum point contact, the correponding 
noise intensity Ви) is temperature-dependent, because that system has four possible states (or, 
alternatively, two fermion levels). In the сме of the double junction, the system has оnlу two 
states differing Ьу the phase оп the grain, and the quantum fluctuations В", Ьесоте tempera­
ture-independent. 

6. CONCLUSIONS 

We have developed а theory ofCoulomb oscillations ofthe Josephson current and its noise 
power via the S - S - S system with nearly ballistic quantum point contacts. The period of 
Coulomb oscillations as а function of the gate potential is VgO = 2е / С. These oscillations arise 
fюm the semiclassical tunneling of the superconducting phase оп the grain, and are therefore 
exponentially small in J Ее / t. at Ее «: t.. In addition, we predict а crossover from adiabatic 
to diabatic tunneling at the backscattering probability т ad '" J Ее / t.. At backscattering below 
т ad, the amplitude € of the Coulomb oscillations is proportional to the square root of the lesser 
(of the two contacts) reflection probability ..jT min. This is in contrast to the сме of а normal 
double-contact system [20], in which € is proportional to the product ..jT1T2' 

The average Josephson current-phase relation 1(а) is shown to Ье strongly nonsinusoidal 
and roughly similar to the опе known for а single nearlyballistic QPC, in the sense that it exhibits 
abrиpt «switching» between positive and negative values of the current as the phase varies via 
а = 1Г. The new feature of our system is that it is possible to vary the width of the swithching 
region Ба Ьу the electric gate potential Vg ; in the case of equa1 reflection probabilities Тl = Т2, 
this electric modulation is especially pronounced, Ба сх: 1 cos(nCVg/2e)l. The noise spectrиm 
of the supercurrent is found to consist mainly of two peaks: the «zero-frequency» peak due 
to rare thermal excitations of the upper level of the system, and another опе centered аюипd 
the епещу difference UJa. between the two levels. The widths of these peaks are determined 
Ьу the inverse lifetime т of the two states of our TLS, which is due to electron-phonon and 
electromagnetic couplings. Both sources of level decay are expected to Ье very weak in the 
system considered, but the corresponding quantitative analysis is postponed to future studies; 
we present here оnlу results for the jrequency-integrated (over those narrow intervals '" 1 / т) 
поше power. 

The S - S - S device with almost ballistic contacts is а new type of system that сап Ье 
used to implement ап artificia1 «spin 1/2» - ап elementa1 unit for quantum computation. In 
comparison with conventional Josephson systems with tunnel junctions, which were proposed 
for use in adiabatic quantum computation [11], the advantage of our system is that it сап operate 
at considerably higher critical Josephson currents. Moreover, the current-phase characteristics 
of such а system is a1most universal, in the sense that they are determined mainly Ьу the 
microscopic parameters of the SC materials, and only weakly Ьу the specifics of contact 
fabrication. 
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